PHD QUALIFY EXAMINATION — STELLAR ASTROPHYSICS

September, 1999

- (1) (25 points)
 - Consider a pure hydrogen stellar envelope at $\rho = 10^{-8}$ g cm⁻¹ and T = 20,000 K.
 - (a) (5 points) Calculate the relative populations of the three lowest levels of hydrogen atoms.
 - (b) (10 points) Calculate the mean molecular weight μ .
 - (c) (10 points) Estimate the partial pressure of the atoms, ions, electrons and radiation.
- (2) (25 points)

A homologous contracting star with $\kappa_q = \kappa_o \rho^{0.5} T^{-2.0}$ is in radiative equilibrium.

- (a) (15 points) Compute the changes in its central pressure, central temperature, luminosity and effective temperature, when its radius has contracted to 80% of the initial value.
- (b) (10 points) Derive the evolutionary track of such contracting pre-main sequence stars in the H-R diagram.
- (3) (25 points)

At the end of hydrogen burning, a low mass star has an isothermal helium core, a hydrogen burning shell and a hydrogen-rich envelope.

- (a) (5 points) Derive the virial theorem of the isothermal core and give reasons to justify the validity of the theorem.
- (b) (15 points) Show that there is an upper limit to the ratio of the mass of the isothermal core to the total mass of the star (i.e., $M_c/M_* \leq q_{\rm SC}$, the Schönberg-Chandrasekhar limit). State clearly the approximations you made.
- (c) (5 points) What is the approximate value of $q_{\rm SC}$ for a one solar mass star? Is it possible for such a star to evolve to a stage where $M_c/M_* > q_{\rm SC}$? If yes, describe in detail what happens to the core next.
- (4) (25 points)

A white dwarf is completely degenerate and has a density profile $\rho = \rho_c \left[1 - \alpha (r/R)^{\beta}\right]$ where $0 \le \alpha \le 1$.

- (a) (10 points) From the density profile find the central pressure of the star in terms of its total mass M and radius R.
- (b) (10 points) If the central number density $n \ll (mc/h)^3$, derive an expression for R in terms of M and other fundamental constants and parameters related to the constituents of the dwarf. Sketch the positions of white dwarfs of different masses on an H-R diagram.
- (c) (5 points) Find the maximum mass of the white dwarf in terms of fundamental constants and constituent parameters? Will this maximum mass be different if the dwarf is rotating, and why?

$$\begin{split} h &= 6.63 \times 10^{-27} \text{ erg s} \\ k &= 1.38 \times 10^{-16} \text{ erg K}^{-1} \\ a &= 4\sigma/c = 7.56 \times 10^{-15} \text{ erg cm}^{-3} \text{ K}^{-4} \\ m_{\rm e} &= 9.11 \times 10^{-28} \text{ g} \\ m_{\rm H} &= 1.67 \times 10^{-24} \text{ g} \\ \text{eV} &= 1.6 \times 10^{-12} \text{ erg} \\ \text{ionization potential for hydrogen is 13.6 eV} \end{split}$$