Collisional Processes

- Long range interaction
 - --- between charges (ions, electrons); Coulomb $1/r^2$
- Intermediate range interaction
 - --- between charges and neutrals (atoms/molecules); induced dipole, $1/r^4$
- Short range interaction --- between neutrals, $1/r^6$

A two-body encounter, [# of collisions] = [total # of particles in the (moving) volume] so $N = n (\sigma v t)$

 σv : collision rate

- ✓ # of collisions per unit time = $^{N}/_{t} = n \sigma v$
- ✓ Time (interval) between 2 consecutive collisions, mean free time (N = 1), $t_{col} = 1/(n \sigma v)$
- ✓ Mean free path $\ell = vt_{col} = 1/(n \sigma)$

Collision

Thermal Motion

Gas (mostly H atoms), the root-mean-squared speed

$$\frac{1}{2}m_H\sqrt{\langle v^2 \rangle} = \frac{3}{2} k_B T$$

In H I regions, $T \sim 100$ K, $v_{\rm rms,HI} \sim 1$ km s⁻¹, $v_{\rm rms,e} \sim 50$ km s⁻¹

Cross Section

 $\sigma = \pi (a_1 + a_2)^2$

For neutrals, hard spheres (physical cross section) OK, $\sigma_{\rm HI,HI} \leftarrow a \sim 5.6 \times 10^{-9} \, {\rm cm}$

This is to be compared with the Bohr radius of the first orbit of $a_0 = 5.3 \times 10^{-9}$ cm

In an HI cloud, $n_{HI} \sim 10 \text{ cm}^{-3}$; $v_{HI} \sim 1 \text{ km s}^{-1}$; $\sigma_{HI,HI} \sim 10^{-16} \text{ cm}^2$ $t_{HI,HI} \sim 10^{10} \text{ s} \sim 300 \text{ years}$; $\ell \sim 10^{15} \text{ cm} \sim 100 \text{ au}$

∴ Collisions are indeed very rare.

$$\sigma_{HI,e} \sim 10^{-15} \text{ cm}^2 \text{ (polarization)}$$

 $t_{HI,e} \sim (10 \times 10^{-15} \times 10^5)^{-1} \sim 10^{10} \text{ s} \sim 30 \text{ years}$

$$\sigma_e - e^{-10^{-12}} \text{ cm}^2$$
; $n_e \sim 0.2 \text{ cm}^{-3}$
 $t_{HI,e} - \sim 10^{10} \text{ s} \sim 10 \text{ days}$

Cross Section (cont.)

For free e^- and p^+ , $\sigma \gg \sigma_{physical}$ because of Coulomb force Need QM, $a \sim 2.5 \times 10^{-2} / v_{\rm km/s}^2$ [cm] If $v_e \sim 50$ km s⁻¹, $a \sim 10^{-5}$ cm for $e^- \cdot e^-$ encounters If $T = 3 \times 10^4$ K, $\langle v \rangle \sim 10^3$ km s⁻¹ $\rightarrow a \sim 2.5 \times 10^{-8}$ [cm] c.f., the classical electron radius $r_e = \frac{e^2}{m_e c^2} = 2.82 \times 10^{-13}$ [cm] $r_{\rm proton} \approx ?0.8 \, {\rm fm} \approx 0.8 \times 10^{-13} \, {\rm cm}$

Conventional unit: 1 barn = 10^{-24} [cm²] $\sigma_{HI,HI} \sim 10^{-16}$ cm² $\sim 10^{8}$ barns In general, for a two-body collision,

 $A + B \rightarrow$ Products

[reaction rate per unit volume] = $n_A n_B \langle \sigma v \rangle_{AB}$, where the **rate coefficient** is

$$\langle \sigma v \rangle_{AB} \equiv \int_0^\infty \sigma_{AB} v f(v) dv \ [\text{cm}^3 \text{ s}^{-1}]$$

and

v: relative velocity between A and B $\sigma_{AB}(v)$: reaction cross section; vel. dependent f(v): velocity distribution function In thermal equilibrium, the Maxwellian velocity distribution applies

$$f_{v} dv = 4\pi \left(\frac{\mu}{2\pi kT}\right)^{3/2} e^{-\mu v^{2}/2kT} v^{2} dv \qquad \mu \equiv m_{A} m_{B}/(m_{A} + m_{B})$$
is the reduced mass

In terms of energy,

$$\langle \sigma v \rangle_{AB} = \left(\frac{8 \ kT}{\pi \mu}\right)^{1/2} \int_0^\infty \sigma_{AB}(E) \ \frac{E}{kT} e^{-E/kT} \ \frac{dE}{kT}$$

If the density is high, e.g., in the Earth's atmosphere, three-body collisions may become important, $A + B + C \rightarrow$ Products.

The reaction rate per unit volume is then $\kappa_{ABC} n_A n_B n_C$, where κ_{ABC} is the three-body collisional rate coefficient [cm⁶ s⁻¹]

Elastic scattering by an **inversesquare force**, e.g., Rutherford scattering

Exact solutions complicated; so use the "**impact approximation**", i.e., motion in a straight line

Assumption: constant velocity during the encounter between the target and the projectile

Question: How much momentum is transferred (\perp direction)?

Impact Approximation

Coulomb force

$$F_{\perp} = \frac{Z_1 e Z_2 e}{(b/\cos\theta)^2} \cos\theta = \frac{Z_1 Z_2 e^2}{b^2} \cos^3\theta$$

Interaction time scale
$$dt = \frac{d(b \tan \theta)}{v_1} = \frac{b}{v_1} \frac{d\theta}{\cos^2 \theta}$$

Total momentum transfer is

$$\Delta p_{\perp} = \int_{-\infty}^{\infty} F_{\perp} dt = \frac{Z_1 Z_2 e^2}{b v_1} \int_{-\pi/2}^{\pi/2} \cos \theta \, d\theta$$
$$= \frac{2Z_1 Z_2 e^2}{b v_1} \approx \frac{Z_1 Z_2 e^2}{b^2} \frac{b}{v_1}$$
Force at closest distance Time scale

Collisional ionization: an electron energetic/fast enough $(E = p^2/2m)$ to ionize an atom or ion of ionization energy E_I

$$(\Delta P_{\perp})^{2} > 2mE_{I} \Rightarrow (\frac{2Z_{1}Z_{2}e^{2}}{bv_{1}})^{2} > 2mE_{I}$$

So,
$$b^{2} < b_{\max}^{2}(v) = \frac{(2Z_{1}Z_{2}e^{2})^{2}}{v_{1}^{2} \cdot 2mE_{I}} = \frac{2Z_{p}^{2}e^{4}}{m_{e}v^{2}E_{I}}$$

and the ionization cross section becomes

$$\sigma(v) \approx \pi b_{\max}^2 = \frac{2\pi Z_p^2 e^4}{m_e v^2 E_I}$$
 This is ok if $v\uparrow\uparrow$

For minimum velocity,
$$v_{min} = (2I/m_e)^{1/2}$$

 $< \sigma v > = \int \sigma(v) v f(v) dv$
 $= \int_{v_{min}}^{\infty} \frac{2\pi Z_p^2 e^4}{m_e v^2 E_I} v 4\pi \left(\frac{m_e}{2\pi kT}\right)^{3/2} v^2 e^{-m_e v^2/2kT} dv$
 $= Z_p^2 \left(\frac{8\pi}{m_e kT}\right)^{1/2} \frac{e^4}{E_I} e^{-E_I/kT}$

For an H atom at level n, $E_{\rm I} = 13.6 \,[{\rm eV}]/n^2$, so for a large n, e.g., $n \sim 100$, and $T \sim 10^4$ K, $E_{\rm I} \downarrow \downarrow (< kT)$ \rightarrow in radio frequencies.

$$<\sigma v>\propto rac{1}{E_I}\propto n^2$$
, so is very large.

For large *n* (highly excited), the collisional ionization rate is high (i.e., easy to happen)

Deflection Timescale

Net momentum transfer

$$<rac{d}{dt}(\Delta P_{\perp})^2>$$
 $\textcircled{\oplus}$ $Z_2 \, \mathrm{e}, \, n \, \mathrm{[cm^{-3}]}$ $\textcircled{\oplus}$ $\textcircled{\oplus}$

There must be a range of distance, for which $b_{\min} = Z_1 Z_2 e^2 / \text{Energy}$, and $b_{\max} \approx L_D$ (Debye length) The effective range of the \vec{E} field of a charge

 $Z_1 e^-$

Ð

 $L_D \begin{pmatrix} e^- \\ p^+ \\ e^- \end{pmatrix} e^-$

In plasma, the distributions of ions and electrons are correlated because of charge neutrality.

Near a proton \rightarrow more electrons than protons \rightarrow the proton is "shielded"

Average charge within a region $\langle Q(L_D) \rangle = -e$

$$L_D = \left(\frac{kT}{4\pi n_e e^2}\right)^{1/2} = 690 \ T_4^{1/2} \left[\frac{n_e}{\text{cm}^-3}\right]^{-1/2} \text{ [cm]}$$

$$<rac{d}{dt}(\Delta P_{\perp})^2>\propto rac{n_2}{v_1}\,\ln\Lambda$$

 $\Lambda \equiv b_{max}/b_{min}$ = relative importance of distant encounters to close encounters

$$\ln \Lambda = 22.1 + \ln \left[E_{\rm kT} T_4^{3/2} n_{\rm e}^{-1} \right]$$
generally very large; in ISM, ln $\Lambda \approx 20 - 35$

 \Rightarrow For elastic scattering of electrons by ions, weak distant encounters (>> atomic scales) more important than close encounters.

So impact approximation OK

Electron-Ion Inelastic Scattering

An ion originally in state 1, with degeneracy g_1 , is deexcited to state 0.

When an electron comes in about the atomic dimensions, the atom is suddenly perturbed

 \rightarrow transition \rightarrow deexcitation \rightarrow line radiation

$$\langle \sigma v \rangle_{1 \to 0} \equiv \gamma_{10} = \frac{8.629 \times 10^{-8}}{\sqrt{T_4}} \frac{\Omega_{10}(T)}{g_1} [\text{cm}^3 \text{s}^{-1}]$$

where $\Omega_{10}(T)$ is **collision strength**. $\square \Omega_{ji}$ is dimensionless; almost independent of T for $T \leq 10^4$ K \square Typically $1 \leq \Omega_{ji}(T) \leq 10$.

Ion-Neutral Collisions

Interaction potential

$$U(r) = -\frac{1}{2}\alpha_N \frac{Z^2 e^2}{r^4} \propto r^{-4}$$

where α_N is **polarizability** \approx a few a_0 . $a_0 = \text{Bohr radius} \equiv \frac{\hbar^2}{m_e e^2} = 5.292 \times 10^{-9} \text{ [cm]}$

The ion-neutral reactions are important in <u>cool</u> ISM.

Electron-Neutral Collisions

In low-ionization ISM (e.g., protoplanetary disks) ions are rare. e^- -neutral (H₂, He) scattering is important.

e⁻-H₂ scattering (1) If E < 0.044 eV → pure elastic scattering (2) If E > 0.044 eV → rotational excitation possible (3) If E > 0.5 eV → vibrational excitation possible (4) If E > 11 eV → electronic excitation

By experiment $\sigma \simeq 7.3 \times 10^{-6} \left(\frac{E}{0.01 \text{eV}}\right) \text{ [cm}^2\text{]}$

and
$$<\sigma v>\simeq 4.8 \times 10^{-9} \left(\frac{T}{10^2 \text{K}}\right)^{0.68} [\text{cm}^3 \text{s}^{-1}]$$

Neutral-Neutral Collisions

Repulsive at short distances, and weakly attractive at longer distances due to van der Waals interaction (mutually induced electron dipole moment)

Hard sphere OK; each with a radius $R_{\rm i} \approx 1$ Å; impact parameter $b < R_1 + R_2, \sigma = \pi (R_1 + R_2)^2 \approx 1.2 \times 10^{-15} \,\mathrm{cm}^2$ $\langle \sigma v \rangle = 1.81 \times 10^{-10} \left(\frac{\mathrm{T}}{10^2 \,\mathrm{K}} \right)^{1/2} \left(\frac{\mathrm{m_H}}{\mu} \right)^{1/2} \left(\frac{R_1 + R_2}{2 \,\mathrm{\AA}} \right)^2 \,\mathrm{[cm^3 \, s^{-1}]}$

For $T \leq 100$ K, the rate coefficient for neutral-neutral scattering is smaller by more than an order than that for ion-neutral scattering.