Electronic transitions Matter \leftrightarrow matter; matter \leftrightarrow photons

Excitation

Emission and Absorption

$$
\Delta \mathrm{E}=\mathrm{h} v
$$

Two ways to decay down from an excited state

- Spontaneous emission

$$
X_{2} \rightarrow X_{1}+h v
$$

occurrence rate \leftrightarrow atomic properties

- Stimulated emission

$$
X_{2}+h v \rightarrow X_{1}+2 h v
$$

occurrence rate \leftrightarrow density of incoming photons of the same v, polarization, and direction of propagation

Einstein Coefficients

Stimulated

Spontaneous emission

$$
\begin{gathered}
2-h v \\
X_{2} \rightarrow X_{1}+h v \\
v=\left(E_{2}-E_{1}\right) / h
\end{gathered}
$$

\boldsymbol{A}_{21}--- probability [s^{-1}]
$n_{2} A_{21} d t$: \# of spontaneous radiative transitions during $d t$

Die formale Ảhnlichkeit der Kurve der chromatischen Verteilung der Temperaturstrahlung mit dem Maxwell'schen Ge-schwindigkeits-Verteilungsgesetz ist zu frappant, als daß sie lange hätte verborgen bleiben können. In der Tat wurde bereits W. Wien in der wichtigen theoretischen Arbeit,-in welcher er sein Verschiebungsgesetz

$$
\begin{equation*}
\varrho=\nu^{3} \mathrm{f}\left(\frac{\nu}{\mathrm{~T}}\right) \tag{1}
\end{equation*}
$$

ableitete. durch diese Ähnlichkeit auf eine weitergehende Bestimmung der Strahlungsformel geführt. Er fand hiebei bekanntlich die Formel

$$
\varrho=\alpha \nu^{3} \mathrm{e}
$$

welche als Grenzgesetz für große Werte von $\frac{v}{T}$ auch heute als richtig anerkannt wird (Wien'sche Strahlungsformel). Heute wissen wir, daß keine Betrachtung, welche auf die klassische Mechanik und Elektrodynamik aufgebaut ist, eine brauchbare Strahlungsformel liefern kann, sondern daß die klassische Theorie notwendig auf die Reileigh'sche Formel

$$
\begin{equation*}
\varrho=\frac{\mathrm{k} \alpha}{\mathrm{~h}} \nu^{2} T \tag{3}
\end{equation*}
$$

führt. Als dann Planck in seiner grundlegenden Untersuchung seine Strablungsformel

$$
\begin{equation*}
\ell \quad \varrho=\alpha \nu^{3} \frac{1}{e^{\frac{n v}{k T}}-1} \tag{4}
\end{equation*}
$$

auf die Voraussetzung von-diskreten Energie-Elementen gegründet hatte, aus welcher sich in rascher Folge die Quantentheorie entwickelte, geriet jene Wien'sche Oberlegung, welche zur Gleichung (2) geführt hatte, naturgemäß wieder in Vergessenheit.

Vor kurzem nun fand ich eine der ursprünglichen Wien'schen Betrachtung ${ }^{1}$) verwandte, auf die Grundvoraussetzung der Quanten1) Verh. d. deutschen physikal. Gesellschaft, Nr. 13/14, 1916, S. 318 . In der vorliegenden Untersuchung sind die in der eben zitierten Abhandlung gegebenen Oberlegungen wiederhoit

"On the Quantum Theory of Radiation" from A. Einstein

https://einstein.manhattanrarebooks.com/pages/books/17 /albert-einstein/zur-quantentheorie-der-strahlung-on-the-quantum-theory-of-radiation

Transition Probability

Considering a 2 -level system, we calculate the emission arising from the transition.

$$
\begin{aligned}
& j_{v}\left[\mathrm{erg} \mathrm{~s}^{-1} \mathrm{~cm}^{-3} \mathrm{ster}^{-1} \mathrm{~Hz}^{-1}\right] \\
& j=\int j_{v} d v\left[\mathrm{erg} \mathrm{~s}^{-1} \mathrm{~cm}^{-3} \mathrm{ster}^{-1}\right] \text { volume emissivity }
\end{aligned}
$$

For a line emission, assuming $j_{v} \leftrightarrow \leftrightarrow \theta, \varphi$, j_{v} is governed by a distribution function $\phi(v)$ (line profile),

$$
\int_{0}^{\infty} \Phi_{v} d v=1
$$

Once an atom is excited, there is a finite probability within $d t$ of $A(2,1) d t$ to jump spontaneously from level 2 to level 1 (deexcitation), emitting a photon. The total number of downward transitions $2 \rightarrow 1$ is $n_{2} A(2,1)$, where n_{2} is the number of atoms (population) in level 2 per unit volume.
$\boldsymbol{A}_{\mathbf{2 1}}\left[\mathrm{s}^{\mathbf{- 1}}\right]$: Einstein \boldsymbol{A} coefficient for spontaneous transition $=$ probability per unit time.
$1 / A_{21}[\mathrm{~s}]$: lifetime staying at level 2 (remaining excited)

$$
j_{v}=\frac{h v_{0}}{4 \pi} n_{2} A_{21} \phi(v)
$$

Principle of detailed balancing

Consider a 2 -level system, excitation occurs if the incoming free electrons have kinetic energy $\frac{1}{2} m v^{2}>\chi$

Define the excitation rate coefficient γ_{01}, so that \# of excitation $\mathrm{s}^{-1} \mathrm{~cm}^{-3}\left(=n_{e} n_{0} v \sigma\right) \equiv n_{e} n_{0} \gamma_{01}$, where both n_{e} and n_{0} have units of [cm^{-3}]

$$
\gamma_{01} \equiv\langle\sigma v\rangle=\int_{\chi=\frac{1}{2} m v^{2}}^{\infty} \sigma_{01}(v) v f(\vec{v}) d^{3} \vec{v}
$$

Here σ_{01} is the excitation cross section, and $f(\vec{v})$ is the Maxwellian distribution function,

$$
f(\vec{v}) d v=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} v^{2} e^{-\frac{m v^{2}}{2 k T}} d v
$$

So

$$
\gamma_{01}=\frac{4}{\sqrt{\pi}}\left(\frac{1}{2 k T}\right)^{1 / 2} \int_{\chi=\frac{1}{2} m v^{2}}^{\infty} v^{3} \sigma_{01}(v) e^{-\frac{m v^{2}}{2 k T}} d v \ldots(\mathrm{~A})
$$

This is upward $0 \rightarrow 1$ transition.

For downward $1 \rightarrow 0$ transition, the spontaneous emission rate $=n_{1} A_{10}$, and the deexcitation rate by collisions $=n_{1} n_{e} \gamma_{10}$, where $\gamma_{10}=\int_{0}^{\infty} v \sigma_{10}(v) f(\vec{v}) d^{3} \vec{v}=\gamma_{10}(T)$

In steady state, [upwards rate]=[downwards rate], i.e., detailed balancing,

$$
\begin{align*}
& n_{0} n_{e} \gamma_{01}(T)=n_{1}\left[A_{10}+n_{e} \gamma_{10}(T)\right] \text {, so } \\
& \frac{n_{1}}{n_{0}}=\frac{n_{e} \gamma_{01}}{A_{10}+n_{e} \gamma_{10}}=\frac{\gamma_{01}}{\gamma_{10}} \frac{1}{1+\frac{A_{10}}{n_{e} \gamma_{10}}} \ldots \text { (I } \tag{B}
\end{align*}
$$

(i) At high densities, i.e., $n_{e} \rightarrow \infty$

$$
\frac{n_{1}}{n_{0}}=\frac{n_{e} \gamma_{01}}{A_{10}+n_{e} \gamma_{10}}=\frac{\gamma_{01}}{\gamma_{10}} \frac{1}{1+\frac{A_{10}}{n_{e} \gamma_{10}}}
$$

(i.e., collisional excitation and deexcitation dominate \rightarrow in TE)

$$
\frac{n_{1}}{n_{0}} \approx \frac{\gamma_{01}}{\gamma_{10}}
$$

but because $\frac{n_{1}}{n_{0}}=\frac{g_{1}}{g_{0}} e^{-\chi / k T}$

$$
\frac{\gamma_{01}}{\gamma_{10}}=\frac{g_{1}}{g_{0}} e^{-\chi / k T} \quad \text { for } n_{e} \gg 1
$$

So when collision dominates, c.f. (A)

$$
\begin{aligned}
& n_{e} n_{0} v_{0}^{3} \sigma_{01}\left(v_{0}\right) \exp \left(-\mu v_{0}^{2} /(2 k T)\right) d v_{0} \\
& =n_{e} n_{1} v_{1}^{3} \sigma_{10}\left(v_{1}\right) \exp \left(-\mu v_{1}^{2} /(2 k T)\right) d v_{1}
\end{aligned}
$$

where μ : reduced mass, v_{0} and v_{1} are speed of colliding particles.

At high densities (cont.)

Energy conservation, $(1 / 2) \mu v_{0}^{2}=(1 / 2) \mu v_{1}^{2}+\chi$, so $v_{0} d v_{0}=v_{1} d v_{1}$. Plugging this back, we get

$$
\begin{aligned}
& n_{0} v_{0}^{2} \sigma_{01} \exp \left(-\frac{\mu v_{0}^{2}}{2 k T}\right)=n_{1} v_{1}^{2} \sigma_{10} \exp \left(-\frac{\mu v_{1}^{2}}{2 k T}\right) \\
& =n_{0} \frac{g_{1}}{g_{0}} e^{-\chi / k T} v_{1}^{2} \sigma_{10} \exp \left(-\frac{\mu v_{1}^{2}}{2 k T}\right)
\end{aligned}
$$

The exponential parts are eliminated from energy conservation, so

$$
g_{0} v_{0}^{2} \sigma_{01}=g_{1} v_{1}^{2} \sigma_{10}
$$

(i) At low densities, i.e., $n_{e} \rightarrow 0$

$$
\frac{n_{1}}{n_{0}}=\frac{n_{e} \gamma_{01}}{A_{10}+n_{e} \gamma_{10}}=\frac{\gamma_{01}}{\gamma_{10}} \frac{1}{1+\frac{A_{10}}{n_{e} \gamma_{10}}}
$$

$$
\frac{n_{1}}{n_{0}} \approx \frac{\gamma_{01}}{\gamma_{10}} \frac{n_{e} \gamma_{10}}{A_{10}}=\frac{n_{e} \gamma_{01}}{A_{10}}=\frac{\text { [upward by collisions] }}{[\text { downward by radiation only }]}
$$

This means every collisional excitation is followed by emission of a photon.

The cooling rate [$\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-3}$] in this case then, is

$$
n_{1} A_{10} h v_{10}=n_{\mathrm{e}} n_{0} \gamma_{01} h v_{10}
$$

$$
n_{0} n_{e} \gamma_{01}(T)=n_{1}\left[A_{10}+n_{e} \gamma_{10}(T)\right]
$$

The competition for downward transition between the two terms in the bracket \rightarrow the critical density

$$
n_{\mathrm{crit}}=\frac{A_{10}}{\gamma_{10}}
$$

When $n_{e}>n_{\text {crit }}$, collisions dominate deexcitation process \rightarrow LTE, populations governed by Boltmann equation.

Consider the radiative transition $1 \rightarrow 0$, the rate of emission of line photons [s^{-1} atom $^{-1}$] ... cf. eq. (B)

$$
\frac{n_{1}}{n_{0}} A_{10}=A_{10} \frac{\gamma_{01}}{\gamma_{10}} \frac{1}{1+\frac{A_{10}}{n_{e} \gamma_{10}}}
$$

$$
\begin{equation*}
\frac{n_{1}}{n_{0}}=\frac{n_{e} \gamma_{01}}{A_{10}+n_{e} \gamma_{10}}=\frac{\gamma_{01}}{\gamma_{10}} \frac{1}{1+\frac{A_{10}}{n_{e} \gamma_{10}}} \tag{B}
\end{equation*}
$$

(i) At high densities, TE

$$
\frac{n_{1}}{n_{0}} A_{10}=A_{10} \frac{\gamma_{01}}{\gamma_{10}}=A_{10} \frac{g_{1}}{g_{2}} e^{-\chi / k T} \nLeftarrow n_{e}
$$

(ii) At low densities,

$$
\frac{n_{1}}{n_{0}} A_{10}=A_{10} \frac{\gamma_{01}}{\gamma_{10}} \frac{n_{e} \gamma_{10}}{A_{10}}=n_{e} \gamma_{01} \not \leftrightarrow T
$$

Every collisional excitation \rightarrow emission of a line photon.

Consider a 2-level system, for which the electron collides with an ion in the lower level. cross section, $\sigma_{01}=\sigma_{01}(v)$.

Consider electron v only; ions are neglected.

Collisions between electrons and ions in a lower level

$$
\left\{\begin{array}{l}
\sigma_{01}=0, \text { if }(1 / 2) m v^{2}<\chi \\
\sigma_{01} \propto 1 / v^{2}, \text { if }(1 / 2) m v^{2}>\chi
\end{array}\right.
$$

Usually σ is expressed in terms of collision strength $\Omega(0,1)$,

$$
\sigma_{01}(v)=\frac{\pi \hbar^{2}}{m_{e}^{2} v_{0}^{2}} \frac{\Omega(0,1)}{g_{0}}=\frac{4.21}{v^{2}} \frac{\Omega(0,1)}{g_{0}}\left[\mathrm{~cm}^{2}\right]
$$

Recall that $g_{0} v_{0}^{2} \sigma_{01}=g_{1} v_{1}^{2} \sigma_{10}$

The deexcitation rate coefficient is

$$
\begin{aligned}
\gamma_{10} & =\int_{0}^{\infty} v \sigma_{10}(v) f(v) d v \\
& =\sqrt{\frac{2 \pi}{k T}} \frac{\hbar^{2}}{m^{3 / 2}} \frac{\Omega(0,1)}{g_{1}}=8.629 \times 10^{-6} \frac{\Omega(0,1)}{g_{1} T^{1 / 2}}
\end{aligned}
$$

Excitation per volume per time is $n_{e} n_{0} \gamma_{01}$, where $\gamma_{01}=\left(g_{1} / g_{0}\right) \gamma_{10} \exp (-\chi / k T)$

- Ω must be calculated quantum mechanically;
- tabulation available with specific temperature values;
- typically on the order of unity.

The collisional deexcitation rate is then

$$
\begin{aligned}
n_{e} n_{1} \gamma_{10} & =n_{1} \int_{0}^{\infty} n_{e} v \sigma_{10}(v) f(v) d v \\
& =n_{e} n_{1} \sqrt{\frac{2 \pi}{k T}} \frac{\hbar^{2}}{m^{3 / 2}} \frac{\Omega(1,0)}{g_{1}} \\
& =8.629 \times 10^{-6} \frac{n_{e} n_{1}}{g_{1} T^{1 / 2}} \Omega(1,0) \quad\left[\mathrm{cm}^{-3} \mathrm{~S}^{-1}\right]
\end{aligned}
$$

For typical nebular $T=7000 \mathrm{~K}$, and abundances, $\gamma_{10} \approx 10^{-7} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$

Table 8. Wavelengths, $\lambda_{i j}$, transition probabilities, $A_{i j}$, and collision strengths, $\Omega(i, j)$, for the forbidden transitions of the most abundant elements ${ }^{1}$

Element	$\begin{aligned} & \lambda_{21} \\ & (\AA) \end{aligned}$	$\begin{aligned} & A_{21} \\ & \left(\sec ^{-1}\right) \end{aligned}$	$\Omega(1,2)$	λ_{31} (A)	$\begin{aligned} & A_{31} \\ & \left(\sec ^{-1}\right) \end{aligned}$	$\Omega(1,3)$	λ_{32} (A)	$\begin{aligned} & A_{32} \\ & \left(\sec ^{-1}\right) \end{aligned}$	$\Omega(3,2)$
O II	$\begin{array}{r} 3,728.8 \\ +3,726.0 \end{array}$	$\begin{gathered} 4.8 \times 10^{-5} \\ +1.70 \times 10^{-4} \end{gathered}$	1.43	$\begin{array}{r} 2,470.4 \\ +2,470.3 \end{array}$	$\begin{gathered} 0.060 \\ +0.0238 \end{gathered}$	0.428	$\begin{array}{r} 7,319.4 \\ +7,330.7 \\ +7,318.6 \\ +7,329.9 \end{array}$	$\begin{array}{r} 0.115 \\ +0.061 \\ +0.061 \\ +0.100 \end{array}$	1.70
O III	$\begin{array}{r} 5,006.8\left(N_{1}\right) \\ +4,958.9\left(N_{2}\right) \end{array}$	$\begin{gathered} 0.021 \\ +0.0071 \end{gathered}$	2.39	2,321.1	0.23	0.335	4,363.2	1.60	0.310
N II	$\begin{array}{r} 6,583.4 \\ +6,548.1 \end{array}$	$\begin{gathered} 0.003 \\ +0.00103 \end{gathered}$	3.14	3,063.0	0.034	0.342	5,754.6	1.08	0.376
Ne III	$\begin{array}{r} 3,868.8 \\ +3,967.5 \end{array}$	$\begin{gathered} 0.17 \\ +0.052 \end{gathered}$	1.27	1,814.8	2.2	0.164	3,342.5	2.8	0.188
Ne IV	$\begin{array}{r} 2,441.3 \\ +2,438.6 \end{array}$	$\begin{array}{r} 5.9 \times 10^{-4} \\ +5.6 \times 10^{-3} \end{array}$	1.04	$\begin{array}{r} 1,608.8 \\ +1,609.0 \end{array}$	$\begin{array}{r} 1.33 \\ +0.53 \end{array}$	0.427	$\begin{array}{r} 4,714.3 \\ +4,724.2 \\ +4,715.6 \\ +4,725.6 \end{array}$	$\begin{array}{r} 0.40 \\ +0.44 \\ +0.11 \\ +0.39 \end{array}$	1.42
$\mathrm{Ne} V$	$\begin{array}{r} 3,425.9 \\ +3,345.8 \end{array}$	$\begin{array}{r} 0.38 \\ +0.138 \end{array}$	1.38	1,575.2	4.2	0.218	2,972	2.60	0.185
S II	$\begin{array}{r} 6,716.4 \\ +6,730.8 \end{array}$	$\begin{aligned} 4.7 & \times 10^{-5} \\ +3.0 & \times 10^{-4} \end{aligned}$	3.07	$\begin{array}{r} 4,068.6 \\ +4,076.4 \end{array}$	$\begin{gathered} 0.34 \\ +0.134 \end{gathered}$	1.28	$\begin{array}{r} 10,320.6 \\ +10,287.1 \\ +10,372.6 \\ +10,338.8 \end{array}$	$\begin{aligned} & 0.21 \\ + & 0.17 \\ + & 0.087 \\ + & 0.20 \end{aligned}$	6.22
S III	$\begin{array}{r} 9,532.1 \\ +9,069.4 \end{array}$	$\begin{array}{r} 0.064 \\ +0.025 \end{array}$	4.97	$\begin{array}{r} 3,721.7 \\ +3,796.7 \end{array}$	$\begin{array}{r} 0.85 \\ +0.016 \end{array}$	1.07	6,312.1	2.54	0.961
Ar III	$\begin{array}{r} 7,135.8 \\ +7,751.0 \end{array}$	$\begin{gathered} 0.32 \\ +0.083 \end{gathered}$	4.75	$\begin{array}{r} 3,109.0 \\ +3,005.1 \end{array}$	$\begin{gathered} 4.0 \\ +0.043 \end{gathered}$	0.724	5,191.8	3.1	0.665
Ar IV	$\begin{array}{r} 4,740.2 \\ +4,711.3 \end{array}$	$\begin{aligned} & 0.028 \\ & 0.0022 \end{aligned}$	1.43	$\begin{array}{r} 2,854.8 \\ +2,869.1 \end{array}$	$\begin{array}{r} 2.55 \\ +0.97 \end{array}$	0.645	$\begin{array}{r} 7,237.3 \\ +7,170.6 \\ +7,332.0 \\ +7,262.8 \end{array}$	$\begin{aligned} & 0.67 \\ & +0.91 \\ & +0.122 \\ & +0.68 \end{aligned}$	4.92
Ar V	$\begin{array}{r} 7,005.7 \\ +6,435.1 \end{array}$	$\begin{array}{r} 0.51 \\ +0.22 \end{array}$	1.19	$\begin{array}{r} 2,691.4 \\ +2,784.4 \end{array}$	$\begin{gathered} 6.8 \\ +0.081 \end{gathered}$	0.141	4,625.5	3.78	0.945

${ }^{1}$ After Garstang (1968) and Czyzak et al. (1968) by permission of the International Astronomical Union.

Spectroscopic Notation

Ionization State
I ---- neutral atom, e.g., H I $\rightarrow \mathrm{H}^{0}$
II --- singly ionized atom, e.g., H II $\rightarrow \mathrm{H}^{+}$
III - doubly ionized atom, e.g., O III $\rightarrow \mathrm{O}^{++}$
..... and so on....e.g., Fe XXIII

Peculiar Spectra

e (emission lines), p (peculiar, affected by magnetic fields), m (anomalous metal abundances), e.g., B5 Ve

Forbidden Lines

Allowed transitions (via an electric dipole) satisfying selection rules

1. Parity change
2. $\Delta L=0, \pm 1, L=0 \rightarrow 0$ forbidden
3. $\Delta J=0, \pm 1, J=0 \rightarrow 0$ forbidden
4. Only one electron with $\Delta \ell= \pm 1$
5. $\Delta S=0$ (Spin not changed)

A forbidden transition is one that fails to fulfill at least one of the selection rules 1 to 4 . It may arise from a magnetic dipole or an electric quadrupole transition.

The Origin of the Nebulium Spectrum.

In the spectra of the gaseous nebulæ several very strong lines are found which have not been duplicated in any terrestrial source. Many lines of evidence point to the fact that the lines are emitted by an element of low atomic weight. Since the spectra of the light elements, as excited in terrestrial sources, are well known, this leads to the conclusion that there must be some condition, presumably low density, which exists in the nebulæ, that causes additional lines to be emitted.

REVIEWS OF
 Modern Physics

Forbidden Lines

I. S. Bowen, California Institute of Technology

TABLE OF CONTENTS

I. Introduction, (Ritz combination principle, empirical selection rules)

III. Transition Probabilities (Dipole, quadruple, etc.
radiation terms)...............................
IV. Quadrupole Radiation (and other "forbidden"
types of radiation).
Selection rules, transition probabilities
and line intensities and line intensities
B. Absorption coefficients 5
dipalous dispersion.
V. Intensities of Forbidden Lines (as determined by physical conditions)
A. Removal from the metastable state by collisions
B. Removal from the metastable state by absorption.
VI. Physical Conditions and Mechanism of Excitation in the Nebulae.
VII. Tables and Discussion of Forbidden Lines

One-electron systems, H I, He II
Two-electron systems, He I, Li II
Three-electron systems, Li I, Be II, B III, C IV.
Four-electron systems, Be I, B II, C III, N IV, O V.

Five-electron systems, B I, C II, N III, O IV Six-electron systems, C I, N II, O III, F IV, $\mathrm{Ne} V$.
(Variations in relative intensity of for bidden lines with density, high intensity of forbidden lines compared to per mitted)
Seven-electron systems, N I, O II, F III, Ne IV.
Eight-electron systems, O I, F II, Ne III, Na IV
(Auroral, nebular and transauroral lines)
Nine-electron systems, F I, Ne II, Na III. . Ten-electron systems, Ne I, Na II, Mg III. Eleven-electron systems, Na I, Mg II, Al III 73 Twelve-electron systems. Mg I, AI II, Si III 73 Thirteen-electron systems, Al I, Si II, P III,
S IV......................................
Cl IV, A V.
Fifteen-electron systems, P I, S II, Cl III, A IV, K V, Ca VI

Seventeen-electro.................... 76 Eighteen-electron systems, Cl I, A II, K III Elements of the first loms A I, K II, Ca III Elements of the first long period
\square Allowed (regular) Lines (no bracket), $A \approx 10^{+8} \mathrm{~s}^{-1}$, e.g., C IV
\square Semi-forbidden Lines (a single bracket), $A \approx 10^{+2} \mathrm{~s}^{-1}$, e.g., [OII
\square Forbidden Lines (a pair of square brackets),
$A \approx 10^{0}$ to $10^{-4} \mathrm{~s}^{-1}$, e.g., [O III], [N II]

Some examples,
Lyman $\alpha, A_{21} \approx 6.25 \times 10^{8} \mathrm{~s}^{-1}$
[O III] $A_{21}=0.021 \mathrm{~s}^{-1}, \lambda_{21}=5007 \AA$

$$
\begin{aligned}
& A_{21}=0.0281 \mathrm{~s}^{-1}, \lambda_{21}=4959 \AA \\
& A_{32}=1.60 \mathrm{~s}^{-1}, \lambda_{32}=4364 \AA
\end{aligned}
$$

[S II] $A_{21}=4.7 \times 10^{-5} \mathrm{~s}^{-1}, \lambda_{21}=6716 \AA$
H I 21 cm hyperfine line $A_{21} \approx 2.88 \times 10^{-15} \mathrm{~s}^{-1}$; probability extremely low

- Normally an atom stays in the excited state for $10^{-8} \mathrm{~s}$.
- A forbidden transition occurs for excitation levels < a few Ev; stays in the excited state for seconds or longer before returning to the ground state.
- In the lab $n \uparrow \uparrow$, both excitation and de-excitation take place frequently, so radiative transition (emitting a photon) is unlikely.
- In ISM, the electrons are not energetic enough to excite the atoms to normal levels (10 to 20 eV) , but enough to excite to metastable levels. In hot, low-density environments, e.g., H II regions, PNe , solar corona, earth aurora
- Once (collisionally) excited \rightarrow emission
\rightarrow photons escaped \rightarrow efficient cooling

Forbidden lines observed in space and terrestrial upper atmosphere, where densities are low so collisions are rare. The most efficient cooling mechanism in nebular gas: intermediatemass ions excited by collision with electrons (kinetic energy about $k T) \rightarrow$ emission of forbidden line photons

Also the 21-cm line for cold atomic H gas

UV

Green

Red

Compare to hydrogen,

$$
\begin{aligned}
& E_{1 \rightarrow 2}=10.2 \mathrm{eV}, \\
& E_{1 \rightarrow \infty}=13.6 \mathrm{eV}
\end{aligned}
$$

Line	Transition	Wavelength (\AA)	$A_{u l}$ $\left(\mathrm{~s}^{-1}\right)$
$\frac{\text { Infrared }}{\mathrm{Br} \gamma}$	$n=7 \rightarrow 4$	21661	3.0×10^{5}
$\mathrm{~Pa} \beta$	$n=5 \rightarrow 3$	12822	2.2×10^{6}
Ca II	${ }^{2} P_{1 / 2} \rightarrow{ }^{2} D_{3 / 2}$	8662	2.8×10^{5}
Ca II	${ }^{2} P_{3 / 2} \rightarrow{ }^{2} D_{5 / 2}$	8542	1.2×10^{6}
Ca II	${ }^{2} P_{3 / 2} \rightarrow{ }^{2} D_{3 / 2}$	8498	6.3×10^{5}
Optical			
[S II]	${ }^{2} D_{3 / 2} \rightarrow{ }^{4} S_{3 / 2}$	6731	8.8×10^{-4}
[S II]	${ }^{2} D_{5 / 2} \rightarrow{ }^{4} S_{3 / 2}$	6716	2.6×10^{-4}
H α	$n=3 \rightarrow 2$	6563	1.0×10^{8}
[O I]	${ }^{1} D_{2} \rightarrow{ }^{3} P_{2}$	6300	6.3×10^{-3}
Na I D	${ }^{2} P_{1 / 2} \rightarrow{ }^{2} S_{1 / 2}$	5896	6.2×10^{7}
Na I D 2	${ }^{2} P_{3 / 2} \rightarrow{ }^{2} S_{1 / 2}$	5890	6.2×10^{7}
He I	$3^{3} D_{3} \rightarrow{ }^{3} P_{2}$	5876	7.1×10^{7}
Fe II	${ }^{6} P_{3 / 2} \rightarrow{ }^{6} S_{5 / 2}$	4924	3.3×10^{6}
H β	$n=4 \rightarrow 2$	4861	3.8×10^{7}
H γ	$n=5 \rightarrow{ }^{2} 2$	4340	1.6×10^{7}
Fe I	${ }^{3} F_{3} \rightarrow{ }^{3} F_{2}$	4132	1.2×10^{7}
[S II]	${ }^{2} P_{1 / 2} \rightarrow{ }^{4} S_{3 / 2}$	4076	9.1×10^{-2}
Ca II H	${ }^{2} P_{1 / 2} \rightarrow{ }^{2} S_{1 / 2}$	3969	1.4×10^{8}
Ca II K	${ }^{2} P_{3 / 2} \rightarrow{ }^{2} S_{1 / 2}$	3934	1.5×10^{8}
Ultraviolet			
Mg II h	${ }^{2} P_{1 / 2} \rightarrow{ }^{2} S_{1 / 2}$	2803	2.6×10^{8}
Mg II k	${ }^{2} P_{3 / 2} \rightarrow{ }^{2} S_{1 / 2}$	2796	2.6×10^{8}
C IV	${ }^{2} P_{3 / 2} \rightarrow{ }^{2} S_{1 / 2}$	1548	2.7×10^{8}
Si IV	${ }^{2} P_{1 / 2} \rightarrow{ }^{2} S_{1 / 2}$	1403	7.6×10^{8}
O I	${ }^{3} S_{1} \rightarrow{ }^{3} P_{1}$	1305	2.0×10^{8}
S I	${ }^{3} P_{1} \rightarrow{ }^{3} P_{2}$	1296	4.9×10^{8}
Ly α	$2 p \rightarrow{ }^{1 s}$	1216	6.3×10^{8}

Gray \& Corbally
Figure 7.14 A montage of T Tauri stars and the Fuor prototype.

P Cygni profile of a spectral line --- a blue-shifted absorption superimposed on an emission line \rightarrow mass loss (cool gas toward us)

Figure 21.5 FU Orionis, Ho appearing as P Cygni profile and massively broadened, fully saturated Na I lines - clear evidences for a strong outtlowing wind. Li I absorption is evidence for a very young object, SQUES echelle spectrograph. Ha and Na I lines, SQUES, slit width $70 \mu \mathrm{~m}$, $2 \times 3600 \mathrm{~s}, 2 \times 2$ binning. Li I line, SQUES, slit width $85 \mu \mathrm{~m}, 2 \times 3600 \mathrm{~s}, 3 \times 3$ binning

P Cygni stars

- Higher mass-loss rate, $>10^{-5} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$
- Lower terminal velocity, $v_{\infty}<10^{2.5} \mathrm{~km} \mathrm{~s}^{-1}$
- Higher wind density, $n_{H}>10^{10} \mathrm{~cm}^{-3}$ at $2 R_{*}$
than normal stars (Lamers 1986).

The [O I]6300 profile of a T Tauri star; blueshifted wind

Inference: the redshifted emission is blocked by an optically thick dusty disk

5

An example ----Ring Nebula (M57), a planetary nebula

```
Slit = 8' x 1'
```

 \(\mathrm{Hg}+\mathrm{He}\)

calibration lamps

- $\ldots \ldots$. M57
calibration lamps

4861Å line from hydrogen
$n=4 \rightarrow 2$
(called H_{β} line)

1-D spectrum shows little continuum, and a few emission lines
\rightarrow A line spectrum
$4959 \AA ̊$ and $5007 \AA ̊$ doublet from twice-ionized oxygen, O++, or OIII in spectroscopic notation \rightarrow (oxygen) gas is ionized, with $\mathrm{T}>\mathrm{a}$ few thousand K and density $<100 / \mathrm{cm}^{3}$

Fig. 1.1. General structure of the spectrum of a planetary nebula in the optical region, 3 300-7000 \AA. Only the most important emission lines, both permitted and forbidden, are shown. The shaded part from the left, beginning from $\lambda=3646 \AA$, is the Balmer continuum of hydrogen

Excitation Theory --- Applications

For [0 II],

consider a 3-level system, with the two upper levels close together,

$$
\frac{j_{\lambda 3729}}{j_{\lambda 3726}}=\frac{j_{21}}{j_{31}}=\frac{n_{2} A_{21} h v_{21}}{n_{3} A_{31} h v_{31}}
$$

Note: $\Delta \lambda=0.3 \mathrm{~nm} \rightarrow$ need high-dispersion spectroscopy

$$
\frac{j_{\lambda 3729}}{j_{\lambda 3726}}=\frac{j_{21}}{j_{31}}=\frac{n_{2} A_{21} h v_{21}}{n_{3} A_{31} h v_{31}}
$$

$\checkmark n_{e} \rightarrow \infty$, collisional excitation and deexcitation dominate

$$
\frac{j_{21}}{j_{31}}=\frac{g_{2} A_{21} v_{21}}{g_{3} A_{31} v_{31}} e^{-E_{23} / k T} \approx \frac{g_{2} A_{21}}{g_{3} A_{31}}=\frac{6}{4} \frac{3.6 \times 10^{-5}}{1.8 \times 10^{-4}}=0.3
$$

Note: statistical weight $g=2 J+1$
$\checkmark n_{e} \rightarrow 0$, every collisional excitation followed by emission

$$
\frac{j_{21}}{j_{31}}=\frac{\gamma_{12}}{\gamma_{13}}=\frac{g_{2}}{g_{3}} e^{-E_{23} / k T} \approx \frac{g_{2}}{g_{3}}=\frac{6}{4}=1.5
$$

Because $\gamma_{21} \approx \gamma_{12}$, and $E_{23} \ll k T$
Transition of density limits occurs $n_{e, 2} \approx 3 \times 10^{3} \mathrm{~cm}^{-3}$;
$n_{e, 3} \approx 1.4 \times 10^{4} \mathrm{~cm}^{-3}$

So this kind of level configuration (upper close), the line ratio is sensitive to the electron number density.

Similar pairs of lines
$[\mathrm{O}$ II $]$
$[\mathrm{S} \mathrm{II}]$
$[\mathrm{N} \mathrm{I]}$
$[\mathrm{C} \mathrm{III}]$
$[\mathrm{Ar} \mathrm{IV}]$
$[\mathrm{K} \mathrm{V}]$
$[\mathrm{Ne} \mathrm{IV}]$

Some examples of density determinations for H II regions

```
TABLE 5.6
Electron densities in H II regions
```

Object	$\frac{I(\lambda 3729)}{I(\lambda 3726)}$	$N_{e}\left(\mathrm{~cm}^{-3}\right)$
NGC 1976 A	0.50	3.0×10^{3}
NGC 1976 M	1.26	1.4×10^{2}
M 8 Hourglass	0.65	1.5×10^{3}
M 8 outer	1.26	1.5×10^{2}
NGC 281	1.37	7

For planetary nebulae

Electron densities in planetary nebulae

	[O II]		$[\mathrm{S} \mathrm{II}]$		
Nebula	$\frac{\lambda 3729}{\lambda 3726}$	$N_{e}{ }^{a}\left(\mathrm{~cm}^{-3}\right)$	$\frac{\lambda 6716}{\lambda 6731}$	$N_{e} a\left(\mathrm{~cm}^{-3}\right)$	
NGC 40	0.78	1.1×10^{3}	0.69	2.1×10^{3}	
NGC 650/1	1.23	2.1×10^{2}	1.08	4.0×10^{2}	
NGC 2392	0.78	1.1×10^{3}	0.88	9.1×10^{2}	
NGC 2440	0.64	1.9×10^{3}	0.62	3.2×10^{3}	
NGC 3242	0.62	2.2×10^{3}	0.64	2.8×10^{3}	
NGC 3587	1.30	1.4×10^{2}	1.25	1.8×10^{2}	
NGC 6210	0.47	5.8×10^{3}	0.66	2.5×10^{3}	
NGC 6543	0.44	7.9×10^{3}	0.54	5.9×10^{3}	
NGC 6572	0.38	2.1×10^{4}	0.51	8.9×10^{3}	
NGC 6720	1.04	4.7×10^{2}	1.14	3.2×10^{2}	
NGC 6803	0.57	2.8×10^{3}	-		-
NGC 6853	1.16	2.9×10^{2}	-		-
NGC 7009	0.50	4.6×10^{3}	0.61	3.3×10^{3}	
NGC 7027	0.48	5.2×10^{3}	0.59	4.0×10^{3}	
NGC 7293	1.32	1.3×10^{2}	1.28	1.6×10^{2}	
NGC 7662	0.56	3.0×10^{3}	0.64	2.8×10^{3}	
IC 418	0.37	3.2×10^{5}	0.49	9.5×10^{3}	
IC 2149	0.56	3.0×10^{3}	0.57	4.6×10^{3}	
IC 4593	0.63	2.0×10^{3}	-	-	
IC 4997	0.34	1.0×10^{6}	0.45	1.0×10^{5}	

Osterbrock

[^0]
Now consider a different level configuration with [0 III] or

 [NII], for which the two lower levels are close together.

Rate of excitation to ${ }^{1} S$ and ${ }^{1} D$ levels $\Leftrightarrow T$
When $n \rightarrow 0$, i.e., collisional deexcitation is negligible

- Every excitation to ${ }^{1} D \rightarrow \lambda 5007$ or $\lambda 4959$ (probability $3: 1$)
- Every excitation to ${ }^{1} \mathrm{~S} \rightarrow \lambda 4363$ or $\lambda 2321$
$\longrightarrow \lambda 5007$ or $\lambda 4959$
One can show that

$$
\begin{aligned}
& I_{4959} \propto \gamma_{\left({ }^{3} P_{1}{ }^{1} D\right)} \frac{A_{\left({ }^{1} D,{ }^{3} P_{1}\right)}}{A_{\left({ }^{1} D,{ }^{3} P_{2}\right)}+A_{\left({ }^{1},{ }^{3} P_{1}\right)}} h \nu_{4959} \\
& I_{5007} \propto \gamma_{\left({ }^{3} P^{1} D\right)} \frac{A_{\left({ }^{1} D,{ }^{3} P_{2}\right)}}{A_{\left({ }^{1} D,{ }^{3} P_{2}\right)}+A_{\left({ }^{1},{ }^{3} P_{1}\right)}} h \nu_{5007} \\
& I_{4363} \propto \gamma_{\left({ }^{3} P,{ }^{1} S\right)} \frac{A_{\left(1, S,{ }^{1} D\right)}}{A_{\left(1, S,{ }^{1} D\right)}+A_{\left({ }^{1} S,{ }^{3} P\right)}} h \nu_{4363}
\end{aligned}
$$

So

$$
\begin{aligned}
& \begin{array}{l}
\frac{j_{4959}+j_{5007}}{j_{4363}}=\frac{\Omega_{\left({ }^{3} P,{ }^{1} D\right)}}{\Omega_{\left({ }^{3} P,{ }^{1} S\right)}}\left[\frac{A_{\left({ }^{1} S,{ }^{1} D\right)}+A_{\left({ }^{1} S,{ }^{3} P\right)}}{A_{\left({ }^{1} S,{ }^{1} D\right)}}\right] \frac{\left.\bar{\nu}_{(3}{ }^{3} P,{ }^{1} D\right)}{} \\
\nu_{4363} \\
e x p \\
\\
\end{array}(\Delta E / k T) \\
& \\
& \approx \frac{7.73 \exp \left[\left(3.29 \times 10^{4}\right) / T\right]}{1+4.5 \times 10^{-4}\left(N_{e} / T^{1 / 2}\right)}=\frac{7.15}{1+0.0028 x} 10^{14300 / T_{e}} \\
& \text { where } \quad x=\frac{0.01 n_{e}}{\sqrt{T_{e}}} \\
& \qquad \bar{\nu}=\frac{A_{\left({ }^{1} D,{ }^{3} P_{2}\right)} \nu_{5007}+A_{\left({ }^{1} D,{ }^{3} P_{1}\right)} \nu_{4959}}{A_{\left({ }^{1} D,{ }^{3} P_{2}\right)}+A_{\left({ }^{1} D,{ }^{3} P_{1}\right)}}
\end{aligned}
$$

and ΔE is the energy difference between ${ }^{1} D$ and ${ }^{1} S$.
This holds up to $n_{e} \approx 10^{5} \mathrm{~cm}^{-3}$.
At higher densities, collisionalde-excitation begins to play a role.
Similarly, for [N II],

$$
\frac{j_{6548}+j_{6583}}{j_{5755}} \approx \frac{6.91 \exp \left[\left(2.50 \times 10^{4}\right) / T\right]}{1+2.5 \times 10^{-3}\left(N_{e} / T^{1 / 2}\right)}=\frac{8.5}{1+0.29 x} 10^{10800 / T_{e}}
$$

So with this kind of level configuration (lower close; [O III] or [N II]), the line ratio is sensitive to temperature.

Difficulties:

1. I_{4959} and I_{5007} are strong but I_{4363} is weak
2. I_{4363} is close to $\mathrm{Hg} \mathrm{I} \lambda 4358$ (sky!)

Temperature determinations for \underline{H} II regions

table 5.1
Temperature determinations in H II regions

[NII]				[O III]	
Nebula	$\frac{I(\lambda 6548)+I(\lambda 6583)}{I(\lambda 5755)}$	$T\left({ }^{\circ} \mathrm{K}\right)$	$N_{e} / T^{1 / 2}$	$\frac{I(\lambda 4959)+I(\lambda 5007)}{I(\lambda 4363)}$	$T\left({ }^{\circ} \mathrm{K}\right)$
NGC 1976 2b	81	10,000	51	338	8,700
NGC 1976 1a	102	9,100	68	371	8,500
NGC 1976 5b	111	8,900	21	310	8,900
NGC 1976 5a	189	7,500	12	263	9,300
M 8 I	162	7,900	(10)	445	8,100
M 17 I	257	6,900	(10)	330	8,700
NGC 2467 1a	46	13,000	(1)	129	11,600
NGC 2467 1b	53	12,200	(1)	137	11,400
NGC 2359 av	-	-	(1)	90	13,200

TABLE 5.2
Temperature determinations
for planetary nebulae

Nebula	$T[\mathrm{~N} \mathrm{II}]$ $\left({ }^{\circ} \mathrm{K}\right)$	$T[\mathrm{O} \mathrm{III}]$ $\left({ }^{\circ} \mathrm{K}\right)$
NGC 650	9,500	10,700
NGC 4342	10,100	11,300
NGC 6210	10,700	9,700
NGC 6543	9,000	8,100
NGC 6572	-	10,300
NGC 6720	10,600	11,100
NGC 6853	10,000	11,000
NGC 7027	-	12,400
NGC 7293	9,300	11,000
NGC 7662	10,600	12,800
IC 418	-	9,700
IC 5217	-	11,600
BB 1	10,500	12,900
Haro 4-1	-	12,000
K 648	-	13,100

Typically T~10,000 K

ELECTRON TEMPERATURES IN PLANETARY NEBULAE

James B. Kaler
Astronomy Department, University of Illinois
Received 1985 November 4; accepted 1986 February 12

ABSTRACT

Electron temperatures for 107 planetary nebulae are calculated with the most recent atomic parameters from [O III] or [N II] line intensities or both taken from a variety of sources. The two temperatures exhibit quite different variations with respect to nebular ionization level, or excitation. Within somewhat broad limits, $T_{e}[\mathrm{O}$ III $]$ can be taken as constant at $10,200 \mathrm{~K}$ for nebulae without $\mathrm{He}_{\text {II }} \lambda 4686$; with the onset of that line, this temperature quickly climbs according to $T_{e}[\mathrm{O} \mathrm{III}]=9700 \mathrm{~K}+58 \mathrm{I}(\lambda 4686)$, where the line intensity is scaled as usual to $I(\mathrm{H} \beta)=100 . T_{e}[\mathrm{~N} \mathrm{II}]$ behaves oppositely. With $\lambda 4686$ present, there is little discernable trend with excitation around a median value of $10,300 \mathrm{~K}$; as the excitation drops and $\lambda 4686$ disappears, this temperature appears first to increase, and then to decrease to values well below 8000 K : for $\log T_{*}$ (central star temperature) $<4.7, T_{e}\left[\mathrm{~N}_{\text {II }}\right]=14,670 \log T_{*}-57,330$. The dispersion in T_{e} for a specific excitation correlates negatively with O / H as expected.

Combination of the [O III] and $[\mathrm{N}$ II $]$ data sets shows that the mean ratio of $T_{e}[\mathrm{NII}] / T_{e}[\mathrm{O}$ III $]=\bar{r}$ varies smoothly and strongly also as a function of overall nebular excitation. As excitation increases from $T_{*} \approx$ $25,000 \mathrm{~K}$ to $\sim 50,000 \mathrm{~K}, \bar{r}$ increases from ~ 0.7 to ~ 1.1. It then decreases through the onset of He^{+2}, dropping to 0.7 again for the highest levels of ionization, that is, the nebular temperature gradient as inferred from O^{+2} and N^{+}is usually negative with respect to distance from the central star but reverses to positive for nebulae in the midrange of excitation for $T_{*} \approx 50,000 \mathrm{~K}$.

Comparison of [O III] temperatures among major reference sources shows clear systematic differences. The observations by French and by Torres-Peimbert and Peimbert yield the highest values, roughly 1000 K higher than those obtained from Aller and Czyzak and from Barker. No such trends are seen for $T_{e}[\mathrm{~N}$ II], possibly because the scatter in the data is considerably larger.

Read the paper by Donald Menzel

PHYSICAL PROCESSES IN GASEOUS NEBULAE

I. ABSORPTION AND EMISSION OF RADIATION

DONALD H. MENZEL

ABSTRACT

In this paper, the first of a series dealing with the physical state of gaseous nebulae, various fundamental formulae are derived. The total emission and absorption of radiation by atomic hydrogen are evaluated, together with the number of transitions to and from any quantum level, discrete or continuous.' The equations are thrown into simple homogeneous form. The general equations that determine the statistical equilibrium of the assembly and the partition of atoms into various atomic states are developed. Solution of these equations is deferred until a later paper.

The Interstellar Medium --- HW20220331

1. Consider a speck of spherical dust grain of a radius a and at a distance of d from a star with a surface temperature of T_{*} and a stellar radius of R_{*}. (a) Find the equilibrium temperature T_{d} of the grain. (b) Plot T_{d} as a function d. (c) Now replace the dust with the Earth, still at d from the same star, and estimate T_{\oplus}.
2. As in the last question, compute now the temperatures of the 8 planets in the solar system and our Moon versus their distances. Make a plot to show this and mark in the plot the actual average temperature of each object. Comment on possible discrepancies.
3. (extra credit) Find the 'habitable zone' of Vega.

[^0]: ${ }^{a} N_{e}$ given for assumed $T=10^{4}{ }^{\circ} \mathrm{K}$; for any other T divide listed value by $\left(T / 10^{4}\right)^{1 / 2}$.

