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Electronic transitions Matter ↔ matter; matter ↔ photons 
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Emission and Absorption

Two ways to decay down from an excited state

• Spontaneous emission 

𝑋2  𝑋1 + ℎ

occurrence rate  atomic properties

• Stimulated emission

𝑋2 + ℎ 𝑋1 + 2 ℎ

occurrence rate  density of incoming photons of the 

same 𝜈, polarization, and direction of propagation

• Collisional deexcitation  no emission of photons
3



Einstein Coefficients

2

1

𝑩𝟐𝟏 𝑩𝟏𝟐

ℎ𝜈 ℎ𝜈 ℎ𝜈 ℎ𝜈

𝑨𝟐𝟏 --- probability [s−1] 𝑩 𝑰𝝂 --- probability

Einstein (1917)

Spontaneous emission
Stimulated 

(induced) emission (Stimulated) absorption

𝑋2 ⟶ 𝑋1 + ℎ𝜈 𝑋1 + ℎ𝜈 ⟶ 𝑋2𝑋2 + ℎ𝜈 ⟶ 𝑋1 + 2 ℎ𝜈
𝜈 = 𝐸2 − 𝐸1 /ℎ

𝑛2 𝐴21𝑑𝑡: # of spontaneous 
radiative transitions during 𝑑𝑡

or 𝑩 𝒖𝝂 then unit different

𝑛2 𝐵21𝐼𝜈 𝑑𝑡 or 𝑛1 𝐵12 𝐼𝜈 𝑑𝑡: # of (stimulated) or 
radiative transitions during 𝑑𝑡 when irradiated with 𝑰𝝂
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“On the Quantum Theory of Radiation”
from A. Einstein

https://einstein.manhattanrarebooks.com/pages/books/17
/albert-einstein/zur-quantentheorie-der-strahlung-on-the-
quantum-theory-of-radiation

https://einstein.manhattanrarebooks.com/pages/books/17/albert-einstein/zur-quantentheorie-der-strahlung-on-the-quantum-theory-of-radiation


Transition Probability 

Considering a 2-level system, we calculate 
the emission arising from the transition.

𝑗𝜈 [erg s−1 cm−3 ster−1 Hz−1]

Δ𝐸 = ℎ𝜈0 EmissionAbsorption

2

1

𝑗 = න 𝑗𝜈 𝑑𝜈 [erg s−1cm−3 ster−1] volume emissivity

For a line emission, assuming 𝑗𝜈 ⟷ 𝜃, 𝜑, 
𝑗𝜈 is governed by a distribution function 
𝜙 𝜈 (line profile),    

×

න
0

∞

𝛷𝜈 𝑑𝜈 = 1

ℎ𝜈0ℎ𝜈0
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Once an atom is excited, there is a finite probability within 𝑑t of 
𝐴 2,1 𝑑𝑡 to jump spontaneously from level 2 to level 1 
(deexcitation), emitting a photon.  The total number of 
downward transitions 2 → 1 is 𝑛2 𝐴 2,1 , where 𝑛2 is the 
number of atoms (population) in level 2 per unit volume.

𝑨𝟐𝟏 [𝐬−𝟏]: Einstein 𝑨 coefficient for spontaneous transition 
= probability per unit time.

Τ1 𝐴21 [s]: lifetime staying at level 2 (remaining excited)

𝑗𝜈 =
ℎ𝜈0

4𝜋
𝑛2 𝐴21𝜙 𝜈
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1

0

Define the excitation rate coefficient 𝛾01, so that 
# of excitation s−1 cm−3 = 𝑛𝑒𝑛0 𝑣𝜎 ≡ 𝑛𝑒𝑛0𝛾01, 

where both 𝑛𝑒 and 𝑛0 have units of [cm−3]

atom

electron

Principle of detailed balancing

Â = E1 – E0

Consider a 2-level system, excitation occurs if the 

incoming free electrons have kinetic energy 
1

2
𝑚𝑣2 > 𝜒



𝛾01 ≡ 𝜎𝑣 = න
𝜒=

1
2

𝑚𝑣2

∞

𝜎01 𝑣 𝑣 𝑓 Ԧ𝑣 𝑑3 Ԧ𝑣

Here 𝜎01 is the excitation cross section, and 𝑓 Ԧ𝑣 is the 
Maxwellian distribution function, 

𝑓 Ԧ𝑣 𝑑𝑣 = 4𝜋
𝑚

2𝜋𝑘𝑇

Τ3 2
𝑣2 𝑒−

𝑚𝑣2

2𝑘𝑇 𝑑𝑣

So

𝛾01 =
4

𝜋

1

2𝑘𝑇

Τ1 2

න
𝜒=

1
2

𝑚𝑣2

∞

𝑣3 𝜎01 𝑣 𝑒−
𝑚𝑣2

2𝑘𝑇 𝑑𝑣 … (A)

This is upward 0 → 1 transition. 



For downward 1 →0 transition, 
the spontaneous emission rate = 𝑛1 𝐴10, 
and the deexcitation rate by collisions = 𝑛1𝑛𝑒 𝛾10, 

where 𝛾10 = 0

∞
𝑣 𝜎10 𝑣 𝑓 Ԧ𝑣 𝑑3 Ԧ𝑣 = 𝛾10 𝑇

In steady state, [upwards rate]=[downwards rate], 
i.e., detailed balancing, 

𝑛0𝑛𝑒 𝛾01 𝑇 = 𝑛1 𝐴10 + 𝑛𝑒 𝛾10 𝑇 , so 

𝑛1

𝑛0
=

𝑛𝑒 𝛾01

𝐴10 + 𝑛𝑒 𝛾10
=

𝛾01

𝛾10

1

1 +
𝐴10

𝑛𝑒 𝛾10

… (B)



𝑛1

𝑛0
=

𝑛𝑒 𝛾01

𝐴10 + 𝑛𝑒 𝛾10
=

𝛾01

𝛾10

1

1 +
𝐴10

𝑛𝑒 𝛾10(i) At high densities, i.e., 𝑛𝑒 → ∞
(i.e., collisional excitation and deexcitation dominate  in TE)

𝑛1

𝑛0
≈

𝛾01

𝛾10

but because  
𝑛1

𝑛0
=

𝑔1

𝑔0
𝑒− Τ𝜒 𝑘𝑇

𝛾01

𝛾10
=

𝑔1

𝑔0
𝑒− Τ𝜒 𝑘𝑇 for 𝑛𝑒 ≫ 1

So when collision dominates, c.f. (A)
𝑛𝑒𝑛0𝑣0

3𝜎01 𝑣0 exp − Τ𝜇𝑣0
2 2𝑘𝑇 𝑑𝑣0

= 𝑛𝑒𝑛1𝑣1
3𝜎10 𝑣1 exp − Τ𝜇𝑣1

2 2𝑘𝑇 𝑑𝑣1

where 𝜇: reduced mass, 𝑣0 and 𝑣1are speed of colliding particles.



At high densities (cont.) 

Energy conservation, Τ1 2 𝜇𝑣0
2 = Τ1 2 𝜇𝑣1

2 + 𝜒, 
so 𝑣0 𝑑𝑣0 = 𝑣1 𝑑𝑣1.  Plugging this back, we get

𝑛0𝑣0
2𝜎01exp −

𝜇𝑣0
2

2𝑘𝑇
= 𝑛1𝑣1

2𝜎10exp −
𝜇𝑣1

2

2𝑘𝑇

= 𝑛0

𝑔1

𝑔0
𝑒− Τ𝜒 𝑘𝑇 𝑣1

2𝜎10exp −
𝜇𝑣1

2

2𝑘𝑇

The exponential parts are eliminated from energy conservation, so

𝑔0𝑣0
2𝜎01 = 𝑔1𝑣1

2𝜎10



(i) At low densities, i.e., 𝑛𝑒 → 0

𝑛1

𝑛0
≈

𝛾01

𝛾10

𝑛𝑒 𝛾10

𝐴10
=

𝑛𝑒𝛾01

𝐴10
=

upward by collisions

downward by radiation only

This means every collisional excitation is followed by emission 
of a photon.  

The cooling rate [erg s−1 cm−3] in this case then, is

𝑛1𝐴10 ℎ𝜈10 = 𝑛e𝑛0𝛾01 ℎ𝜈10

𝑛1

𝑛0
=

𝑛𝑒 𝛾01

𝐴10 + 𝑛𝑒 𝛾10
=

𝛾01

𝛾10

1

1 +
𝐴10

𝑛𝑒 𝛾10



𝑛0𝑛𝑒 𝛾01 𝑇 = 𝑛1 𝐴10 + 𝑛𝑒 𝛾10 𝑇

The competition for downward transition between the two terms 
in the bracket  the critical density 

𝑛crit =
𝐴10

𝛾10

When 𝑛𝑒 > 𝑛crit, collisions dominate deexcitation process  LTE, 
populations governed by Boltmann equation.



Consider the radiative transition 1 → 0, the rate of emission 
of line photons s−1atom−1 … cf. eq. (B)

𝑛1

𝑛0
𝐴10 = 𝐴10

𝛾01

𝛾10

1

1 +
𝐴10

𝑛𝑒 𝛾10

(i) At high densities, TE
𝑛1

𝑛0
𝐴10 = 𝐴10

𝛾01

𝛾10
= 𝐴10

𝑔1

𝑔2
𝑒− Τ𝜒 𝑘𝑇 ⟷ 𝑛𝑒

(ii) At low densities,
𝑛1

𝑛0
𝐴10 = 𝐴10

𝛾01

𝛾10

𝑛𝑒 𝛾10

𝐴10
= 𝑛𝑒 𝛾01 ⟷ 𝑇

𝑛1

𝑛0
=

𝑛𝑒 𝛾01

𝐴10 + 𝑛𝑒 𝛾10
=

𝛾01

𝛾10

1

1 +
𝐴10

𝑛𝑒 𝛾10

… (B)

X

X

Every collisional excitation  emission of a line photon.



Consider a 2-level system, for which the 
electron collides with an ion in the lower level.  The collisional 
cross section, 𝜎01 = 𝜎01 𝑣 . 

Consider electron 𝑣 only; ions are neglected.

𝜎01 = 0, if Τ1 2 𝑚𝑣2 < 𝜒

𝜎01∝ Τ1 𝑣2, if Τ1 2 𝑚𝑣2 > 𝜒

Usually 𝜎 is expressed in terms of collision strength Ω(0,1), 

𝜎01 𝑣 =
𝜋ℏ2

𝑚𝑒
2 𝑣0

2

Ω(0,1)

𝑔0
=

4.21

𝑣2

Ω(0,1)

𝑔0
cm2

Recall that 𝑔0 𝑣0
2 𝜎01 = 𝑔1 𝑣1

2 𝜎10



The deexcitation rate coefficient is 

𝛾10 = න
0

∞

𝑣𝜎10 𝑣 𝑓 𝑣 𝑑𝑣

=
2𝜋

𝑘𝑇

ℏ2

𝑚 Τ3 2

Ω 0,1

𝑔1
= 8.629 × 10−6

Ω 0,1

𝑔1𝑇1/2

Excitation per volume per time is 𝑛𝑒𝑛0𝛾01, where 
𝛾01 = Τ𝑔1 𝑔0 𝛾10 exp − Τ𝜒 𝑘𝑇

- Ω must be calculated quantum mechanically; 
- tabulation available with specific temperature values; 
- typically on the order of unity.



The collisional deexcitation rate is then

𝑛𝑒𝑛1 𝛾10 = 𝑛1 න
0

∞

𝑛𝑒 𝑣𝜎10 𝑣 𝑓 𝑣 𝑑𝑣

= 𝑛𝑒𝑛1

2𝜋

𝑘𝑇

ℏ2

𝑚 Τ3 2

Ω 1,0

𝑔1

= 8.629 × 10−6
𝑛𝑒𝑛1

𝑔1𝑇1/2
Ω 1,0 [cm−3s−1]

For typical nebular 𝑇 = 7000 K, and abundances, 
𝛾10 ≈ 10−7 cm3 s−1



Lang 



Spectroscopic Notation

Ionization State

I ---- neutral atom, e.g., H I  H0

II --- singly ionized atom, e.g., H II  H+

III – doubly ionized atom, e.g., O III  O++

….. and so on….e.g., Fe XXIII

Peculiar Spectra

e (emission lines), p (peculiar, affected by magnetic fields), 
m (anomalous metal abundances), e.g., B5 Ve
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Forbidden Lines

Allowed transitions (via an electric dipole) satisfying selection 
rules

1. Parity change
2. L = 0, ±1, 𝐿 = 0 → 0 forbidden 
3. Δ𝐽 = 0, ±1, 𝐽 = 0 → 0 forbidden 
4. Only one electron with ℓ = ±1
5. 𝑆 = 0 (Spin not changed)

A forbidden transition is one that fails to fulfill at least one of the 
selection rules 1 to 4.  It may arise from a magnetic dipole or an 
electric quadrupole transition. Bowen (1936) Rev. Mod. Phys. 8, 55-81 





Ira Sprague Bowen



 Allowed (regular) Lines (no bracket), 
𝐴 ≈ 10+8 s−1, e.g., C IV 

 Semi-forbidden Lines (a single bracket), 
𝐴 ≈ 10+2 s−1, e.g., [OII

 Forbidden Lines (a pair of square brackets), 
𝐴 ≈ 100 to 10−4 s−1, e.g., [O III], [N II]



Some examples, 

Lyman α, 𝐴21 ≈ 6.25 × 108 s−1

[O III] 𝐴21 = 0.021 s−1, 𝜆21 = 5007 Å

𝐴21 = 0.0281 s−1, 𝜆21 = 4959 Å

𝐴32 = 1.60 s−1, 𝜆32 = 4364 Å

[S II]  𝐴21 = 4.7 × 10−5 s−1, 𝜆21 = 6716 Å

H I 21 cm hyperfine line 𝐴21 ≈ 2.88 × 10−15 s−1; 
probability extremely low
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• Normally an atom stays in the excited state for 10−8 s.

• A forbidden transition occurs for excitation levels < a few Ev;
stays in the excited state for seconds or longer before returning 
to the ground state. 

• In the lab 𝑛 ↑↑, both excitation and de-excitation take place 
frequently, so radiative transition (emitting a photon) is unlikely.

• In ISM, the electrons are not energetic enough to excite the 
atoms to normal levels (10 to 20 eV) , but enough to excite to 
metastable levels.  In hot, low-density environments, e.g., H II 
regions, PNe, solar corona, earth aurora 

• Once (collisionally) excited  emission 
 photons escaped  efficient cooling



Forbidden lines observed in 
space and terrestrial upper 
atmosphere, where densities are 
low so collisions are rare.  The 
most efficient cooling mechanism
in nebular gas: intermediate-
mass ions excited by collision 
with electrons (kinetic energy 
about 𝑘𝑇) emission of 
forbidden line photons

Also the 21-cm line for cold 
atomic H gas

UV Green Red

Compare to hydrogen, 
𝐸1→2 = 10.2 eV,
𝐸1→∞ = 13.6 eV





Gray & Corbally



Walker
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Lamers and Cassinelli, Introduction to Stellar Winds, Cambridge, 1999
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P Cygni stars 

• Higher mass-loss rate, > 10−5 M☉ yr−1

• Lower terminal velocity, 𝑣∞ < 102.5 km s−1

• Higher wind density, 𝑛𝐻 > 1010 cm−3 at 2 𝑅∗

than normal stars (Lamers 1986).



Hartmann & Raymond (1989)

The [O I]6300 profile of a T Tauri star; blueshifted wind

Inference: 
the redshifted emission 
is blocked by an optically 
thick dusty disk



Bührke & Mundt (1988) 

Herbig-Haro objects: shocked 
excited nebulosity by young stars



http://loke.as.arizona.edu/~ckulesa/camp/camp_spectroscopy.html

An example -----
Ring Nebula (M57), 
a planetary nebula

Slit = 8’ x 1”

Hg+He



4861Å line from hydrogen 
𝑛 = 4 → 2
(called H line)
 gas is highly excited

4959Å  and 5007Å  doublet 
from twice-ionized oxygen, 
O++, or OIII in 
spectroscopic notation
 (oxygen) gas is ionized, 
with T > a few thousand K 
and density < 100/cm3

1-D spectrum shows little 
continuum, and a few 
emission lines

A line spectrum



Gurzadyan “PNe”



Excitation Theory --- Applications

For [O II], 

consider a 3-level system, with the 
two upper levels close together,

𝑗𝜆3729

𝑗𝜆3726
=

𝑗21

𝑗31
=

𝑛2𝐴21ℎ𝜈21

𝑛3𝐴31ℎ𝜈31

Note: Δ𝜆 = 0.3 nm  need high-dispersion spectroscopy



Osterbrock



 𝑛𝑒 → ∞, collisional excitation and deexcitation dominate
𝑗21

𝑗31
=

𝑔2𝐴21𝜈21

𝑔3𝐴31𝜈31
𝑒−𝐸23/𝑘𝑇 ≈

𝑔2𝐴21

𝑔3𝐴31
=

6

4

3.6×10−5

1.8×10−4 = 0.3

Note: statistical weight 𝑔 = 2𝐽 + 1

 𝑛𝑒 → 0, every collisional excitation followed by emission

𝑗21

𝑗31
=

𝛾12

𝛾13
=

𝑔2

𝑔3
𝑒−𝐸23/𝑘𝑇 ≈

𝑔2

𝑔3
=

6

4
= 1.5

Because 𝛾21 ≈ 𝛾12, and 𝐸23 ≪ 𝑘𝑇

Transition of density limits occurs 𝑛𝑒,2 ≈ 3 × 103 cm−3; 

𝑛𝑒,3 ≈ 1.4 × 104 cm−3

𝑗𝜆3729

𝑗𝜆3726
=

𝑗21

𝑗31
=

𝑛2𝐴21ℎ𝜈21

𝑛3𝐴31ℎ𝜈31



Osterbrock

So this kind of level configuration (upper close), the 
line ratio is sensitive to the electron number density. 

Similar pairs of lines

[O II] 

[S II]

[N I]

[C III]

[Ar IV]

[K V]

[Ne IV] 𝜆2422, 2424



Osterbrock

Some examples of density determinations for H II regions



Osterbrock

For planetary nebulae



Now consider a different level configuration with [O III] or 
[N II], for which the two lower levels are close together.

Osterbrock



Rate of excitation to 1S and 1D levels ⟺ 𝑇

When 𝑛 0, i.e., collisional deexcitation is negligible

• Every excitation to 1𝐷 → 𝜆5007 𝑜𝑟 𝜆4959 (probability 3:1)

• Every excitation to 1S → 𝜆4363 𝑜𝑟 𝜆2321

One can show that
λ5007 or λ4959



So

where

Similarly, for [N II], 

=
7.15

1 + 0.0028 𝑥
10 Τ14300 𝑇𝑒

𝑥 =
0.01 𝑛𝑒

𝑇𝑒

=
8.5

1 + 0.29 𝑥
10 Τ10800 𝑇𝑒



So with this kind of level configuration (lower close; [O III] or 
[N II]), the line ratio is sensitive to temperature. 

Osterbrock

Difficulties: 
1. I4959 and I5007 are strong but I4363 is weak
2. I4363 is close to Hg I λ4358 (sky!)



Temperature determinations for H II regions



Typically T~10,000 K

For PNe





Read the paper by Donald Menzel




