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Emission and Absorption

Two ways to decay down from an excited state

• Spontaneous emission 

𝑋2  𝑋1 + ℎ

occurrence rate  atomic properties

• Stimulated emission

𝑋2 + ℎ 𝑋1 + 2 ℎ

occurrence rate  density of incoming photons of the 

same 𝜈, polarization, and direction of propagation

• Collisional deexcitation  no emission of photons
3



Einstein Coefficients

2

1

𝑩𝟐𝟏 𝑩𝟏𝟐

ℎ𝜈 ℎ𝜈 ℎ𝜈 ℎ𝜈

𝑨𝟐𝟏 --- probability [s−1] 𝑩 𝑰𝝂 --- probability

Einstein (1917)

Spontaneous emission
Stimulated 

(induced) emission (Stimulated) absorption

𝑋2 ⟶ 𝑋1 + ℎ𝜈 𝑋1 + ℎ𝜈 ⟶ 𝑋2𝑋2 + ℎ𝜈 ⟶ 𝑋1 + 2 ℎ𝜈
𝜈 = 𝐸2 − 𝐸1 /ℎ

𝑛2 𝐴21𝑑𝑡: # of spontaneous 
radiative transitions during 𝑑𝑡

or 𝑩 𝒖𝝂 then unit different

𝑛2 𝐵21𝐼𝜈 𝑑𝑡 or 𝑛1 𝐵12 𝐼𝜈 𝑑𝑡: # of (stimulated) or 
radiative transitions during 𝑑𝑡 when irradiated with 𝑰𝝂
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“On the Quantum Theory of Radiation”
from A. Einstein

https://einstein.manhattanrarebooks.com/pages/books/17
/albert-einstein/zur-quantentheorie-der-strahlung-on-the-
quantum-theory-of-radiation

https://einstein.manhattanrarebooks.com/pages/books/17/albert-einstein/zur-quantentheorie-der-strahlung-on-the-quantum-theory-of-radiation


Transition Probability 

Considering a 2-level system, we calculate 
the emission arising from the transition.

𝑗𝜈 [erg s−1 cm−3 ster−1 Hz−1]

Δ𝐸 = ℎ𝜈0 EmissionAbsorption

2

1

𝑗 = න 𝑗𝜈 𝑑𝜈 [erg s−1cm−3 ster−1] volume emissivity

For a line emission, assuming 𝑗𝜈 ⟷ 𝜃, 𝜑, 
𝑗𝜈 is governed by a distribution function 
𝜙 𝜈 (line profile),    

×

න
0

∞

𝛷𝜈 𝑑𝜈 = 1

ℎ𝜈0ℎ𝜈0
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Once an atom is excited, there is a finite probability within 𝑑t of 
𝐴 2,1 𝑑𝑡 to jump spontaneously from level 2 to level 1 
(deexcitation), emitting a photon.  The total number of 
downward transitions 2 → 1 is 𝑛2 𝐴 2,1 , where 𝑛2 is the 
number of atoms (population) in level 2 per unit volume.

𝑨𝟐𝟏 [𝐬−𝟏]: Einstein 𝑨 coefficient for spontaneous transition 
= probability per unit time.

Τ1 𝐴21 [s]: lifetime staying at level 2 (remaining excited)

𝑗𝜈 =
ℎ𝜈0

4𝜋
𝑛2 𝐴21𝜙 𝜈
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1

0

Define the excitation rate coefficient 𝛾01, so that 
# of excitation s−1 cm−3 = 𝑛𝑒𝑛0 𝑣𝜎 ≡ 𝑛𝑒𝑛0𝛾01, 

where both 𝑛𝑒 and 𝑛0 have units of [cm−3]

atom

electron

Principle of detailed balancing

Â = E1 – E0

Consider a 2-level system, excitation occurs if the 

incoming free electrons have kinetic energy 
1

2
𝑚𝑣2 > 𝜒



𝛾01 ≡ 𝜎𝑣 = න
𝜒=

1
2

𝑚𝑣2

∞

𝜎01 𝑣 𝑣 𝑓 Ԧ𝑣 𝑑3 Ԧ𝑣

Here 𝜎01 is the excitation cross section, and 𝑓 Ԧ𝑣 is the 
Maxwellian distribution function, 

𝑓 Ԧ𝑣 𝑑𝑣 = 4𝜋
𝑚

2𝜋𝑘𝑇

Τ3 2
𝑣2 𝑒−

𝑚𝑣2

2𝑘𝑇 𝑑𝑣

So

𝛾01 =
4

𝜋

1

2𝑘𝑇

Τ1 2

න
𝜒=

1
2

𝑚𝑣2

∞

𝑣3 𝜎01 𝑣 𝑒−
𝑚𝑣2

2𝑘𝑇 𝑑𝑣 … (A)

This is upward 0 → 1 transition. 



For downward 1 →0 transition, 
the spontaneous emission rate = 𝑛1 𝐴10, 
and the deexcitation rate by collisions = 𝑛1𝑛𝑒 𝛾10, 

where 𝛾10 = 0׬

∞
𝑣 𝜎10 𝑣 𝑓 Ԧ𝑣 𝑑3 Ԧ𝑣 = 𝛾10 𝑇

In steady state, [upwards rate]=[downwards rate], 
i.e., detailed balancing, 

𝑛0𝑛𝑒 𝛾01 𝑇 = 𝑛1 𝐴10 + 𝑛𝑒 𝛾10 𝑇 , so 

𝑛1

𝑛0
=

𝑛𝑒 𝛾01

𝐴10 + 𝑛𝑒 𝛾10
=

𝛾01

𝛾10

1

1 +
𝐴10

𝑛𝑒 𝛾10

… (B)



𝑛1

𝑛0
=

𝑛𝑒 𝛾01

𝐴10 + 𝑛𝑒 𝛾10
=

𝛾01

𝛾10

1

1 +
𝐴10

𝑛𝑒 𝛾10(i) At high densities, i.e., 𝑛𝑒 → ∞
(i.e., collisional excitation and deexcitation dominate  in TE)

𝑛1

𝑛0
≈

𝛾01

𝛾10

but because  
𝑛1

𝑛0
=

𝑔1

𝑔0
𝑒− Τ𝜒 𝑘𝑇

𝛾01

𝛾10
=

𝑔1

𝑔0
𝑒− Τ𝜒 𝑘𝑇 for 𝑛𝑒 ≫ 1

So when collision dominates, c.f. (A)
𝑛𝑒𝑛0𝑣0

3𝜎01 𝑣0 exp − Τ𝜇𝑣0
2 2𝑘𝑇 𝑑𝑣0

= 𝑛𝑒𝑛1𝑣1
3𝜎10 𝑣1 exp − Τ𝜇𝑣1

2 2𝑘𝑇 𝑑𝑣1

where 𝜇: reduced mass, 𝑣0 and 𝑣1are speed of colliding particles.



At high densities (cont.) 

Energy conservation, Τ1 2 𝜇𝑣0
2 = Τ1 2 𝜇𝑣1

2 + 𝜒, 
so 𝑣0 𝑑𝑣0 = 𝑣1 𝑑𝑣1.  Plugging this back, we get

𝑛0𝑣0
2𝜎01exp −

𝜇𝑣0
2

2𝑘𝑇
= 𝑛1𝑣1

2𝜎10exp −
𝜇𝑣1

2

2𝑘𝑇

= 𝑛0

𝑔1

𝑔0
𝑒− Τ𝜒 𝑘𝑇 𝑣1

2𝜎10exp −
𝜇𝑣1

2

2𝑘𝑇

The exponential parts are eliminated from energy conservation, so

𝑔0𝑣0
2𝜎01 = 𝑔1𝑣1

2𝜎10



(i) At low densities, i.e., 𝑛𝑒 → 0

𝑛1

𝑛0
≈

𝛾01

𝛾10

𝑛𝑒 𝛾10

𝐴10
=

𝑛𝑒𝛾01

𝐴10
=

upward by collisions

downward by radiation only

This means every collisional excitation is followed by emission 
of a photon.  

The cooling rate [erg s−1 cm−3] in this case then, is

𝑛1𝐴10 ℎ𝜈10 = 𝑛e𝑛0𝛾01 ℎ𝜈10

𝑛1

𝑛0
=

𝑛𝑒 𝛾01

𝐴10 + 𝑛𝑒 𝛾10
=

𝛾01

𝛾10

1

1 +
𝐴10

𝑛𝑒 𝛾10



𝑛0𝑛𝑒 𝛾01 𝑇 = 𝑛1 𝐴10 + 𝑛𝑒 𝛾10 𝑇

The competition for downward transition between the two terms 
in the bracket  the critical density 

𝑛crit =
𝐴10

𝛾10

When 𝑛𝑒 > 𝑛crit, collisions dominate deexcitation process  LTE, 
populations governed by Boltmann equation.



Consider the radiative transition 1 → 0, the rate of emission 
of line photons s−1atom−1 … cf. eq. (B)

𝑛1

𝑛0
𝐴10 = 𝐴10

𝛾01

𝛾10

1

1 +
𝐴10

𝑛𝑒 𝛾10

(i) At high densities, TE
𝑛1

𝑛0
𝐴10 = 𝐴10

𝛾01

𝛾10
= 𝐴10

𝑔1

𝑔2
𝑒− Τ𝜒 𝑘𝑇 ⟷ 𝑛𝑒

(ii) At low densities,
𝑛1

𝑛0
𝐴10 = 𝐴10

𝛾01

𝛾10

𝑛𝑒 𝛾10

𝐴10
= 𝑛𝑒 𝛾01 ⟷ 𝑇

𝑛1

𝑛0
=

𝑛𝑒 𝛾01

𝐴10 + 𝑛𝑒 𝛾10
=

𝛾01

𝛾10

1

1 +
𝐴10

𝑛𝑒 𝛾10

… (B)

X

X

Every collisional excitation  emission of a line photon.



Consider a 2-level system, for which the 
electron collides with an ion in the lower level.  The collisional 
cross section, 𝜎01 = 𝜎01 𝑣 . 

Consider electron 𝑣 only; ions are neglected.

𝜎01 = 0, if Τ1 2 𝑚𝑣2 < 𝜒

𝜎01∝ Τ1 𝑣2, if Τ1 2 𝑚𝑣2 > 𝜒

Usually 𝜎 is expressed in terms of collision strength Ω(0,1), 

𝜎01 𝑣 =
𝜋ℏ2

𝑚𝑒
2 𝑣0

2

Ω(0,1)

𝑔0
=

4.21

𝑣2

Ω(0,1)

𝑔0
cm2

Recall that 𝑔0 𝑣0
2 𝜎01 = 𝑔1 𝑣1

2 𝜎10



The deexcitation rate coefficient is 

𝛾10 = න
0

∞

𝑣𝜎10 𝑣 𝑓 𝑣 𝑑𝑣

=
2𝜋

𝑘𝑇

ℏ2

𝑚 Τ3 2

Ω 0,1

𝑔1
= 8.629 × 10−6

Ω 0,1

𝑔1𝑇1/2

Excitation per volume per time is 𝑛𝑒𝑛0𝛾01, where 
𝛾01 = Τ𝑔1 𝑔0 𝛾10 exp − Τ𝜒 𝑘𝑇

- Ω must be calculated quantum mechanically; 
- tabulation available with specific temperature values; 
- typically on the order of unity.



The collisional deexcitation rate is then

𝑛𝑒𝑛1 𝛾10 = 𝑛1 න
0

∞

𝑛𝑒 𝑣𝜎10 𝑣 𝑓 𝑣 𝑑𝑣

= 𝑛𝑒𝑛1

2𝜋

𝑘𝑇

ℏ2

𝑚 Τ3 2

Ω 1,0

𝑔1

= 8.629 × 10−6
𝑛𝑒𝑛1

𝑔1𝑇1/2
Ω 1,0 [cm−3s−1]

For typical nebular 𝑇 = 7000 K, and abundances, 
𝛾10 ≈ 10−7 cm3 s−1



Lang 



Spectroscopic Notation

Ionization State

I ---- neutral atom, e.g., H I  H0

II --- singly ionized atom, e.g., H II  H+

III – doubly ionized atom, e.g., O III  O++

….. and so on….e.g., Fe XXIII

Peculiar Spectra

e (emission lines), p (peculiar, affected by magnetic fields), 
m (anomalous metal abundances), e.g., B5 Ve
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Forbidden Lines

Allowed transitions (via an electric dipole) satisfying selection 
rules

1. Parity change
2. L = 0, ±1, 𝐿 = 0 → 0 forbidden 
3. Δ𝐽 = 0, ±1, 𝐽 = 0 → 0 forbidden 
4. Only one electron with ℓ = ±1
5. 𝑆 = 0 (Spin not changed)

A forbidden transition is one that fails to fulfill at least one of the 
selection rules 1 to 4.  It may arise from a magnetic dipole or an 
electric quadrupole transition. Bowen (1936) Rev. Mod. Phys. 8, 55-81 





Ira Sprague Bowen



 Allowed (regular) Lines (no bracket), 
𝐴 ≈ 10+8 s−1, e.g., C IV 

 Semi-forbidden Lines (a single bracket), 
𝐴 ≈ 10+2 s−1, e.g., [OII

 Forbidden Lines (a pair of square brackets), 
𝐴 ≈ 100 to 10−4 s−1, e.g., [O III], [N II]



Some examples, 

Lyman α, 𝐴21 ≈ 6.25 × 108 s−1

[O III] 𝐴21 = 0.021 s−1, 𝜆21 = 5007 Å

𝐴21 = 0.0281 s−1, 𝜆21 = 4959 Å

𝐴32 = 1.60 s−1, 𝜆32 = 4364 Å

[S II]  𝐴21 = 4.7 × 10−5 s−1, 𝜆21 = 6716 Å

H I 21 cm hyperfine line 𝐴21 ≈ 2.88 × 10−15 s−1; 
probability extremely low
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• Normally an atom stays in the excited state for 10−8 s.

• A forbidden transition occurs for excitation levels < a few Ev;
stays in the excited state for seconds or longer before returning 
to the ground state. 

• In the lab 𝑛 ↑↑, both excitation and de-excitation take place 
frequently, so radiative transition (emitting a photon) is unlikely.

• In ISM, the electrons are not energetic enough to excite the 
atoms to normal levels (10 to 20 eV) , but enough to excite to 
metastable levels.  In hot, low-density environments, e.g., H II 
regions, PNe, solar corona, earth aurora 

• Once (collisionally) excited  emission 
 photons escaped  efficient cooling



Forbidden lines observed in 
space and terrestrial upper 
atmosphere, where densities are 
low so collisions are rare.  The 
most efficient cooling mechanism
in nebular gas: intermediate-
mass ions excited by collision 
with electrons (kinetic energy 
about 𝑘𝑇) emission of 
forbidden line photons

Also the 21-cm line for cold 
atomic H gas

UV Green Red

Compare to hydrogen, 
𝐸1→2 = 10.2 eV,
𝐸1→∞ = 13.6 eV





Gray & Corbally



Walker
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Lamers and Cassinelli, Introduction to Stellar Winds, Cambridge, 1999


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P Cygni stars 

• Higher mass-loss rate, > 10−5 M☉ yr−1

• Lower terminal velocity, 𝑣∞ < 102.5 km s−1

• Higher wind density, 𝑛𝐻 > 1010 cm−3 at 2 𝑅∗

than normal stars (Lamers 1986).



Hartmann & Raymond (1989)

The [O I]6300 profile of a T Tauri star; blueshifted wind

Inference: 
the redshifted emission 
is blocked by an optically 
thick dusty disk



Bührke & Mundt (1988) 

Herbig-Haro objects: shocked 
excited nebulosity by young stars



http://loke.as.arizona.edu/~ckulesa/camp/camp_spectroscopy.html

An example -----
Ring Nebula (M57), 
a planetary nebula

Slit = 8’ x 1”

Hg+He



4861Å line from hydrogen 
𝑛 = 4 → 2
(called H line)
 gas is highly excited

4959Å  and 5007Å  doublet 
from twice-ionized oxygen, 
O++, or OIII in 
spectroscopic notation
 (oxygen) gas is ionized, 
with T > a few thousand K 
and density < 100/cm3

1-D spectrum shows little 
continuum, and a few 
emission lines

A line spectrum



Gurzadyan “PNe”



Excitation Theory --- Applications

For [O II], 

consider a 3-level system, with the 
two upper levels close together,

𝑗𝜆3729

𝑗𝜆3726
=

𝑗21

𝑗31
=

𝑛2𝐴21ℎ𝜈21

𝑛3𝐴31ℎ𝜈31

Note: Δ𝜆 = 0.3 nm  need high-dispersion spectroscopy



Osterbrock



 𝑛𝑒 → ∞, collisional excitation and deexcitation dominate
𝑗21

𝑗31
=

𝑔2𝐴21𝜈21

𝑔3𝐴31𝜈31
𝑒−𝐸23/𝑘𝑇 ≈

𝑔2𝐴21

𝑔3𝐴31
=

6

4

3.6×10−5

1.8×10−4 = 0.3

Note: statistical weight 𝑔 = 2𝐽 + 1

 𝑛𝑒 → 0, every collisional excitation followed by emission

𝑗21

𝑗31
=

𝛾12

𝛾13
=

𝑔2

𝑔3
𝑒−𝐸23/𝑘𝑇 ≈

𝑔2

𝑔3
=

6

4
= 1.5

Because 𝛾21 ≈ 𝛾12, and 𝐸23 ≪ 𝑘𝑇

Transition of density limits occurs 𝑛𝑒,2 ≈ 3 × 103 cm−3; 

𝑛𝑒,3 ≈ 1.4 × 104 cm−3

𝑗𝜆3729

𝑗𝜆3726
=

𝑗21

𝑗31
=

𝑛2𝐴21ℎ𝜈21

𝑛3𝐴31ℎ𝜈31



Osterbrock

So this kind of level configuration (upper close), the 
line ratio is sensitive to the electron number density. 

Similar pairs of lines

[O II] 

[S II]

[N I]

[C III]

[Ar IV]

[K V]

[Ne IV] 𝜆2422, 2424



Osterbrock

Some examples of density determinations for H II regions



Osterbrock

For planetary nebulae



Now consider a different level configuration with [O III] or 
[N II], for which the two lower levels are close together.

Osterbrock



Rate of excitation to 1S and 1D levels ⟺ 𝑇

When 𝑛 0, i.e., collisional deexcitation is negligible

• Every excitation to 1𝐷 → 𝜆5007 𝑜𝑟 𝜆4959 (probability 3:1)

• Every excitation to 1S → 𝜆4363 𝑜𝑟 𝜆2321

One can show that
λ5007 or λ4959



So

where

Similarly, for [N II], 

=
7.15

1 + 0.0028 𝑥
10 Τ14300 𝑇𝑒

𝑥 =
0.01 𝑛𝑒

𝑇𝑒

=
8.5

1 + 0.29 𝑥
10 Τ10800 𝑇𝑒



So with this kind of level configuration (lower close; [O III] or 
[N II]), the line ratio is sensitive to temperature. 

Osterbrock

Difficulties: 
1. I4959 and I5007 are strong but I4363 is weak
2. I4363 is close to Hg I λ4358 (sky!)



Temperature determinations for H II regions



Typically T~10,000 K

For PNe





Read the paper by Donald Menzel




