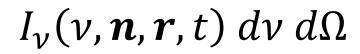
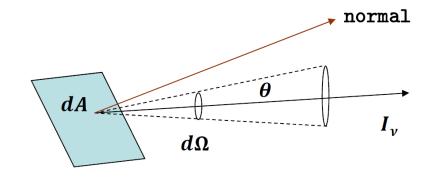
Radiative Transfer





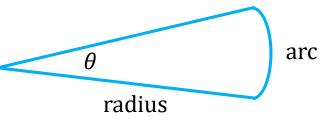
Specific intensity (of brightness, fluence/radiant exposure) I_{ν} [erg s⁻¹cm⁻²ster⁻¹Hz⁻¹] so that $\Delta E = I_{\nu} dt dA d\nu d\Omega$

The radiation power per unit area, with frequencies in $[\nu, \nu + d\nu]$, propagating in direction \boldsymbol{n} , within the solid angle $d\Omega$, including both polarizations.

Because $\Delta\omega \to 0$, the energy does not diverge. Intensity/brightness is independent of the distance from the source (i.e., light <u>ray</u>).

Radian: unit of a planar angle; $\theta = arc/radius$;

 $2\pi \operatorname{rad} = 360 \operatorname{deg}$



Steradian (sr): unit of a solid angle; $\Omega = \text{area/radius}$;

whole sky: 4π sr

$$1 \text{ sr} = \left(\frac{180}{\pi}\right)^2 \approx 3283 \text{ deg}^2$$

Entire sky $\approx 41,253 \text{ deg}^2$

Mean Intensity
$$J_{\nu} = \frac{1}{4\pi} \int I_{\nu} d\Omega$$

Net Flux
$$F_{\nu}$$
 [ergs s⁻¹ cm⁻² Hz⁻¹]

$$F_{\nu} = \int I_{\nu} \cos \theta \, d\Omega$$

Total Flux
$$F = \int F_{\nu} d\nu$$

Thermodynamic equilibrium = no net matter or energy flow into a system

Two systems in thermal equilibrium when T the same T two systems in mechanical equilibrium when P the same T two systems in diffusive equilibrium when μ chemical potentials the same

Momentum Flux

For photons, $dp_{\nu} = dF_{\nu}/c$

$$p_{\nu}$$
 [dynes cm⁻² Hz⁻¹ = $\frac{1}{c} \int I_{\nu} \cos^2 \theta \, d\Omega$

Momentum Flux Rate = Pressure

$$P = [force]/[area] = m \cdot a_{\perp}/area = m \frac{dv_{\perp}}{dt}/area = \frac{dp_{\perp}}{dtdA}$$

Energy Density

$$u_{\nu} [{\rm ergs} \ {\rm cm}^{-3} \ {\rm Hz}^{-1}] = \frac{1}{c} \int I_{\nu} d\Omega = \frac{4\pi}{c} J_{\nu}$$

Total Energy Density $u = \int u_{\nu} d\nu = a T^4$ Stefan-Boltzmann law

$$a = \frac{4\sigma}{c} = 7.56 \times 10^{-15} \text{ ergs cm}^{-3} \text{ K}^{-4}$$

Radiation Pressure

Each quantum of energy, $E = h\nu$, there is associated a momentum $h\nu/c$

Radiation pressure \rightarrow net rate of momentum transfer (cf. gas pressure)

Radiation passing per second through a unit area at an angle with the normal, in a solid angle $d\omega$ is $I\cos\theta\ d\omega$

 \rightarrow Momentum transfer = $(I \cos \theta \ d\omega/c) \cos \theta$

$$\therefore P_R = \frac{2}{c} \int I \cos^2 \theta \, d\omega$$

normal to the surface

For isotropic radiation,
$$P_R = \frac{4\pi I}{3c} = u/3 = aT^4/3$$

Blackbody Radiation

$$B_{\nu}(T) d\nu = \frac{2 h \nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1} d\nu \quad \text{(Planck's law)}$$

Energy density
$$u(v,T)dv = \frac{4\pi}{c}I = \frac{8\pi h}{c^3} \frac{v^3}{e^{hv/kT}-1}dv$$

Total Energy
$$u = \int u(v, T) dv$$
, $u = aT^4$ (Stefan-Boltzmann law)

In terms of wavelength,

$$B_{\lambda}(T) d\lambda = \frac{2 hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1} d\lambda$$
 (Planck's law)

$$|d\nu| = c \frac{d\lambda}{\lambda^2}$$

When $h\nu/kT \gg 1$

$$B_{\nu}(T) d\nu \approx \frac{2 h \nu^3}{c^2} e^{-h\nu/kT} d\nu$$
 (Wien approximation)

When $h\nu /kT \ll 1$, (long wavelength or high temperature, valid in almost all radio regimes in astronomical conditions)

$$B_{\nu}(T) d\nu \approx \frac{2 h \nu^3}{c^2} \frac{kT}{h \nu} d\nu = \frac{2kT}{c^2} \nu^2 d\nu = \frac{2kT}{\lambda^2} d\nu \stackrel{e^x}{=} \frac{1+x+\cdots}{\lambda^2}$$

(Rayleigh-Jeans approximation)

Because $B_{\nu} \propto T$, radio astronomy \rightarrow brightness temperature ... $T_{\rm antenna}$, $T_{\rm noise}$, etc. ... even if radiation is <u>not</u> thermal.

Absorption

Consider radiation through a slab of thickness dx, the intensity is reduced by an amount

$$dI_{\nu} = -\kappa_{\nu}' \rho I_{\nu} ds \dots (1)$$

Absorption coefficient κ_{ν} [cm⁻¹]

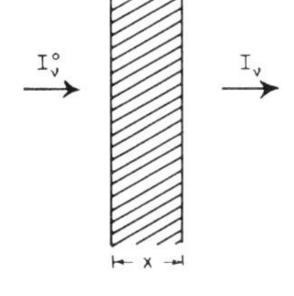
$$\mathbf{t} \kappa_{\nu} \; [\mathrm{cm}^{-1}]$$

$$dI_{\nu} = -\kappa I_{\nu} \, ds$$

or
$$\kappa'_{\nu}$$
 [cm² g⁻¹] \rightarrow mass absorption coefficient

This is opacity, i.e., what causes absorption lines.

Dividing (1) by I_{ν} and integrating



 I_{ν}^{0} : incident beam

Introducing (dimensionless) optical depth τ_1 $d\tau_{\nu} = -\kappa_{\nu} ds$

Or
$$\tau_{\nu} = \int_{s_0}^{s} \kappa_{\nu}(s') ds'$$

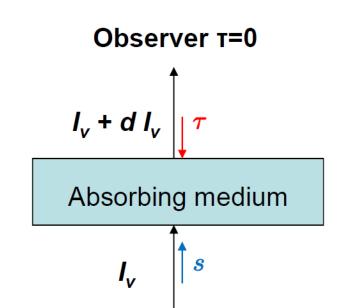
we get
$$I_{\nu} = I_{\nu}^{0} e^{-\tau_{\nu}}$$

Optical thickness:

$$\checkmark \tau_{\nu} \gg 1 \rightarrow$$
 optically thick = opaque

$$\checkmark \tau_{\nu} \ll 1 \rightarrow$$
 optically thin = transparent

 $\tau_{\nu} \equiv 1 \rightarrow$ "surface", 1/e (37%) of emerging radiation When κ_{ν}^{abs} and κ_{ν}^{sca} are independent of ν , the opacities are gray. Why is the sky blue? Why is a cloudy sky gray?



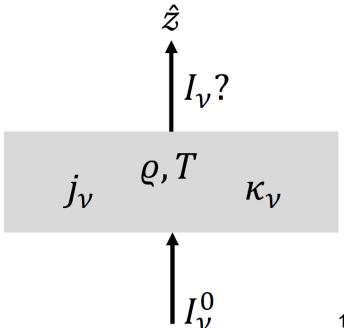
Emission

 $j_{\nu} dt dV d\omega d\nu =$ Energy emitted $\kappa_{\nu}I_{\nu} dt dV d\omega d\nu =$ Energy absorbed

Spontaneous emission coefficient = Emissivity

$$j_{\nu} \ [{\rm ergs \ s^{-1} \ cm^{-3} \ ster^{-1} \ Hz^{-1}}]$$

 $dI_{\nu} = j_{\nu} ds$, \hat{s} along the line of sight



Radiative Transfer Equation

$$\frac{dI_{\nu}}{ds} = -\kappa_{\nu} I_{\nu} + j_{\nu}$$

How specific intensity varies with emission and absorption by a medium

If there is scattering \rightarrow radiation in and out of the solid angle → an integrodifferential equation, solution complex

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + \frac{j_{\nu}}{\kappa_{\nu}} = -I_{\nu} + S_{\nu}$$

$$\tau_{\nu}(s) = \int_{s_0}^{s} \kappa_{\nu}(s') \, ds'$$

$$S_{\nu} \equiv \frac{j_{\nu}}{\kappa_{\nu}} \text{ is the source function.}$$

This equation is used more often, because S_{ν} is a simpler function of physical quantities, and τ_{ν} is more intuitive (dimensionless). 11

(1) $\kappa_{\nu} = 0$ (emission only)

$$I_{\nu}(s) = I_{\nu}(s_0) + \int_{s_0}^{s} j_{\nu}(s') ds'$$

Increase in brightness equals to the emission coefficient integrated along the line of sight.

(2) $j_{\nu} = 0$ (absorption only)

$$I_{\nu}(s) = I_{\nu}(s_0) \exp\left[-\int_{s_0}^{s} \kappa_{\nu}(s') ds'\right]$$

Brightness decreases exponentially by the absorption coefficient integrated along the line of sight.

12

(3) In general

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}$$

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} \frac{j_{\nu}}{\kappa_{\nu}} e^{\tau_{\nu}^{"}} d\tau_{\nu}^{"}$$

If $j_{\nu}/\kappa_{\nu} = \text{const}$ (not valid in ISM but OK in stellar atmosphere), then

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) e^{-\tau_{\nu}} + \frac{j_{\nu}}{\kappa_{\nu}} (1 - e^{-\tau_{\nu}})$$

In LTE,
$$dI_{\nu}/d\tau = 0 \rightarrow I_{\nu} = j_{\nu}/\kappa_{\nu}$$
 and $I_{\nu} = B_{\nu}(T)$ $\left[\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}\right]$

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}$$

$$j_{\nu} = B_{\nu} \kappa_{\nu}$$

 $j_{\nu} = B_{\nu} \kappa_{\nu}$ (Kirchhoff's law) cf Kirchhoff's circuit law

Finally

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) e^{-\tau_{\nu}} + B_{\nu}(T) (1 - e^{-\tau_{\nu}})$$

<u>Note</u>: Assumptions of (1) LTE, and (2) T = const

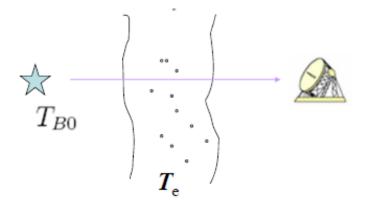
Here T is the electron temperature, T_{ρ} (ISM) In radio, intensity \rightarrow brightness temperature, T_h (signal)

$$I_{\nu} = (2k\nu^2/c^2) T_b$$

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) e^{-\tau_{\nu}} + B_{\nu}(T) (1 - e^{-\tau_{\nu}})$$

In Rayleigh-Jeans regime, $B_{\nu} \leftrightarrow T_{e}$, and $I \leftrightarrow T$

$$T_B = T_B(0) e^{-\tau_{\nu}} + T_e (1 - e^{-\tau_{\nu}})$$



If background is zero $(T_B(0) = 0)$, dropping ν ,

- (i) $\tau \gg 1 \longrightarrow T_B \to T_e$ (measures only the "surface")
- (ii) $\tau \ll 1 \longrightarrow T_B \rightarrow \tau T_e$ (measures the entire medium)

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) e^{-\tau_{\nu}} + B_{\nu}(T) (1 - e^{-\tau_{\nu}})$$

What we actually measure is the flux density,

$$S_{\nu} \equiv \int_{\text{source}} I_{\nu}(\theta, \phi) \cos \theta \ d\Omega$$

If the source angular size is small $\ll 1$ rad, $\cos \theta \approx 1$,

$$S_{\nu} = \int_{\text{source}} I_{\nu} d\Omega \text{ [ergs s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1}]$$

Integrating over the solid angle subtended by the source,

$$S_{\nu} = \int_{\text{source}}^{\Omega} B_{\nu}(T_e) (1 - e^{-\tau_{\nu}}) d\omega \approx \Omega B_{\nu}(T_e) (1 - e^{-\tau_{\nu}})$$

$$S_{\nu} \propto {\rm distance}^{-2}$$

spectral luminosity $L_{\nu} = 4\pi d^2 S_{\nu}$
bolometric luminosity $L = \int_0^{\infty} L_{\nu} \ d\nu$

1 jansky (a spectral flux density, spectral irradiance)

$$1 \text{ Jy} = 10^{-23} \text{ ergs s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1} = 10^{-26} \text{ watts m}^{-2} \text{ Hz}^{-1}$$

Giant radio solar bursts 10^8-10^9 Jy; other strong sources $\sim 10^4$ Jy; typically a few Jy; state-of-the-art a few mJy

AB magnitude=
$$-2.5 \log_{10} \left(\frac{S_{\nu}}{3631 \text{ Jy}} \right)$$

 $S_{\nu}^{V=0} = 3953 \text{ Jy}$