Interstellar Extinction

\[\langle \text{Extinction} \rangle = \langle \text{Absorption} \rangle + \langle \text{Scattering} \rangle \]

Evidence of extinction
(a) dark clouds in photographs
(b) Statistically star clusters brightness \(\leftrightarrow \) size
e.g., dimmer \(\leftrightarrow \) smaller, but Trumpler in 1930s found clusters appear fainter
(c) star count
ABSORPTION OF LIGHT IN THE GALACTIC SYSTEM

Fig. 1.—Comparison of the distances of 100 open star clusters determined from apparent magnitudes and spectral types (abscissae) with those determined from angular diameters (ordinates). The large dots refer to clusters with well-determined photometric distances, the small dots to clusters with less certain data (half weight). The asterisks and crosses represent group means. If no general space absorption were present, the clusters should fall along the dotted straight line; the dotted curve gives the relation between the two distance measures for a general absorption of 0.07 per 1000 parsecs.
Prediction of a uniform galaxy

Assumptions:

(i) stars uniformly distributed: \(\frac{D \text{ stars}}{\text{pc}^{-3}} \)
(ii) our galaxy infinite in extent
(iii) no extinction

(In reality, none of the above is true!)
Total number of stars out to \(r \)

\[
N(r) = \omega D \int_0^\infty r'^2 \, dr' = \frac{1}{3} \omega D r^3
\]

If all stars have absolute magnitude \(M \) (i.e., same intrinsic brightness --- another untrue assumption), since

\[
m - M = 5 \log r_{pc} - 5
\]

\[
\Rightarrow r_{pc} = 10^{0.2(m-M)+1}
\]

\[
N(r) = 10^{0.6m-C} \quad \text{where } C = C(D, \omega, M)
\]

\[
N(m) \propto 10^{0.6m}
\]

10^{0.6} \sim 4, \text{ so \# of stars increases 4 times as we go 1 mag fainter}

This is logically unlikely, because if we integrate over \(m \), the sky would have been blazingly bright (Olbers’ paradox)
Olbers’ Paradox --- Why is the night sky dark?
The paradox can be argued away in the case of the Galaxy by its finite size, but the same paradox exists also for the Universe \(\rightarrow \) expansion of the Universe

The star count result was recognized by Kapteyn \(\rightarrow \)
Kapteyn Universe: star density falls as the distance increases

Extinction effect: If w/o absorption we observe \(m \) mag, then with \(a(r) \) mag absorption at \(r \), we would observe \(m + a(r) \)

Without extinction: \(\log r = 0.2(m - M) + 1 \)
So the apparent distance $r' (> r)$

$$\log r' = 0.2[m + a(r) - M] + 1$$

$$= 0.2(m - M) + 1 + 0.2a(r)$$

$$= \log r + 0.2a(r)$$

$$r' = 10^{0.2a(r)} \cdot r$$

So dimming of 1.5 mag → overestimate of distance by 2 x → underestimate space stellar density by 8 x

Both the star density falling off and extinction should be taken into account → Galactic structure

Galactic poles: minimal extinction

Galactic disk: extinction significant $\sim 1 \text{ mag kpc}^{-1}$
In general, \[m_\lambda - M_\lambda = 5 \log r_{pc} - 5 + A_\lambda \]

Because \[A_\lambda = -2.5 \log \frac{F_\lambda}{F_{\lambda,0}} \] \(F_{\lambda,0} \): flux that would have been observed w/o extinction

and \[F_\lambda = F_{\lambda,0} e^{-\tau_\lambda} \]

\[A_\lambda = -2.5 \log (e^{-\tau_\lambda}) \equiv 1.086 \tau_\lambda \equiv 1.086 N_d \sigma_\lambda Q_{\text{ext}} \]

\(N_d \): # of dust grains cm\(^{-2}\)
\(\sigma_\lambda \): geometric cross section (=\(\pi a^2\))

\(Q_{\text{ext}} \): [dimensionless] ‘extinction efficiency factor’
\[= \frac{\text{[optical cross section]}}{\text{[geometric cross section]}} \]

\(Q_{\text{ext}} \): \(Q_e(\lambda) \)

Note: \(A_\lambda \leftrightarrow \lambda \)
Why dust? (what causes 1 mag kpc\(^{-1}\))

Possibilities:

1) Scattering by free electrons --- Thomson scattering

\[
\sigma_T = \frac{8\pi}{3} \left(\frac{e^2}{mc^2} \right) \approx 6.6 \times 10^{-25} \text{ (cm}^2\text{)} \text{ for } \nu < 10^{20} \text{ Hz}
\]

Since \(A_v = 1.086\bar{n}\sigma\ell \),

\[
1 = 1.086\bar{n}6.6 \times 10^{-25} \cdot 3 \times 10^{21} \text{ cm}
\]

\[\rightarrow \bar{n} \approx 500 \text{ cm}^{-3}\]

2) Scattering by bound charges --- Rayleigh scattering?

\[
\sigma_R \sim \sigma_T \left(\frac{\nu}{\nu_0} \right)^4 \text{ cm}^2 \text{ (} \nu \ll \nu_0 \text{)}
\]

\[
\sim \sigma_T \frac{\nu^4}{(\nu^2 - \nu_0^2)^2} \text{ cm}^2 \text{ (} \nu < \nu_0 \text{)}
\]

Both \(\sigma_R < \sigma_T \)

\[\bar{n} \sim 10-100 \times \sim 10^4\]
(2) Absorption by solid particles?

For particle radius ~ wavelength, \(Q_e \sim 1 \)

\[
A_v = 1.086 \bar{n} \sigma \ell
\]

\[
1 \approx \bar{n} \pi (5 \times 10^{-5})^2 \cdot 3 \times 10^{21}
\]

\[
\rightarrow \bar{n} \approx 4 \times 10^{-14} \text{ cm}^{-3}
\]

Volume mass density

\[
\frac{4}{3} \pi a^3 \bar{n} \rho \sim 4 \times 10^{-26} (\text{g cm}^{-3}) \rightarrow 1\% \text{ of Oort’s limit}
\]

Note: wavelength dependence

Extinction \(Q \sim \lambda^{-1} \)

Thomson \(\sim \lambda^0 \)

Rayleigh \(\sim \lambda^{-4} \)
Oort’s Limit

\(\rho(z) \): (total) mass density; \(v(z) \): velocity dispersion of stars

\[\Delta \phi = -\frac{dg_z(z)}{dz} = 4 \pi G \rho(z) \] Poisson eq.

\(\rho_{\text{ISM}} \lesssim 6 \times 10^{-24} \text{ (g cm}^{-3}) \) ~ about 2-3 H atoms cm\(^{-3}\) assuming He/H ~ 10\% by number

So, a volume mass density of \(4 \times 10^{-26} \text{ g cm}^{-3} \) is ok, and if dust is responsible for the extinction, this implies a gas-to-dust ratio of ~100
Pre-Collapse Black Cloud B68 (visual view)
(VLT ANTU + FORS 1)

Seeing Through the Pre-Collapse Black Cloud B68
(VLT ANTU + FORS 1 - NTT + SOFI)
The grains appear to be loose conglomerations of smaller specks of material, which stuck together after bumping into each other.
Selective Extinction
--- the wavelength dependence of extinction

Choose 2 stars of the same spectral types and luminosity classes. Observe their magnitude difference \(\Delta m \) at \(\lambda_1 \) and \(\lambda_2 \)

\(\Delta m \) is caused by (1) different distances, and (2) extinction by intervening dust grains

OB stars are good choices because they can be seen at large distances and their spectra are relatively simple

Observed at 2 \(\lambda \)s: \(\Delta m_{\lambda_1} - \Delta m_{\lambda_2} \)

distance dependence canceled out

\(\Delta m_{\lambda_1} - \Delta m_{\lambda_2} = \Delta(A_{\lambda_1} - A_{\lambda_2}) \)
If $A_{\lambda_2} = 0$, e.g., a nearby star with negligible extinction

$$E_{\lambda_1-\lambda_2} = (m_{\lambda_1} - m_{\lambda_2}) - (m_{\lambda_1} - m_{\lambda_2})_0$$

E.g., $\lambda_1=4350$ Å (B band), $\lambda_2=5550$ Å (V band)

E_{B-V} [color excess] = [measured color] – [observed color]

$$E_{B-V} = (B-V) - (B-V)_0 = A_B - A_V$$

Always shorter minus longer, e.g., $E(B-V)$, $E(I-K)$, $E(U-B)$

IS reddening

Observed SED

Intrinsic SED
Total Extinction Quantified by A_V (at 5550 Å)

Ratio of total-to-selective extinction

\[R = \frac{A_V}{E_{B-V}} \]

A generally accepted value $<R> \sim 3.1 \pm 0.1$, i.e., $A_V = 3.1 \times E(B-V)$

\[\frac{N_H}{E(B-V)} = 5.8 \times 10^{21} \text{ H atoms cm}^{-2} \text{ mag}^{-1} \]

A_V can be estimated by observing stars

The estimate is not reliable toward any particular direction or object, because of clouds are patchy.

In dark molecular clouds, R can be large $\sim 5-7$

large R value \sim large average size of dust grains
Whitford (1958) AJ, 63, 201 → Distant stars appear redder than nearby stars of the same spectral type.

Figure 1. Monochromatic magnitude differences between a reddened and a normal star, as observed by three methods.
The ‘normalized’ extinction (extinction law)

\[F(\lambda) = \frac{A_\lambda - A_V}{A_B - A_V} = \frac{E_{\lambda-V}}{E_{B-V}} \]

The UV ‘bump’
\[\frac{1}{\lambda} \sim 4.6 \mu m \rightarrow \lambda \sim 2200\text{Å} \]

In the visible
\[F(\lambda) \sim \frac{1}{\lambda} \]

\[F(V) = 0 \]
\[F(B) = +1 \]

Find \[A_B/A_V = ? \]
2175Å feature aromatic carbon?
In FIR, extinction law $F(\lambda) \sim -3$

At other wavelengths,

$$\frac{A_{\lambda}}{A_V} = 1 + \frac{E_{B-V}}{A_V} F(\lambda)$$

Or equivalently

$$A_{\lambda} = 1 - \frac{E_{V-\lambda}}{E_{B-V}} \frac{1}{R}$$
<table>
<thead>
<tr>
<th>Filter</th>
<th>$\Lambda_\lambda / \Lambda_V$</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1.531</td>
</tr>
<tr>
<td>B</td>
<td>1.324</td>
</tr>
<tr>
<td>V</td>
<td>1.000</td>
</tr>
<tr>
<td>R</td>
<td>0.748</td>
</tr>
<tr>
<td>I</td>
<td>0.482</td>
</tr>
<tr>
<td>J</td>
<td>0.282</td>
</tr>
<tr>
<td>H</td>
<td>0.175</td>
</tr>
<tr>
<td>K</td>
<td>0.112</td>
</tr>
<tr>
<td>L</td>
<td>0.058</td>
</tr>
<tr>
<td>M</td>
<td>0.023</td>
</tr>
<tr>
<td>N</td>
<td>0.052</td>
</tr>
</tbody>
</table>

Diagram showing extinction effects with labels for A_V, A_I, A_J, A_H, and A_K.
Stellar atmosphere \rightarrow absorption lines

ISM dust \rightarrow extinction profile with no strongly marked lines or bands, except a few weak bands at 3.1 μm (H$_2$O ice) and 9.7 μm (silicates)
Fig. 2.—Optical depth (τ_{λ}) profiles of TS 2.4 and HH 100–IR, each rescaled to roughly align at 3.1 μm. The 3 σ error is marked for each profile, which is computed by the difference from a running-averaged curve at the long-wavelength end.

Figure 4.3. The infrared spectrum of the Galactic centre, taken over a wavelength range 2.4–45 μm by the Short Wavelength Spectrometer on the Infrared Space Observatory (ISO). In addition to various emission lines from the hotter regions along this line of sight, there are strong absorptions due to material in the dust grains near 3 μm (H$_2$O ice), 9.7 μm and 18 μm (silicates). Some weaker features are formed, including those at 3.4 μm (hydrocarbons) and 4.3 μm (solid carbon dioxide). (Courtesy D Lutz et al 1996.)
\[E_{B-V} = A_B - A_V = 1.086(\tau_B - \tau_V) = 1.086\pi a^2 n_d \ell (Q_B - Q_V) \]

So it all amounts to discussion of Qs (efficiency)

\[Q_{ext} = Q_{sca} + Q_{abs} \]

Scattering by spherical particles (the simplest case) \(\rightarrow \) Mie scattering
Cross-Linked Hetero Aromatic Polymers in Interstellar Dust

by N.C. Wickramasinghe, D.T. Wickramasinghe and F. Hoyle

a School of Mathematics, Cardiff University, PO Box 926, Senghennydd Road
Cardiff CF2 4YH, UK

b Department of Mathematics, Australian National University
Canberra, ACT2600, Australia

Abstract: The discovery of cross-linked hetero-aromatic polymers in interstellar dust by instruments aboard the Stardust spacecraft would confirm the validity of the biological grain model that was suggested from spectroscopic studies over 20 years ago. Such structures could represent fragments of cell walls that survive 30km/s impacts onto detector surfaces. Astrophysics and Space Science, 2000
Scattering

Size of particles $\approx a$

1. $2\pi a << \lambda$ (radio) \Rightarrow scattering $\leftrightarrow \lambda$

 $I_{\text{scattering}} \propto \lambda^{-4}$ (Rayleigh scattering)

 \therefore Blue sky

2. $2\pi a >> \lambda$ \Rightarrow scattering $\neq \lambda$

 \therefore Gray sky in a cloudy day!

3. $2\pi a \approx \lambda$ (dust, optical) \Rightarrow $I_{\text{scattering}} \propto \lambda^{-1}$

 \Rightarrow Interstellar reddening (紅化)
Index of refraction

\[m = n - i k \]

<table>
<thead>
<tr>
<th>(m)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>Dielectric</td>
<td></td>
</tr>
<tr>
<td>1.33</td>
<td>Ice</td>
<td></td>
</tr>
<tr>
<td>1.33 (-0.09\ i)</td>
<td>Dirty ice</td>
<td></td>
</tr>
<tr>
<td>1.27 (-1.37\ i)</td>
<td>Iron</td>
<td></td>
</tr>
</tbody>
</table>

Small particles

Large

\[x = \frac{2\pi a}{\lambda} = \text{dust size/wavelength} \]

Figure 4.5. Extinction curves for spheres computed from Mie's formula for \(m = 1.5, \ 1.33, \ 0.93 \) and 0.8. The scales of \(x \) have been chosen in such a manner that the scale of \(\rho = 2x|m-1| \) is common to these four curves and to the extinction curve for \(m = 1+0.8 \).

(From van de Hulst 1957.)

• In Earth’s atmosphere, scattering
 $\sim \lambda^{-4}$ for small particles
 $\sim \lambda^{0}$ for large particles

• In ISM at visible wavelength, scattering
 $\sim \lambda^{-1}$ particle size \approx wavelength $\sim 0.5 \, \mu m$

• For large particles, $Q \sim 2$,
 i.e., $\sigma \sim 2$ times geometric cross section, because light diverges over larger extent
Rayleigh Scattering by Small Particles

Dielectric sphere, a, $2\pi a \ll \lambda$

Polarization of plane wave, λ

Sphere will oscillate with the \mathbf{E} field
\Rightarrow sphere radiates like an electric dipole

Power radiated in all directions

$$P = \frac{2}{3} \frac{e^2}{c^3} |a|^2$$

where a is acceleration

$$x = x_0 e^{-j\omega t}$$

$$\ddot{x} = -x_0 \omega^2 e^{-j\omega t}$$
\[P = \begin{cases} \frac{2}{3} \frac{e^2}{c^3} |x_0 \omega^2|^2 \leftrightarrow \lambda^{-4} \\ \sigma S \end{cases} \]

Poynting vector \[S = \frac{c}{8\pi} \mathbf{E}\mathbf{B}^* = \frac{c}{4\pi} \mathbf{E}^2 \]

\[Q_{sca} = \sigma / \pi a^2 \]

\[Q_{sca} = \frac{8}{3} x^4 \left| \frac{m^2 - 1}{m^2 + 2} \right|^2 \leftrightarrow \lambda^{-4} \]

\[Q_{abs} = -4 x \text{Im} \left(\frac{m^2 - 1}{m^2 + 2} \right) \leftrightarrow \lambda^{-1} \]

\[Q_{ext} = Q_{sca} + Q_{abs} \]

\[m = n - i k \]

\[x = 2\pi a / \lambda = \text{dust size/wavelength} \]
Note:

- When m is real, i.e., no imaginary part → no absorption

- With the imaginary part, most extinction at small x comes from absorption → Q_{ext} increases

- For pure ice, transmitted and refracted signals interfere → large scale oscillation

- If there is impurity (internal absorption) → oscillation is reduced
References

- (1968) van de Hurst in “Nebulae and Interstellar Matter” ed. Middlehurst & Aller
 His no. 15 was extensively used.
 Galactic center study
- (1979) Savage & Mathis, ARAA, 17, 73
- (1990) Mathis, ARAA, 28, 37