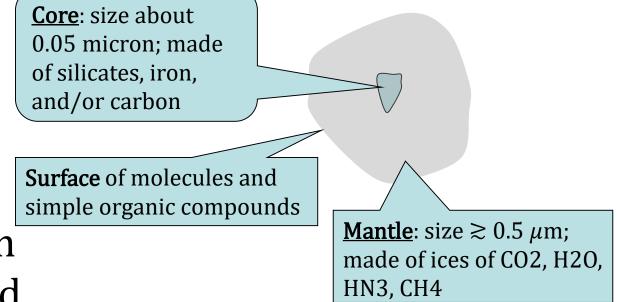
## **Grains and Molecules**

#### **Formation of Grains**

Atoms → diatomic molecules (e.g., CH, CO, CN)
→ 10 to20 atoms as condensation nuclei
→ growth by accretion

In HI clouds,  $n_H \approx 10 - 100 \text{ cm}^{-3} \rightarrow \text{molecules form too slowly}$ 

Grains likely formed in (1) atmospheres of cool stars, or (2) dark molecular clouds


IR observations detect grains in both.

Generally, depletion of elements  $\rightarrow$  grain formation Those with higher condensation temperatures condense first, so condense/deplete more<sup>2</sup>

# With condensation nuclei (small, refractory particles), volatile materials such as CO<sub>2</sub>, CH<sub>4</sub>, NH<sub>3</sub>, H<sub>2</sub>O condense as mantles

Dark clouds show grain sizes  $(a \ge 1 \ \mu m)$ , larger than typical ISM  $a < 0.2 - 0.5 \ \mu m$ A large number  $a < 0.015 \ \mu m$ 

C, N, O depletion consistent with this, i.e., these elements locked into ices on the grains



http://cosmos.swin.edu.au/entries/dustgrain/dustgrain.html

ISM grain (nuclei, mantles) → grain growth → planetesimals
→ planets

#### **Grain Growth Rate**

$$\frac{dm}{dt} = \left(\frac{1}{4}n\bar{v}\right)(m_{H}A)\xi(4\pi a^{2})$$
  
Sticking coefficient (probability)  $\xi \lesssim 1$   

$$\frac{dm}{dt} = \rho_{s}4\pi a^{2}\frac{da}{dt}$$
  

$$\frac{da}{dt} = \frac{(1/4)n\bar{v}m_{H}A\xi}{\rho_{s}}$$
  

$$= \frac{v\rho_{H}}{4\rho_{s}}A\xi$$
  

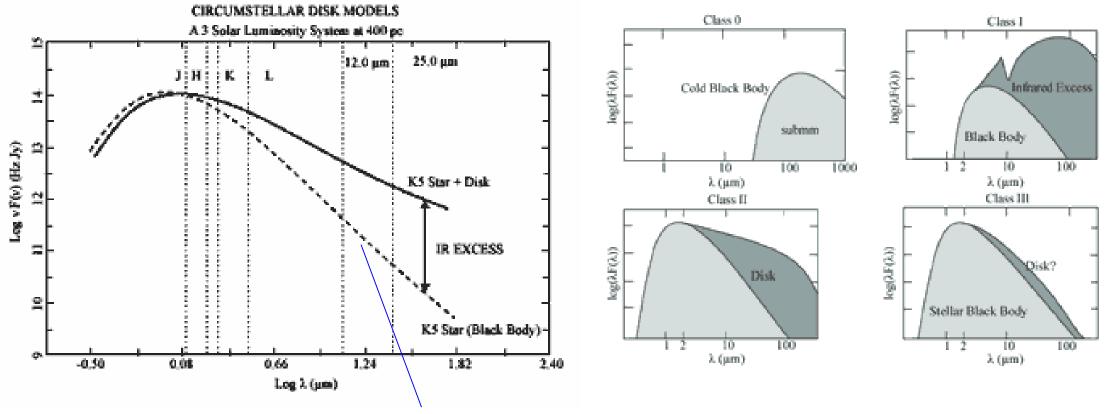
$$= \frac{10^{5}1.6 \times 10^{-24}}{4 \cdot 1}A\xi$$
  

$$= 4 \times 10^{-20} \text{ cm s}^{-1}A\xi$$
  

$$= 15 \times 10^{-13} \text{ cm yr}^{-1}A\xi$$

atom

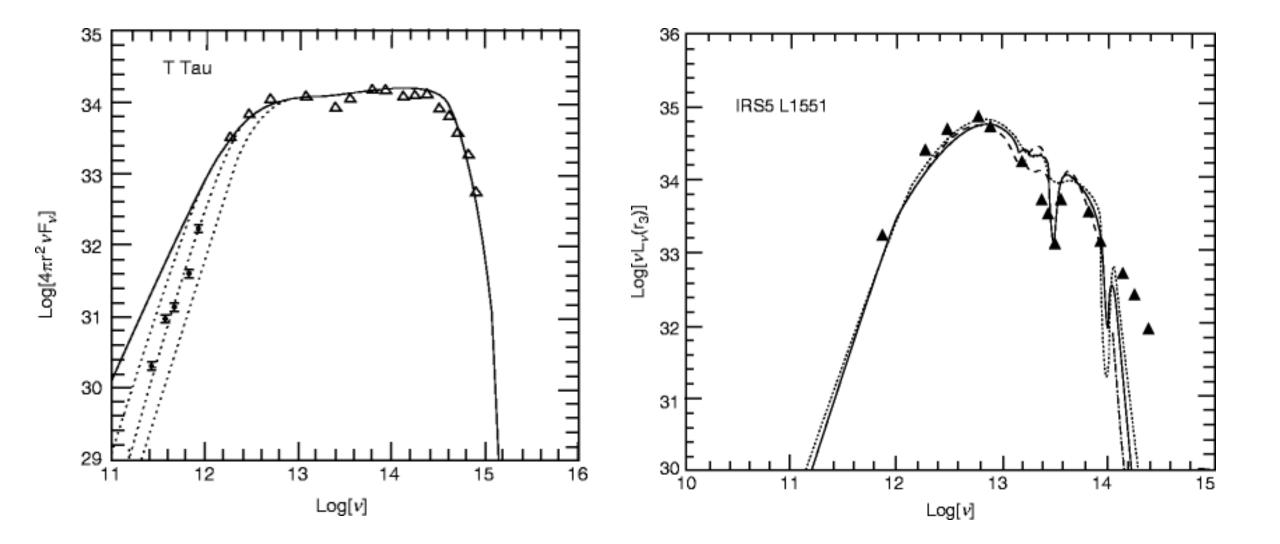
 $\bigcirc$ 

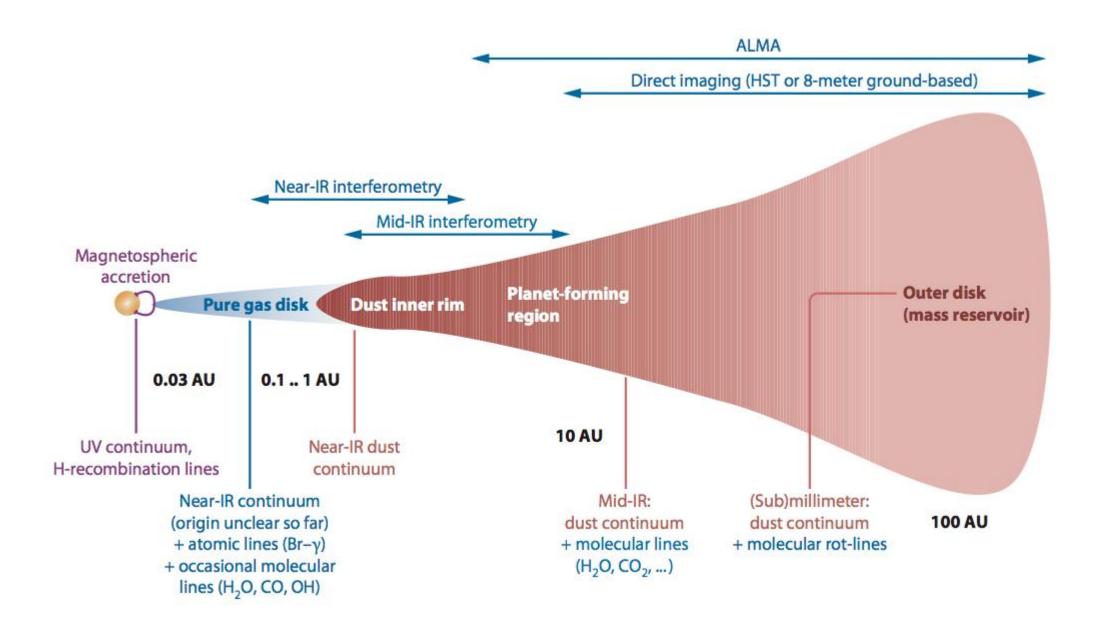

molecule

$$t = \frac{a}{da/dt} \sim \frac{10^{-5}}{1.5 \times 10^{-12} A \xi} \sim \frac{10^7}{1.5 A \xi}$$
  
Take  $A = 1, \ \xi = 1$ , then  $t = 10^7 - 10^9$  yr to grow to  $0.1 \mu$ m.

In much denser environments, e.g., inside dark clouds, or in the envelopes of cool stars, the time scales are considerably shorter.

The initial nucleation is extremely slow; general diffuse ISM cannot do it  $\rightarrow$  Need high densities: (1) star-forming regions, (2) cool stellar atmospheres, (3) (super)novae or PNe: expanding gas shells


We indeed see evidence of dust in all these objects.




#### Stellar photosphere

IR excess: reradiation of stellar radiation (UV and optical) by heated circumstellar dust (in IR)

A distribution of  $T_{dust} \rightarrow$  superposition of bb spectra





https://ay201b.files.wordpress.com/2013/04/dullemond.jpg

### **Destruction of Grains**

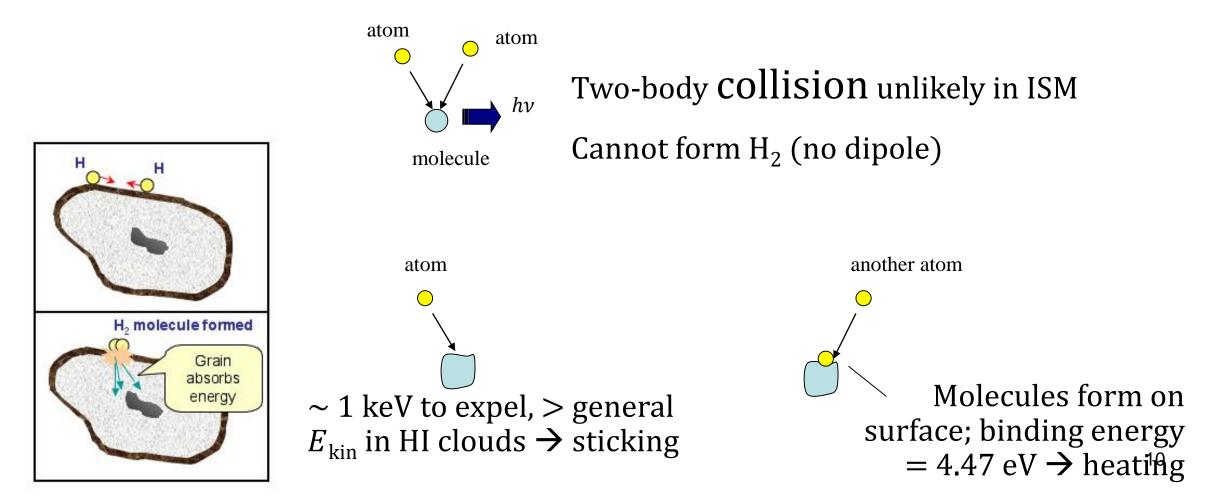
**Evaporation** CH<sub>4</sub>: 20 K; NH<sub>3</sub>: 60 K; H<sub>2</sub>O: 100 K

#### **Sputtering**

Maybe important in diffuse clouds; grains otherwise better shielded in dense clouds

CR

UV


#### **Grain-grain collision**

Kinetic energy (a few km/s)  $\rightarrow$  dust heated and evaporated; important in shocked media; may not be important in ISM otherwise

#### Heating

#### **Formation of Molecules**

Grains catalyze the reactions between atoms which otherwise do not meet together (Gould & Salpeter 1963; Hollenbach & Salpeter 1971).



Take H<sub>2</sub> as an example (Hollenbach & Salpeter, 1971, ApJ, 163, 155)

Fraction of H atoms that stick: *s* ..... move across and find another H:  $\xi$ ..... react:  $\zeta$ ..... come off the grains:  $\eta$ 

Overall, rate  $\gamma$ : fraction that hit and then make an  $\rm H_2$ 

$$\gamma = s \xi \zeta \eta$$

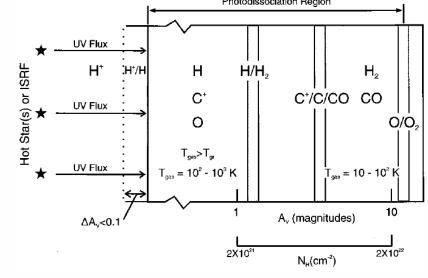
#### In the lab, $s \sim 1/3$ , and for H, $\xi$ , $\zeta$ , $\eta$ all $\sim 1$

$$[\# \text{ of } H_2 \text{ formed } \text{s}^{-1} \text{cm}^{-3}] = R n_H n_H$$
  
= (1/2)  $\gamma n_H n_d v \pi a^2$   
where  $R [\text{cm}^3 \text{s}^{-1}]$   
 $R = (1/2) \gamma n_d / n_H v \pi a^2$   
= (1/2) (1/3) (4 × 10<sup>-12</sup>)/10 (10<sup>5</sup>)  $\pi (2 \times 10^{-5})^2$   
= 10<sup>-17</sup> [cm<sup>3</sup> s<sup>-1</sup>]

Time scale for H<sub>2</sub> formation is  $(R n_H)^{-1} = 10^{17}/n_H$  [s] =  $3 \times 10^9/n_H$  [yr] e.g., for  $n_H = 100$  cm<sup>-3</sup>, then  $(R n_H)^{-1} \approx 3 \times 10^7$  yr

Ref: Kaplan & Pikelner 12

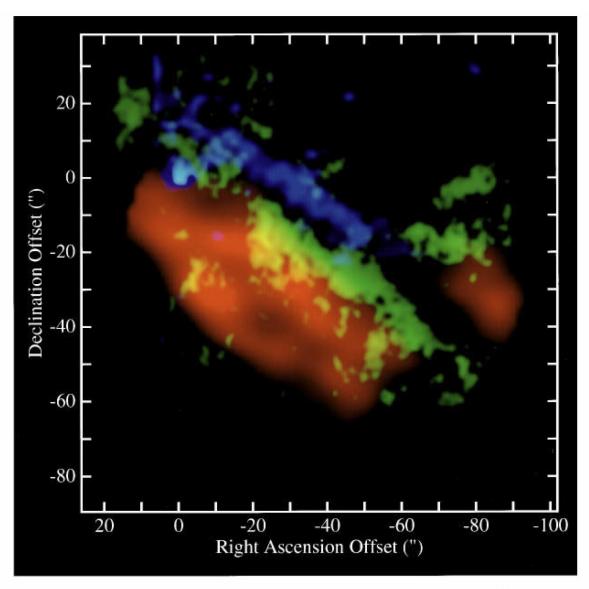
 $\tau_{\rm dissociation} \sim 3 \times 10^9 \, {\rm s} \approx 100 \, {\rm yrs}$ 


So it takes some  $10^7$  years to form an H<sub>2</sub> molecule, but it is destroyed in 100 years.

➔ need shielding!

- Photodissociation is the main process to destroy IS  $H_2$ .
- Usually stronger lines have stronger self-shielding.

### **Photodissociation Region (PDR)**


Far-UV photons (6 eV < E <13.6 eV), not energetic enough to ionize hydrogen, but can dissociate most molecules (e.g., H<sub>2</sub>, CO)



Hollenback & Tielens, 1999, Rev. Mod. Phy, **71**, 173 FIG. 3. A schematic diagram of a photodissociation region. The PDR is illuminated from the left and extends from the predominantly atomic surface region to the point where  $O_2$  is not appreciably photodissociated ( $A_V \approx 10$ ). Hence the PDR includes gas whose hydrogen is mainly H<sub>2</sub> and whose carbon is mostly CO. Large columns of warm O, C, C<sup>+</sup>, and CO, and vibrationally excited H<sub>2</sub> are produced in the PDR.

15

The PDR region in the Orion Bar region, seen edge-on



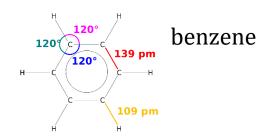
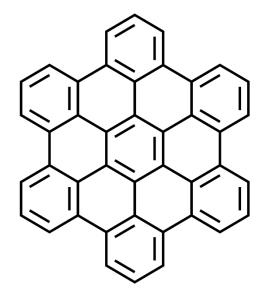
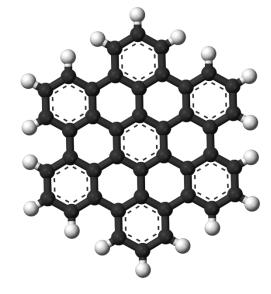
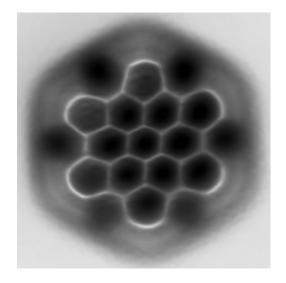

Blue PAH Yellow H<sub>2</sub> Red CO

FIG. 2. (Color) The Orion Bar region mapped in the 3.3- $\mu$ m PAH feature (blue), H<sub>2</sub> 1-0 S(1) emission (yellow), and CO J = 1-0 emission (red; Tielens *et al.*, 1993). The (0,0) position corresponds to the (unrelated) star  $\theta^2$  A Ori. The illuminating source,  $\theta^1$  C Ori, and the ionized gas are located to the northwest (upper right). For all three tracers, the emission is concentrated in a bar parallel to but displaced to the southeast from the ionization front. The PDR is seen edge on; a separation of ~10" is seen between the PAH emission and the H<sub>2</sub> emission, and between the H<sub>2</sub> emission and the CO emission, as predicted by PDR models (see text).


Chap 11 GrainsMol


Hollenback & Tielens (1999)


## Polycyclic aromatic hydrocarbon



Chemicals contains C and H only, with multiple aromatic rings (ring-shaped and planar, e.g., benzene C6H6; very stable)







Line-angle schematic

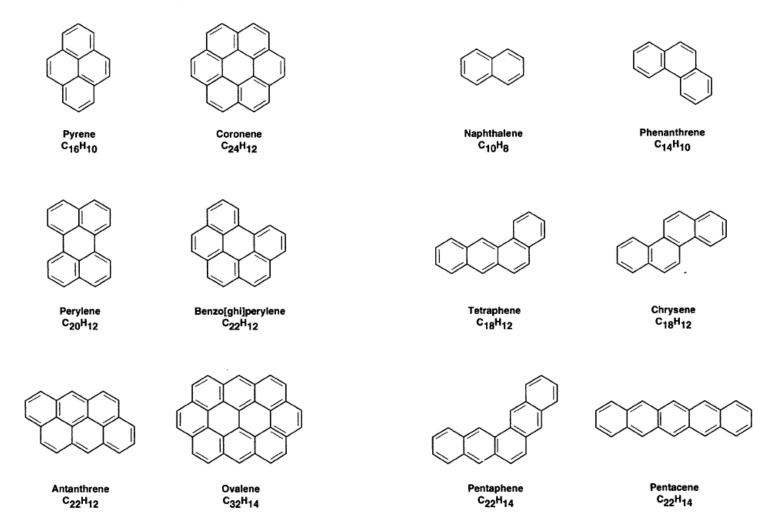
Ball-and stick model

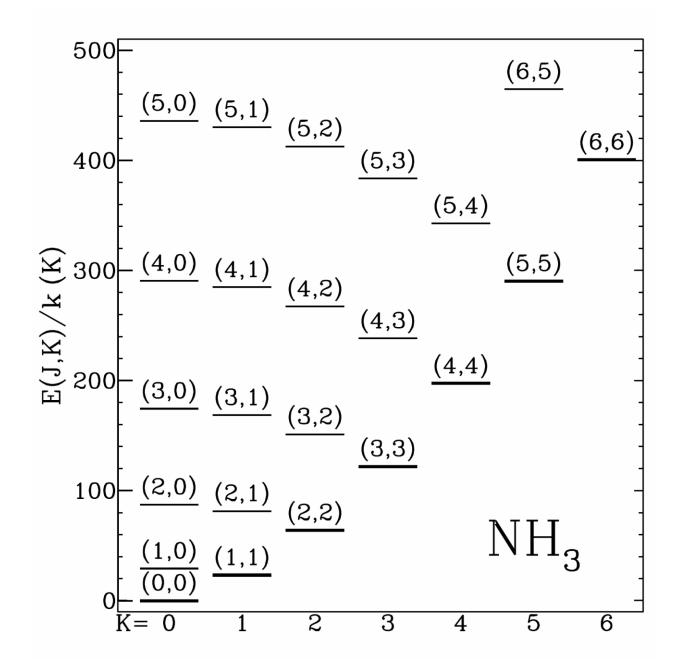
Microscopy image

https://en.wikipedia.org/wiki/Polycyclic\_aromatic\_hydrocarbon

PERICONDENSED

CATACONDENSED





FIG. 1.—Structures of some representative pericondensed and catacondensed polycyclic aromatic hydrocarbons (PAHs). Hydrogen atoms, located on the periphery, are not represented.



#### **Interstellar Molecules**

- All from abundant elements (H, C, N, O, S, Si) + simple molecules (H<sub>2</sub>CO, CH, OH radicals)
- There are diatomic, triatomic, and more complicated polyatomic molecules, such as ammonia NH<sub>3</sub>, water H<sub>2</sub>O, hydrogen cyanide HCN, methanal (甲醛) H<sub>2</sub>CO, oxomethylium ion HCO<sup>+</sup>, alcohol CH<sub>3</sub>OH
- Diatomic molecules with <u>identical</u> nuclei, e.g., H<sub>2</sub>, N<sub>2</sub>, O<sub>2</sub>, are called **homonuclear** (同核), as oppose to **heteronuclear** (異核) molecules, such as HD, OH, or CO.

- Molecules also have term symbols, but they are complicated because of the projection, e.g., of the angular momentum onto the internuclear axis.
- The ground term of H<sub>2</sub> is<sup>1</sup>§<sup>+</sup><sub>9</sub>; it has zero electronic orbital angular momentum, has zero electron spin, is symmetric under reflection through the center of mass (*g*), and is symmetric under reflection through planes containing the nuclei (+).
- If the protons have spin  $0 \rightarrow \text{para-H}_2$ ; if two protons are parallel, with total spin  $1 \rightarrow \text{ortho-H}_2$ .



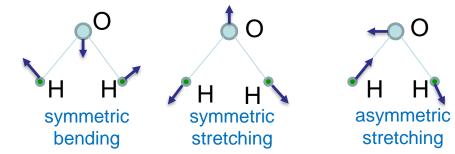
## **Rotational Transitions**

- Rotational spectra arise from transitions between rotational energy states.
- Only molecules with electric dipole moments can absorb or emit photons in such transitions. Non-polar diatomic molecules, e.g., H<sub>2</sub>, and symmetric polyatomic molecules, e.g., CO<sub>2</sub> (O=C=O) or CH<sub>4</sub>, do not exhibit rotational spectra, unless they are collisionally excited (molecules "distorted").
- Even in molecules with a permanent dipole moment, selection rules apply for rotational transitions.
- In practice, rotational spectra are always seen in absorption, so *J* → a higher *J*

- H<sub>2</sub> has no permanent electric dipole moment, and the vibrational states and the rotational states radiates very weakly, via the time-variation of the electric quadrupole moment as the molecule vibrates or rotates.
- Often one uses, e.g., CO, as the tracer of molecular species. This is valid if collisional equilibrium is established.

• Rotational energy

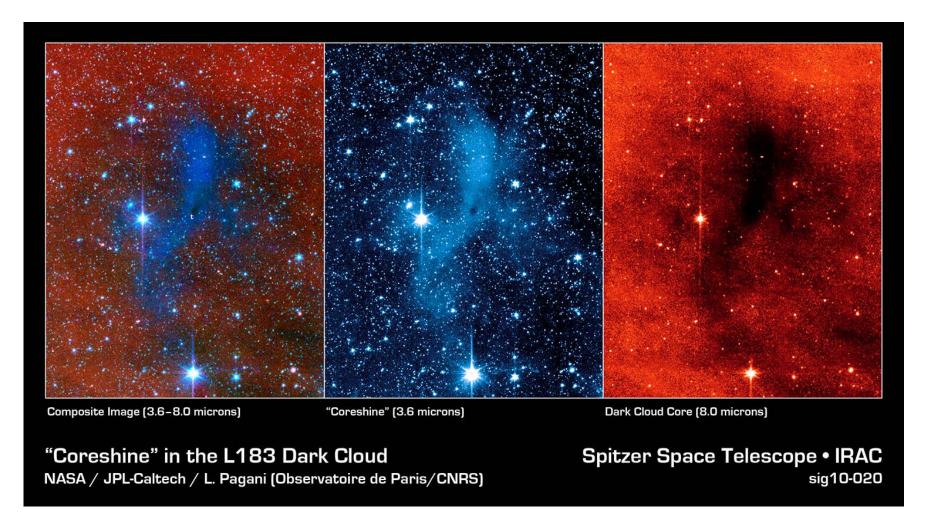
$$E_J = \frac{1}{2} I \omega^2 = \frac{L^2}{2I} = \frac{J(J+1)}{2I}$$
  
That is,  $v_{J \to J+1} = \frac{\hbar}{2\pi I} (J+1)$ ; with equally spaced lines.


## **Vibrational Transitions**

- A molecule not only rotates, it also vibrates when sufficiently excited → a harmonic oscillator
- Vibrational energy

$$E_v = (v + 1/2) \hbar \sqrt{\frac{k}{\mu}}$$

where v is the vibrational quantum number, k is the vibrational force constant, and  $\mu$  is the reduced mass.


- Selection rule:  $\Delta v = \pm 1$
- A variety of modes...



## **Types of Molecular Clouds**

| Туре                    | Av (mag)    | Examples           |
|-------------------------|-------------|--------------------|
| Diffuse Molecular Cloud | < 1         | Rho Oph            |
| Translucent Cloud       | 1 to 5      | HD 24534 cloud     |
| Dark Cloud              | 5 to 20     | B 335              |
| Infrared Dark Cloud     | 20 to > 100 | IRDC G028.53-00.25 |

## IRDCs discovered in 1996 by the ISO = formation sites of massive stars?

