Heating and Cooling of the ISM

Most of the IS gas in the MW is neutral, and 78% of the neutral hydrogen is atomic.

References

Draine, Sec. 24.1 for dust; Chap 30 for H I; Chap 27 for H II Spitzer, Chap. 6; p. 131 Scheffler & Elsasser, p. 285 Bowers & Deeming, p. 357

Heating

- Photoionization (by x rays)
- Ionization by cosmic rays
- Photoelectric effect on grain surface
- H₂ formation on grains
- Shock heating and other MHD phenomena

Cooling

- Collisional excitation followed by radiation (molecular rotation, vibration, atomic fine structure)
- Free-free emission of electrons
- Dust emission --- Collisions between gas and dust

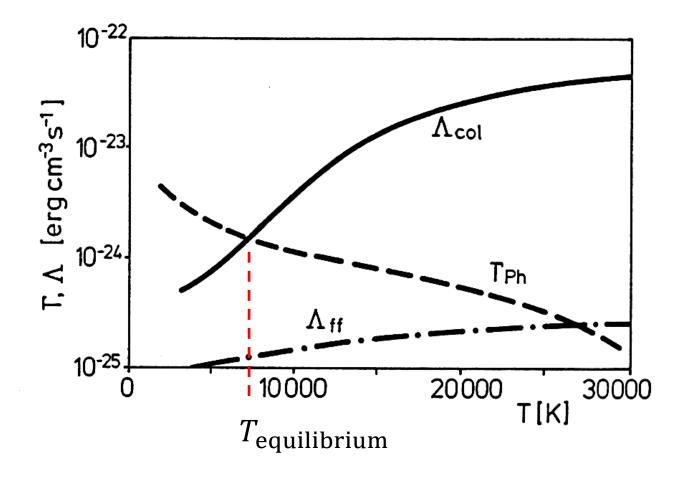
Adopting a typical diffuse cloud (H I) parameters,

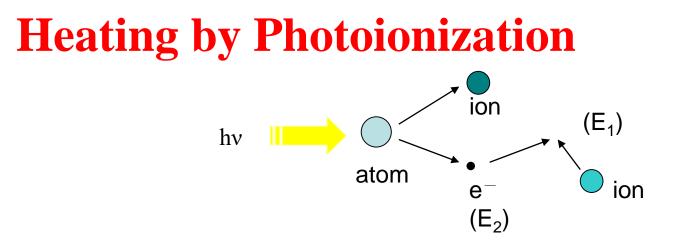
$$T \approx 50 - 150$$
 K, mean = 80 K,
 $n_H \approx 10 - 1000$ cm⁻³, mean = 20 cm⁻³,
 $n_e \approx 10^{-4} n_H$,
 $M = 400 M_{\odot}$,
 $R = 5$ pc

Total gravitational energy $E_G \approx (3GM^2/5R) \approx 2 \times 10^{45}$ ergs Thermal energy $U \approx (3MkT/2m_H) \approx 10^{46}$ ergs So clouds generally are not gravitationally bound.

Internal energy heat

$$\int dE = \delta Q - p dV \rightarrow \frac{dQ}{dt} = \frac{dE}{dt} + p \frac{dV}{dt}$$


For monatomic gas (w/o internal degree of freedom), E = (3/2)kT


$$\frac{d}{dt}(\frac{3}{2}nkt) - \frac{5}{2}kt\frac{dn}{dt} = (3/2)kn\frac{dT}{dt} - kt\frac{dn}{dt} \equiv \Gamma - \Lambda$$

 Γ : Energy <u>Gain (i.e., heating)</u>[ergs s⁻¹ cm⁻³] Λ : Energy Loss (i.e., cooling)

<u>Note</u>: This does not include evaporation, melting, conduction, or any time dependent effects (e.g., a collapsing cloud).

In a steady state, $\Gamma(T) = \Lambda(T)$

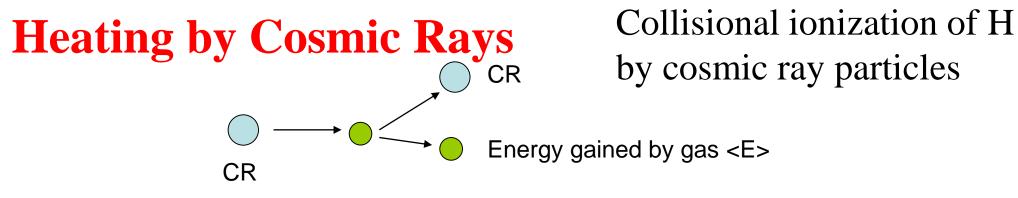
For each ionization, the electron gains kinetic energy E_2 .

Each recombination loses E_1 .

Recall [# of photoionization] = [Recombination to all states]

Averaging over the Maxwellian-Boltzmann distribution

$$\Gamma_{ei} = n_e n_i v \sigma_j E_2 - n_e n_i v' \sigma_j E_1$$


$$= n_e n_i \{ < v \sigma_j > \bar{E}_2 - < v \sigma_j > \bar{E}_1 \}$$

$$= n_e n_i \{ \alpha^{(1)} \bar{E}_2 - \frac{1}{2} m_e \sum_j < v^3 \sigma_{ij} > \}$$
ool

 $n_e n_i \alpha^{(1)} = n_e n_i \sum v \sigma(v)$

For protons (Spitzer, p. 136)

$$\Gamma_{ph} = \frac{2.07 \times 10^{-11} n_e n_p}{\sqrt{T}} \{ \bar{E}_2 \phi_1(\beta) - kT \chi_1(\beta) \} \text{ ergs s}^{-1} \text{ cm}^{-3}$$

of CR ionization $[s^{-1}cm^{-3}] = \zeta_{CR} n_H$

 $\langle E \rangle \approx 3.4 \text{ eV}$ (Spitzer & Tomasko, 1968, ApJ) $\zeta_{CR} = 7 \times 10^{-18} \text{ s}^{-1}$

Each "primary" ionization by a CR creates a "secondary" electron with mean kinetic energy of ~35 eV, which may ionize or excite bound states of H, H₂, and He which will deexcite radiatively.

$$\Gamma_{cr} = 3.8 \times 10^{-29} n_H \text{ ergs s}^{-1} \text{ cm}^{-3}$$

Photoelectric Heating on Grain Surface

This effect is important in H I regions.

Stellar flux = c u $\sigma_d = \text{cross section} = \pi a^2 Q_{abs}$ (expect $Q_{abs} \sim 1$ at UV) y_{e} = yield factor = [# of e⁻ given off]/[# of photon incident] i.e., not every photon liberates an electron E_2 = energy gained off by the electron to the gas; for small particles, $\langle E_2 \rangle \sim 5 \text{ eV}$ $\Gamma_{ed} = n_d \int \frac{\sigma_d(\lambda) c u_\lambda y_e E_2}{h\nu} d\nu$

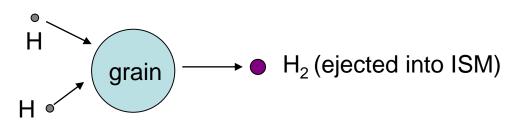
Within a cloud at an optical depth, $u_{\lambda} \sim u_{\lambda 0} e^{-\tau}$

Chap 12 HeatCool

 e^{-}

grain

(E₂)


$$\Gamma_{ed} = 1.8 \times 10^{-25} y_e n_H e^{-\tau} \text{ ergs s}^{-1} \text{ cm}^{-3}$$

$$0.01 < y_e < 1.0$$
 if $10 \text{ eV} < h\nu < 13.6 \text{ eV}$

For example, if
$$\tau \ll 1$$
, $y_e \sim 1$
 $\rightarrow \Gamma_{ed} \sim 2 \times 10^{-25} n_H$ [ergs s⁻¹ cm⁻³]

- The work function for graphite is 4.5 eV; it is 5.0 eV for lunar surface material.
- Photons > 8 eV dominate photoelectric heating by dust.
- Small grains absorb UV effectively, and have larger photoelectric yields, so $\Gamma_{\rm ed}$ is dominated by photoelectrons from very small grains, including the PAHs.

Heating by H₂ Formation on Grains

of H₂ formed [s⁻¹ cm⁻³] = $R n_H n_H$; $R \sim 10^{-17}$ [s⁻¹ cm⁻³]

Binding energy of H₂, $E_b(H_2) = 4.48 \text{ [eV]}$ \rightarrow Kinetic energy of H₂ afterwards = $z_{H2} \times 4.48 \text{ [eV]}$

$$\Gamma_{H2} = (4.48 \times z_{H2}) R n_H n_H$$

= 2.2 × 10⁻²⁸ z_{H2} n_H² ergs s⁻¹ cm⁻³
z_{H2} = 0.04 - 0.1

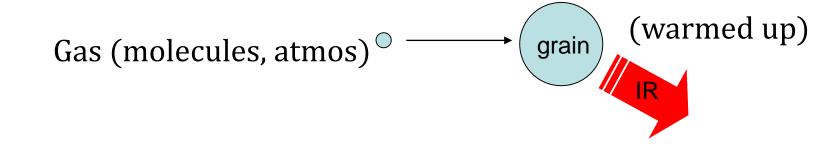
 $\Gamma_{H2} \approx 2 \times 10^{-29} n_H^2 \text{ ergs s}^{-1} \text{ cm}^{-3}$

Summary of ISM Heating

Process	$ergs s^{-1} cm^{-3}$
photoionization	$8 \times 10^{-25} n_H^2$
Cosmic rays	$3.8 \times 10^{-29} n_H$
photoelectric	$2 \times 10^{-25} n_H$
H ₂ formation	$2 \times 10^{-29} n_H^2$

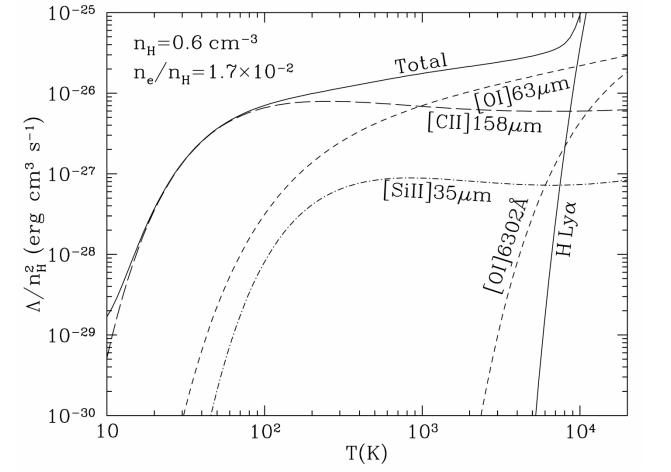
Cooling by Collisional Excitation

$$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

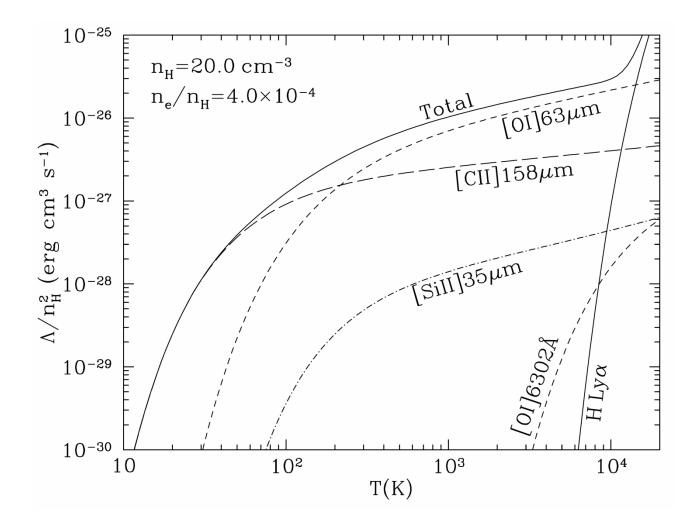

With $T_e \sim 7,000$ K for the primary coolants 0 II, 0 III and N II, $\Lambda/n_e n_p \sim 10^{-24}$ [ergs s⁻¹cm⁻³]

➔ Inelastic collisions between electrons and ions are important cooling mechanisms in both H I and H II regions.

Cooling by Free-Free Emission of Electrons


$$\Lambda_{ff} = 4\pi\epsilon_{ff} = 1.426 \times 10^{-27} Z^2 \sqrt{T} n_e n_i g_{ff}^- \text{ ergs s}^{-1} \text{ cm}^{-3}$$
$$\sim 1.3 \text{ (1.0 to 1.5)}$$

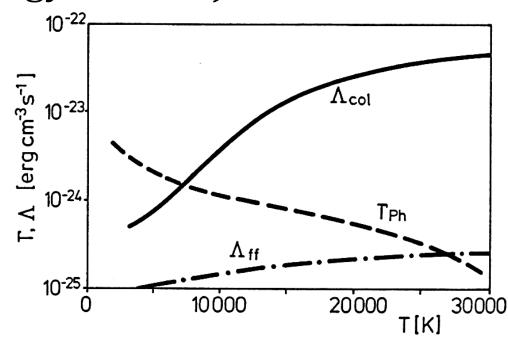
Cooling by Collisions between Gas and Dust



Cooling In H I cloud

$< 10^4$ K \rightarrow mainly by the [C II] 158 μm fine structure line, > 100 K \rightarrow [O I] 63 μm plays a role $> 10^4$ K \rightarrow Lyman alpha dominates

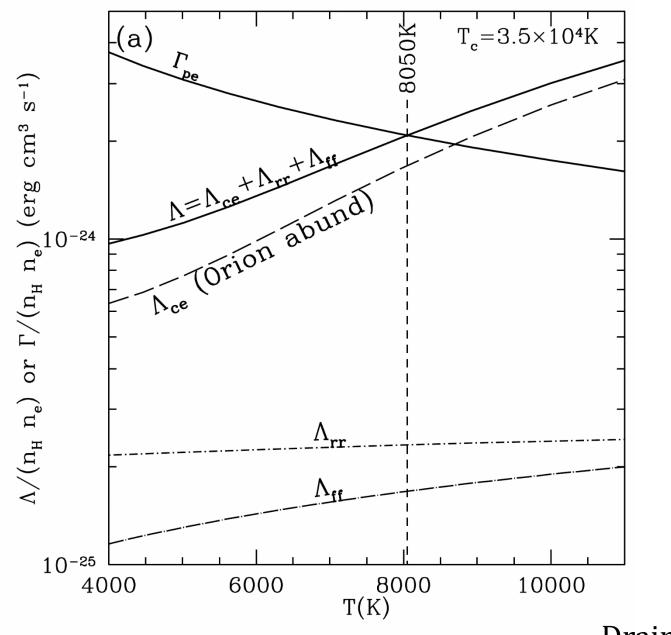
For low-ionization environs



Thermal Equilibrium in H II Regions

Heating: primarily by photoionization

Cooling: excitation of C, N, O, Ne (excitation levels of a few eV above ground level) very efficient;


but (fortunately?) of relative low abundances with respect to H (excitation energy 10.2 eV)

Main Collisionally Excited Cooling Lines in H II Regions

Ion	lines
N II	6585 Å, 6550 Å
O II	3730 Å, 3727 Å
O III	88.36 μm, 51.81 μm, 5008 Å, 4960 Å
Ne II	12.81 μm
S II	6733 Å, 6718 Å
S III	33.48 μm, 18.71 μm, 9071 Å, 9533 Å

18

Chap 12 HeatCool

Draine Figure 27.1a ¹⁹