Star Formation

Stars are formed in dense molecular cloud cores, whereas planets are formed, contemporaneously, in young circumstellar disks.

→ Compression of gas from a cloud size ~10¹⁸ cm down to a stellar size ~10¹¹ cm, i.e., density increases by a factor of ~10²¹.

Fig. 3. Visual extinction vs. equivalent hydrogen column density. The fit (dotted line) does not contain GX 17+2 and LMC X-1. It yields $N_H = 1.79 \pm 0.03 A_V[mag] \times 10^{21}[cm^{-2}]$

$$\frac{N_H}{A_V} \approx 1.8 \times 10^{21} \mathrm{atoms \ cm^{-2} \ mag^{-1}}$$

Predehl & Schmitt (1995)

Filamentary Molecular Clouds

Molecular clumps/ clouds/condensations $|n \sim 10^3 \text{ cm}^{-3}, D \sim 5 \text{ pc}, M \sim 10^3 \mathcal{M}_{\odot}$ Dense molecular cores $|n \ge 10^4 \text{ cm}^{-3}, D \sim 0.1 \text{ pc}, M \sim 1-2 \mathcal{M}_{\odot}$

Giant Molecular Clouds $D=20\sim100 \text{ pc}$ $\mathcal{M} = 10^5 \sim 10^6 \mathcal{M}_{\odot}$ $\rho \approx 10\sim300 \text{ cm}^{-3}$ $T \approx 10\sim30 \text{ K}$ $\Delta v \approx 5\sim15 \text{ km}^{-1}$ Stars are formed <u>in groups</u> \rightarrow seen as star clusters if gravitationally bound. Groups of young stars are found at the densest parts of the molecular clouds.

Figure 2 CO contour map of the Taurus molecular cloud with positions of dense NH₃ cores, embedded infrared sources, and visible T Tauri stars (from Myers 1986).

Molecular clouds observed by different tracers ...

Taurus molecular cloud

Nearby Examples

Massive Star-Forming Regions

- *Per OB2* (350 pc)
- Orion OB Association (350--400 pc) ... rich

Low-Mass Star-Forming Regions

- Taurus Molecular Cloud (TMC-1) (140 pc)
- Rho Ophiuchi cloud (130 pc) -
- *Lupus* (140 pc)
- Chamaeleon (160 pc)
- *Corona Australis* (130 pc)

Trapezium Cluster • Orion Nebula WFPC2 • Hubble Space Telescope • NICMOS

NASA and K. Luhman (Harvard-Smithsonian Center for Astrophysics) + STSel-PRC00-19

4/5 in the southern sky ... why?

Stability: The Virial Theorem

In a spherically symmetric cloud of temperature *T*, for each particle, the equation of motion is $F_i = m_i \ddot{r}_i = \dot{p}_i$, the momentum change with time.

Sum up all particles and take time derivative

$$\frac{d}{dt} \sum_{i} \boldsymbol{p}_{i} \cdot \boldsymbol{r}_{i} = \sum_{i} \dot{\boldsymbol{p}}_{i} \cdot \boldsymbol{r}_{i} + \sum_{i} \boldsymbol{p}_{i} \cdot \dot{\boldsymbol{r}}_{i}$$
$$= \sum_{i} \boldsymbol{F}_{i} \cdot \boldsymbol{r}_{i} + \sum_{i} m_{i} \dot{\boldsymbol{r}}_{i} \cdot \dot{\boldsymbol{r}}_{i}$$
$$\frac{d}{dt} \sum_{i} m_{i} \dot{\boldsymbol{r}}_{i} \cdot \boldsymbol{r}_{i}$$
$$= E_{p} + 2E_{k}$$
$$\sum_{i} F_{i} \cdot \boldsymbol{r}_{i} = \text{virial of Clausius}$$

Chap 13 StarForm

For moment of inertia, $I = \sum_{i} m_{i} r_{i}^{2}$, $\frac{d^{2}I}{dt^{2}} = \frac{d}{dt} \left[\sum_{i} m_{i} 2 r_{i} \dot{r}_{i} \right]$

$$\frac{GmM}{r^2} = m\frac{v^2}{r}$$

To be stable, LHS = 0

Hence

LHS = 0 → stable LHS < 0 → collapsing LHS > 0 → expanding

- E_K a variety of kinetic energies
- ✓ Kinetic energy of molecules
- ✓ Bulk motion of clouds
- ✓ Rotation

✓ ____

- *E_P* a variety of potential energies
 ✓ Gravitation
- ✓ Magnetic field
- \checkmark Electrical field

Note:

Virial theorem governs the motion status, whereas the total energy $E_{\text{total}} = E_K + E_P$ $= E_{K} + \Omega$ (mostly) governs whether the system is dynamically bound. A coins flying either upward or downward is bound.

Cloud of mass *M*, radius *R*, rotating at
$$\omega$$

 $E_{rot} = \frac{1}{2}I\omega^2$ $I = \frac{2}{5}MR^2$ $\Omega = -\frac{3}{5}\frac{GM^2}{R}$

Generalized virial theorem

$$\frac{1}{2}\frac{d^{2}I}{dt^{2}} = 2 < E_{K} > + \int \vec{r} \cdot \vec{F}dm + 3\int PdV - \oint P\vec{r} \cdot d\vec{s}$$
If $\omega = 0$, and $P_{ext} = 0$ $2 \cdot \frac{3}{2}\frac{M}{\mu m_{H}}kT - \frac{3}{5}\frac{GM^{2}}{R} = 0$
 $R_{J} = \frac{1}{5}\frac{GM\mu m_{H}}{kT}$
This is the Jeans length. $\mu \approx 2.37$ for solar abundance with H_{2}

Jeans length = critical spatial wavelength (length scale)

If the perturbation length scale is longer \rightarrow Medium is decoupled from self-gravity \rightarrow stable

$$M_J = \frac{4}{3} \pi R_J^3 \rho \qquad R_J = (\frac{15}{4\pi} \frac{kT}{\mu m_H G \rho})^{1/2} \sim \sqrt{\frac{T}{\rho}}$$

$$M_J = \left(\frac{\pi kT}{4\mu m_H G}\right)^{3/2} \sqrt{\frac{1}{\rho}} \sim \frac{T^{3/2}}{\rho^{1/2}}$$

This is the **Jeans mass** ... the <u>critical</u> mass for onset of gravitational collapse

If cloud mass $M > M_{Jeans} \rightarrow$ cloud collapse Note the above does not consider external pressure, or other internal supporting mechanisms. A non-magnetic, isothermal cloud in equilibrium with external pressure → a Bonnor-Ebert sphere (Bonnor 1956, Ebert 1955)

$$2E_K + E_P - 3P_{\rm ext}V = 0$$

The potential term may include, other than the gravity, also rotation, magnetic field, etc.

At first, the cloud is optically <u>thin</u>.

Contraction \rightarrow density $\uparrow \rightarrow$ collisions more frequent \rightarrow molecules excited and radiated \rightarrow radiation escapes

 \rightarrow cooling \rightarrow less resistance to the contraction

→ cloud collapse (free fall)

 $R_I \approx c_s \tau_{\rm ff} = [\text{isothermal sound speed}] * [free fall time]$

11

To maintain $2E_K + E_P = 0$, the total energy $E_t = E_K + E_P$ must change. The gravitational energy $\Omega \sim -\frac{GM^2}{2} \rightarrow d\Omega \sim \frac{dr}{2}$

$$r \rightarrow usi \sim -\frac{1}{r} \rightarrow usi \sim -\frac{1}{r}$$

For contraction, dr < 0, so $d\Omega < 0$, then

$$dE_t = dE_k + d\Omega = \frac{1}{2} d\Omega = Ldt$$

This means to maintain quasistatic contraction, <u>half</u> of the gravitation energy from the contraction is radiated away.

Eventually the cloud becomes dense enough (i.e., optically <u>thick</u>) and contraction leads to temperature increase.

The cloud's temperature increases while energy is taken away \rightarrow negative heat capacity

12

Numerically,

$$M_J = 1.0 \left(\frac{T}{10 \text{ K}}\right)^{3/2} \left(\frac{n_{\text{H}_2}}{10^4 \text{ cm}^{-3}}\right)^{-1/2} \left[\mathcal{M}_{\odot}\right]$$

• <u>H I clouds</u>

 $T \approx 100 \text{ K}, n_H \approx 100, R_J \approx 25 \text{ pc}; M_J \approx 300 \mathcal{M}_\odot > M_{\text{obs}}$ So H I clouds are not collapsing.

• <u>Dark molecular clouds</u>

 $T \approx 15 \text{ K}, n_H \approx 10^5, M_J \approx 20 \mathcal{M}_{\odot} < M_{obs} \approx 100-1000 \mathcal{M}_{\odot}$ So H₂ clouds (dense cores and Bok globules) should be collapsing. But observations show that most are not. \rightarrow There is additional support other than the thermal pressure, e.g., rotation, magnetic field, turbulence, etc. 13

Chap 13 StarForm

If $\mathcal{M}_{cloud} > \mathcal{M}_{crit} \rightarrow$ supercritical \rightarrow Cloud collapses dynamically → Massive star formation If $\mathcal{M}_{cloud} < \mathcal{M}_{crit} \rightarrow$ subcritical \rightarrow Cloud collapses quasistatically → Low-mass star formation

Clouds tend to condense with $\mathcal{M} \sim 10^4 M_{\odot}$, but the observed stellar mass ranges $0.05 \leq \mathcal{M}/M_{\odot} \leq 100$

Why is there a lower mass limit and an upper mass limit for stars?

Cloud collapse \rightarrow (local) density increase \rightarrow (local) M_I decrease \rightarrow easier to satisfy $M > M_{I}$, i.e., cloud becomes more unstable → fragmentation

Recall
$$M_J \approx 1.2 \times 10^5 \left(\frac{T}{100 \, K}\right)^{3/2} \left(\frac{\rho_0}{10^{-24} \, \text{g cm}^{-3}}\right)^{-1/2} \frac{1}{\mu^{3/2}} \left[M_{\odot}\right]$$

 $\propto \frac{T^{3/2}}{\rho^{1/2}}$

A small/decreasing M_I favors cloud collapse.

- If during collapse, local $M_J \downarrow \rightarrow$ subregions become unstable and continue to collapse to ever smaller (**fragmentation**).
- Since during collapse ρ always \uparrow , the behavior of M_J depends on T.

If gravitational energy is radiated away, i.e., $\tau_{\text{cooling}} \ll \tau_{\text{ff}}$ and collapse is **isothermal**, T = const, so $M_J \propto \rho^{-1/2} \rightarrow \text{collapse}$ collapse continues

Equation of motion for a spherical surface at *r* is

$$\frac{d^2r}{dt^2} = -\frac{GM}{r^2}$$

Dimensional analysis yields

$$\frac{R}{t^2} \sim \frac{GM}{R^2} \Longrightarrow t_{ff} \sim \frac{1}{\sqrt{G\rho}}$$

More accurately, $t_{ff} = \left(\frac{3\pi}{32 G\rho_0}\right)^{\frac{1}{2}} = \frac{3.4 \times 10^7}{\sqrt{n_0}} [yr] = 35/\sqrt{\rho}_{cgs} [min]$

It takes the Sun \sim 30 minutes to collapse (the **free-fall time scale**).

Ex: How long does a typical dense molecular core take to collapse?

Figure 12.5 The ratio of the radius relative to its initial value as a function of time for the homologous collapse of a molecular cloud. The collapse is assumed to be isothermal, beginning with a density of $\rho_0 = 2 \times 10^{-16}$ g cm⁻³.

,

Figure 12.6 The ratio of the cloud's density relative to its initial value as a function of time for the isothermal, homologous collapse of a molecular cloud with an initial density of $\rho_0 = 2 \times 10^{-16}$ g cm⁻³.

Carroll & Ostlie

Note that
$$t_{\rm ff} \propto \frac{1}{\sqrt{G\rho_0}}$$
 has no dependence on r_0 .

If ρ_0 is uniform, all *m* collapse to the center at the same time \rightarrow homologous collapse

In reality, ρ_0 is somewhat centrally condensed, as observed, e.g., $\rho_0 \propto r^{-1}$ to r^{-2} , inner region (small r), $t_{\rm ff} \downarrow \downarrow$

\rightarrow inside-out collapse

A protostellar core is formed, followed by material "raining down" \rightarrow accretion Gravitational energy \rightarrow kinetic energy \rightarrow heat $L_{acc} \sim GM_* \dot{M}/R_*$ Ann. Rev. Astron. Astrophys. 1987. 25: 23-81

1987ARA&A..25...23S

Cores form within molecular clouds.

STAR FORMATION IN MOLECULAR CLOUDS: OBSERVATION AND THEORY

Frank H. Shu, Fred C. Adams, and Susana Lizano

Astronomy Department, University of California, Berkeley, California 94720

> A core collapse insideout and form a protostar with a toroid.

A star is form with a

circumstellar disk.

A stellar wind with a bipolar flow forms.

Figure 7 The four stages of star formation. (a) Cores form within molecular clouds as magnetic and turbulent support is lost through ambipolar diffusion. (b) A protostar with a surrounding nebular disk forms at the center of a cloud core collapsing from inside-out. (c) A stellar wind breaks out along the rotational axis of the system, creating a bipolar flow.

(d) The infall terminates, revealing a newly formed star with a circumstellar disk.

Central condensed protostar, $r \sim a \text{ few } R_{\odot}$

Circumstellar disk, $r \sim 100$ au

Surrounding envelope, $r \sim 5000$ au

Matter accretes from the envelope via the disk onto the protostar

Ward-Thomson (2002)

Spectral energy distribution

$F_{\lambda} \text{ vs } \lambda$ or $\log \lambda F_{\lambda} \text{ vs } \log \lambda$

Spectral index useful to classify a young stellar object (YSO)

 $\alpha = \frac{d \log (\lambda F_{\lambda})}{d \log (\lambda)}$ Where λ =wavelength, between 2.2 and 20 µm; F_{λ} =flux density

Class 0 sources ---- undetectable at $\lambda < 20 \ \mu m$ **Class I** sources ---- $\alpha > 0.3$ **Flat spectrum** sources ---- $0.3 > \alpha > -0.3$ **Class II** sources ---- $0.3 > \alpha > -1.6$ **Class III** sources ---- $\alpha < -1.6$

➔ Evolutionary sequence in decreasing amounts of circumstellar material (disk clearing)

Figure 11 Evolutionary sequence of the spectral energy distributions for low-mass YSOs as proposed by André (1994). The four classes 0, I, II, and III correspond to successive stages of evolution.

Basic Questions in Star Formation

- The rate and efficiency of SF as a function of time and position in the Galaxy, and in external galaxies? How are these quantities measured?
- Cloud fragmentation to form clusters?
- Triggered SF?
- Different processes for high-mass and low-mass?
- Mass spectrum? Typical 0.1 1 $\rm M_{\odot}$, why?
- Formation of multiple systems?
- What is a protostar observationally?
- Evolution of disks?
- Origin of bipolar outflows?
- Environments for planet formation?
- Role of rotation and magnetic field?