Hydrogen

As an example of absorption and emission by atoms/molecules

QM versus classical physics

- Action, [energy]• [time] or [momentum] • [distance], is quantized in unit of \hbar
\square Heisenberg's uncertainty principle
\square Pauli exclusion principle

A photon with v has momentum $p=h v / c$
De Broglie wavelength $\lambda=\frac{h}{p}=\frac{h}{m_{e} v}$
OK only if an orbit of circumferences $=n \lambda$ (standing waves), so

$$
2 \pi a_{n}=n \lambda=\frac{n h}{m_{e} v} \rightarrow a_{n}=n \lambda=\frac{n \hbar}{m_{e} v}
$$

Orbital angular momentum, $L=m_{e} a_{n} v=n \hbar$
Balance of Coulomb force and centrifugal force, $\frac{e^{2}}{a_{n}^{2}}=\frac{m_{e} v^{2}}{a_{n}}$

$$
a_{n}=\frac{n^{2} \hbar^{2}}{m_{e} e^{2}}=0.53 n^{2}[\AA] \propto n^{2} \quad(\text { Bohr radius })
$$

$v=R_{\infty}\left(1+\frac{m_{e}}{M}\right)^{-1}\left[1 / n_{1}^{2}-1 / n_{2}^{2}\right]=3.28805 \times 10^{15}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right][\mathrm{Hz}]$

Lowest state of $\mathrm{H}, p^{2} r^{2} \approx\left\langle\Delta p^{2}\right\rangle\left\langle\Delta r^{2}\right\rangle \approx \hbar^{2}$
Virial theorem, $2 E_{K}+E_{p}=0$
Lowest (ground state) energy

$$
\begin{aligned}
& \varepsilon_{1}=-\frac{1}{2} E_{p}=-\frac{1}{2} \frac{Z e^{2}}{r}=-\frac{1}{2} \frac{p^{2}}{\mu} \approx-\frac{1}{2 \mu} \frac{\hbar^{2}}{r^{2}} \\
& \frac{Z e^{2}}{r}=\frac{\hbar^{2}}{\mu r^{2}} \Rightarrow r=\frac{\hbar^{2}}{\mu Z e^{2}}(\text { Bohr's radius }) \\
& \varepsilon_{1}=-\frac{1}{2} \frac{Z e^{2} \mu Z e^{2}}{\hbar^{2}}=-\frac{1}{2} \frac{Z^{2} \mu e^{4}}{\hbar^{2}}
\end{aligned}
$$

μ : reduced mass

For $H, Z=1, \varepsilon_{1}=-13.6 \mathrm{eV}, r \approx 5.3 \times 10^{-9}[\mathrm{~cm}]$

Electron Orbitals

$$
\begin{array}{r}
\boldsymbol{n}=1,2,3,4, \ldots \\
\\
K, L, M, N, \ldots
\end{array}
$$

Principal quantum number \leftrightarrow Energy

$$
\begin{aligned}
& \ell=0,1,2, \ldots, n-1 \text {, } \\
& \text { e.g., Iron }(Z=26) \mathrm{K} \text {-alpha at } 6.4 \mathrm{keV} \text { in } \mathrm{X} \text { rays } \\
& s, p, d, f, g, h, i, \ldots \text { Orbital quantum number } \leftrightarrow \text { Ang. Momentum } \\
& \text { sharp, principal, diffuse, fundamental, ... }
\end{aligned}
$$

$$
m_{z}=0, \pm 1, \pm 2, \ldots, \pm \ell
$$

Magnetic quantum number \leftrightarrow AM Direction
\square An s state has no angular momentum; a p state $A M=\sqrt{2} \hbar$.
\square In $H, n=1, \ell=0$
$\square n, \ell, m_{z}$ in unit of \hbar

TABLE 6.2 THE SYMBOLIC DESIGNATION OF ATOMIC STATES IN HYDROGEN

	$l=0$	$l=1$	$l=2$	$l=3$	$l=4$	$l=5$
$n=1$	$1 s$					
$n=2$	$2 s$	$2 p$				
$n=3$	$3 s$	$3 p$	$3 d$			
$n=4$	$4 s$	$4 p$	$4 d$	$4 f$		
$n=5$	$5 s$	$5 p$	$5 d$	$5 f$	$5 g$	$6 h$
$n=6$	$6 s$	$6 p$	$6 d$	$6 f$	$6 g$	$6 h$

Selection Rules

For an allowed transition
$\square \Delta n$ no restriction

- $\Delta l= \pm 1$
- $\Delta m=0, \pm 1$

An electron has a spin of $1 / 2$. Projection onto the z-axis can have only $-\hbar / 2$ or $+\hbar / 2$, not distinguishable (degenerate) if there is no external field. Each electron has orbital angular momentum $\ell \hbar$, and spin angular momentum $\hbar / 2$.

A subshell, i.e., a given pair of quantum numbers $n \ell$ has $2(2 \ell+1)$ electronic wave functions.

For multi-electron atoms, Pauli exclusion principle forbids 2 electrons sharing the same wave function.

An s subshell has at most 2 electrons; a p subshell at most 6 , and a d subshell up to 10 .

Exercise

Atomic carbon has 6 electrons. What is its ground state configuration?

A: 2 in $1 s, 2$ in $2 s$, and 2 in $2 p ; 1 s^{2} 2 s^{2} 2 p^{2}$

In general,

Total angular momentum (added in the vector sense) $\mathcal{L} \hbar$, Total spin angular momentum $S \hbar$, L-S coupling (spin-orbit interaction; fine structure)

Each (\mathcal{L}, S), called a term, is designated by ${ }^{2 S+1} \mathcal{L}^{p}$, where $\mathcal{L}=S, P, D, F, \ldots$, for orbital momentum $\mathcal{L}=0,1,2,3 \ldots$ and $p=$ "blank" (for even parity; whether the wave function changes sign thgough origin) or " 0 " (for odd parity)

Total electronic angular momentum, $J \hbar$
Transitions connecting two terms are called multiplets. Terms with two/three possible J values, are called doublets, triplets, etc.

A term, with \vec{L} and \vec{S} vectors (may point to different directions) has a multiplicity of $g=(2 S+1)(2 L+1)$. Including spin-orbit coupling, each state is split into sub-states, each with J, with a degeneracy $g=(2 J+1)$.
\square For H, $n_{\text {lower }}=1$ (Lyman, 1906), 2 (Balmer, 1885), 3 (Paschen, 1908), 4 (Brackett, 1922), 5 (Pfund, 1924), 6 (Humphreys, 1953)

- $\alpha: \Delta n=1 ; \beta: \Delta n=2 ; \ldots$
\square Balmer alpha, or $\mathrm{H} \alpha, \mathrm{H}(3 \mathrm{p}) \rightarrow \mathrm{H}(2 \mathrm{~s}), \lambda 656.28 \mathrm{~nm}$

Fig. 12. Broadband spectrogram of the 109α region of the spectrum of the Orion Nebula. The frequency resolution is 63 kHz for the broadband spectrogram and 31.5 kHz for the narrow band spectrum centered on the He 109α line. (After Churchwell and Mezger, 1970, by permission of

Gordon \& Breach Science Publishers)

H109 α

Table 11. The wavelengths in \AA of the $m \rightarrow n$ transitions of hydrogen for $n=1$ to $6, m=2$ to 21 , and $m=\infty$, and for the $n=4$ Pickering series for ionized helium (HeII) ${ }^{1}$. Here the wavelengths are in \AA where $1 \AA=10^{-8} \mathrm{~cm}$

Series m	Lyman $(n=1)$	Balmer $(n=2)$	Paschen $(n=3)$	Brackett $(n=4)$	Pfund $(n=5)$	Humphreys $(n=6)$	Pickering $\left(\mathrm{He}^{+}, n=4\right)$
2	$1,215.67$						
3	$1,025.72$	$6,562.80$					
4	972.537	$4,861.32$	$18,751.0$				$10,123.64$
5	949.743	$4,340.46$	$12,818.1$	40.512 .0			$6,560.10$
6	937.803	$4,101.73$	$10,938.1$	$26,252.0$	74,578		$5,411.52$
7	930.748	$3,970.07$	$10,049.4$	$21,655.0$	46,525	123,680	$4,859.32$
8	926.226	$3,889.05$	$9,545.98$	$19,445.6$	37,395	75,005	$4,541.59$
9	923.150	$3,835.38$	$9,229.02$	$18,174.1$	32,961	59,066	$4,338.67$
10	920.963	$3,797.90$	$9,014.91$	$17,362.1$	30,384	51,273	$4,199.83$
11	919.352	$3,770.63$	$8,862.79$	$16,806.5$	28,722	46,712	$4,100.04$
12	918.129	$3,750.15$	$8,750.47$	$16,407.2$	27,575	43,753	$4,025.60$
13	917.181	$3,734.37$	$8,665.02$	$16,109.3$	26,744	41,697	$3,968.43$
14	916.429	$3,721.94$	$8,598.39$	$15,880.5$	26,119	40,198	$3,923.48$
15	915.824	$3,711.97$	$8,545.39$	$15,700.7$	25,636	39,065	$3,887.44$
16	915.329	$3,703.85$	$8,502.49$	$15,556.5$	25,254	38,184	$3,858.07$
17	914.919	$3,697.15$	$8,467.26$	$15,438.9$	24,946	37,484	$3,833.80$
18	914.576	$3,691.55$	$8,437.96$	$15,341.8$	24,693	36,916	$3,813.50$
19	914.286	$3,686.83$	$8,413.32$	$15,260.6$	24,483	36,449	$3,796.33$
20	914.039	$3,682.81$	$8,392.40$	$15,191.8$	24,307	36,060	$3,781.68$
21	913.826	$3,679.35$					
∞	911.5	$3,646.0$	$8,203.6$	14,584	22,788	32,814	$3,644.67$

[^0]

Model spectrum of an A5 star

Tennyson

Balmer absorption series up to H14 of a B-type star

Tennyson

The IUE spectrum of a planetary nebula. Note Ly-alpha at 121.5 nm , and also the high excitation lines of 1550 C IV and 1640 He II , the forbidden line 2423 [Ne IV], and semi-forbidden line 1908 C III].

Lyman and other absorption lines of a Wolf-Rayet shell nebula GRB 021004, showing doublets due to Doppler effect in the shell

Tennyson
Mirabal+03

Brackett-alpha of the protostars Orion-BN object

Fig. 1.-Spectra of the BN object and β Ori. The two independent sets of data for the BN object are indicated by dots and \times 's.

NIR spectrum of the Seyfert galaxy Mrk 231 , showing Paschenalpha and Brackett-gamma lines.

Fig. 1.-The near-infrared spectrum of Mrk 231. These data have been smoothed to a resolution of $54 \mathrm{~cm}^{-1}$. The dashed line represents the portion of the spectrum in which atmospheric transmission drops below 50% and has therefore been omitted. The weak emission feature at $4620 \mathrm{~cm}^{-1}$ is the result of insufficient correction for the Br γ absorption line in the A type calibration star GC 18704. (inset) The $4000-4400 \mathrm{~cm}^{-1}$ region of the spectrum at the original $16 \mathrm{~cm}^{-1}$ resolution. The expected locations of the first overtone CO bands have been marked.

For higher energy states, $p_{n} r_{n}=n \hbar$

$$
\varepsilon_{n}=-\frac{p_{n}^{2}}{2 \mu} \approx-\frac{n^{2} \hbar^{2}}{2 \mu r_{n}^{2}}=-\frac{Z^{2} \mu e^{4}}{2 n^{2} \hbar^{2}}
$$

For the n-th radial state, the phase space volume is
$\left(4 \pi p_{n}^{2} \Delta p_{n}\right)\left(4 \pi r_{n}^{2} \Delta r_{n}\right)$, \# of possible states with principle quantum number n

$$
=\frac{\text { Total phase space volume }}{\text { volume of unit cell }}=\frac{16 \pi^{2} n^{2} \hbar^{3}}{\hbar^{3}} \propto n^{2}
$$

Electron spin parallel or anti-parallel to that of the nucleus, so the n-th state has $2 n^{2}$ different substates, all having the same energy.
$n \uparrow \uparrow$, the electron very distant from the nucleus (binding force extremely weak); often ionized then recombined (cascading down)

For H91 α, i.e., $n=92 \rightarrow 91$
$v(\mathrm{H} 91 \alpha)=3.28805 \times 10^{15} \mathrm{~Hz}\left[\frac{1}{91^{2}}-\frac{1}{92^{2}}\right]$ $\approx 8.5848 \times 10^{9} \mathrm{~Hz}$

This is called a "radio recombination line".

$$
v=R_{\infty}\left(1+\frac{m_{e}}{M}\right)^{-1}\left[1 / n_{1}^{2}-1 / n_{2}^{2}\right]=3.28805 \times 10^{15}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right][\mathrm{Hz}]
$$

Considering reduced mass, $\mathrm{M}(\mathrm{He}) \approx 4 \mathrm{M}(\mathrm{H}) ; \mathrm{M}(\mathrm{C}) \approx 12 \mathrm{M}(\mathrm{H})$, so $v \lambda$ a bit

Exercise

What is the highest n level of H atoms expected to find on the surface of the Sun where the gas number density is $\approx 10^{17} \mathrm{~cm}^{-3}$?

A: $n \approx 16$

Note that $\mathcal{E}_{n} \propto \mu$

$$
\varepsilon_{n}=-\frac{Z^{2} \mu e^{4}}{2 n^{2} \hbar^{2}}
$$

For normal $\mathrm{H}, \mu_{H}=\frac{m_{e} m_{p}}{m_{e}+m_{p}}=\frac{m_{e}}{1+m_{e} / m_{p}} \approx m_{e}\left(1-m_{e} / m_{p}\right)$
For deuteron, $\mu_{D}=\frac{m_{e} m_{D}}{m_{e}+m_{D}}=\frac{2 m_{e} m_{p}}{m_{e}+2 m_{p}} \approx m_{e}\left(1-m_{e} / 2 m_{p}\right)>\mu_{H}$ So the D lines are shifted $1.5 \AA$ to shorter wavelengths

Note also that $\varepsilon_{n} \propto Z^{2}$, so for He II $\left(Z=2\right.$, with $\left.1 \mathrm{e}^{-}\right), Z^{2}$ is 4 times larger, and with a different μ.

- For the ground state, the orbital angular momentum is $\ell=0$. The total spin angular momentum (hyperfine structure; interaction with nuclear spin)

$$
F=0(\text { spin opposite }) \text { or } F=1(\text { spin parallel })
$$

Typically $10^{-6} \mathrm{eV}$, difficult to observe in optical due to Doppler broadening
Including the nucleus,
$J=[$ electronic angular momentum $] / \hbar$
$I=$ [nuclear angular momentum] $/ \hbar$
F $=$ [total angular momentum $] / \hbar$
For H, the ground electronic state $1 s^{2} S_{1 / 2}$ has $J=1 / 2$, and the proton has $I=1 / 2$. The state splits into $F=0$ or $F=1$, $\Delta E=6.7 \times 10^{-6} \mathrm{eV}, v=1420.4 \mathrm{MHz}, \lambda \approx 21 \mathrm{~cm}$.

- For $n=2, \ell=1$, and with spin, a total angular momentum of $\ell(\ell+1) \hbar^{2}=2 \hbar^{2}$
3 substates, $\hbar, 0,-\hbar, m=1,0,-1$ (magnetic quantum number)
Fine structure, $\Delta \mathcal{E}$ very small, $\sim 10^{-5} \mathrm{eV}$
But with an external B field \rightarrow Zeeman splitting

With a field of $10 \mu \mathrm{G}$, the $21-\mathrm{cm}$ line shifts 10^{-8}, equivalent to an RV of a few $\mathrm{km} \mathrm{s}^{-1}$; very difficult to detect
Detectable by the difference of the two circular polarization signals (more on this when we discuss the magnetic field)

- Free-free or free-bound to any level
- Cascading down \rightarrow emission of photons of different energies
\mathbf{H}^{-}(negative H ion)

$$
H+e^{-} \rightarrow H^{-}+h v
$$

Ample supplies of free e^{-}from Na, Ca, Mg , ... with low-ionization potentials

He atom similar, with the second e^{-}weakly bounded, shielded by the first e^{-}
$\mathcal{E}_{\text {binding }}\left(\mathrm{H}^{-}\right)=0.75 \mathrm{eV}$, with only 1 bound state; transitions \rightarrow continuum

Absorption by H^{-}immediately followed by reemission
H^{-}opacity dominates atmospheres cooler than A0 (e.g., Sun) $T \nearrow$, ionized; $T \searrow$, not much free electrons.

Most of the light we see from the Sun due to H^{-}continuum transitions

Figure 2.4. Energy levels of the O^{+}ion, with the transitions of the optical O II spectrum. The levels for this ion are arranged in groups of one to four called terms from which arise multiplets of lines that are spread out in wavelength to varying degrees. See the text for a fuller explanation. A chart such as this one is often called a term or Grotrian diagram. The complexity of the electronic orbital structures of the heavier atoms is a term or Grotran diagram. The complexity of the electronic orbital structures of the heavier atoms is awesome. Here we present only the upper part of the diagram that produces the optical transitions. On this scale the ground state is about 40 centimeters off the bottom of the page. Below, we find levels that involve high energy ultraviolet transitions. Most of these terms involve the excitation of the outer (valence) electron only. The horizontal line at the top represents the ionization energy, above which the excited electron is lost to the atom, resulting in O^{+2}. If two electrons can be excited at the same time we can get energy levels above the ionization limit, adding to the complexity of the diagram. Diagram by the author, fromAMupltiplet Table of Astrophysical Interest by C. E. Moore, US Govt. Printing Office, 1945.

Complexity of the energy level diagram

Here is the example of O II transitions

Kaler

An atom has only electronic transitions.
A molecule can also have electronic transitions, but additionally also vibrational transitions, rotational transitions.

A molecular line is produced by a transition between 2 rotational levels. The set of transitions between 2 rotationvibration states \rightarrow a band

A band converges with wavelength (toward the red or blue) The wavelength limit at which the rotational lines pile up is called the band head.

Figure 2.5. Molecular spectra. Two electronic states are shown. Each is divided into vibrational states, of which only the lowest two are drawn. Each of these is split again into rotational states, for which only the lowest six are illustrated. A single molecular absorption line is shown arising from the 4th rotational state of the 1st vibrational state of the lower electronic level, and ending on the 5th rotational state of the 2 nd vibrational state of the upper electronic level. The line is a part of band of lines created by a set of transitions between the two vibrational states, in which the rotational state number is allowed to change only by plus or minus one. The collection of lines produced between all the vibrational states constitutes a system of bands, all of which replace one line in an atomic spectrum. Adapted from Astrophysics by L. H. Aller, 2nd edn., Ronald Press Co., New York, 1963.

Example molecular transitions

Kaler

Dipole radiation is possible only if the molecule has a dipole moment.

H_{2}, a homonuclear molecule (i.e., consisting of only one type of atoms), has no dipole moment, so can only radiate in less probably transitions, e.g., quadrupole, 10^{-9} weaker.
Ortho- spins of protons parallel; para- spins antiparallel
CO_{2} has no pure rotation spectrum.

$$
\mathrm{O}=\underset{116.3 \mathrm{pm}}{\mathrm{C}}=\mathrm{O}
$$

CO has a pure rotation spectrum, astrophysically important in mm to trace molecular gas

H_{2} (dihydrogen, molecular hydrogen)

- Main constituent of cold clouds, not important in stars, except in the coolest substellar objects (brown dwarfs or planetary-mass objects)
- Lacking a permanent electric dipole moment, so cold H_{2} very difficult to detect. A rotationally excited molecule would radiate through a relatively slow electric quadrupole transition.
- Only in a heated medium (e.g., a photodissociation PDR region between HII and a molecular cloud) where stellar radiation or stellar wind excites vibrational and electronic states which then decay relatively quickly.
$\mathcal{E}_{\text {dissociation }}=4.48 \mathrm{eV} ; \mathrm{H}-\mathrm{H}$ bond

Zero electric dipole moment

Figure 5.4 Rotational levels of H_{2} for the first two vibrational states. Within the $v=0$ state, the $J=2 \rightarrow 0$ transition at $28.2 \mu \mathrm{~m}$ is displayed. Also shown is the transition giving the $1-0 \mathrm{~S}(1)$ rovibrational line at $2.12 \mu \mathrm{~m}$. Note that two different energy scales are used.

CO molecules

- Simple and most abundant next to H_{2}
- Strong $\mathcal{E}_{\text {dissociation }}=11.16 \mathrm{eV} ; \mathrm{C} \equiv 0$, strongest bond among neutral molecules, self-shielding against stellar UV field
- with a permanent electric dipole moment; radiating strongly at radio frequencies.
- ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ easiest to detect; isotopes ${ }^{13} \mathrm{C}^{16} \mathrm{O},{ }^{12} \mathrm{C}^{18} \mathrm{O},{ }^{12} \mathrm{C}^{17} \mathrm{O},{ }^{13} \mathrm{C}^{18} \mathrm{O}$ useful as diagnosing tools
- Low critical density for excitation \rightarrow CO used to study large-scale distribution of clouds, as a tracer of $\mathrm{H}_{2}, n(\mathrm{CO}) \approx 10^{-4} n\left(\mathrm{H}_{2}\right)$

$$
\begin{aligned}
& n_{N H_{3}}^{*} \approx 10^{3} \mathrm{~cm}^{-3} \\
& n_{H C N}^{*} \approx 10^{5} \mathrm{~cm}^{-3}(\text { for } J=1 \rightarrow 0)
\end{aligned}
$$

- ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ almost always optically thick; so its brightness temperature \approx molecular gas kinetic temperature, i.e., little dependence on column density
- Lines from rarer isotopes usually optically thin
\rightarrow estimate of column density (total mass) of molecular gas $N_{H}=10^{6} N_{13}{ }_{c o}$

Intensity ratios of optically thin lines from different J levels
\rightarrow excitation temperature

Figure 5.6 Rotational levels of ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ within the ground $(v=0)$ vibrational state. The astrophysically important $J=1 \rightarrow 0$ transition at 2.60 mm is shown.

Rotational spectra of molecules toward Orion KL, including

 "U"nidentified lines

- H atoms, $g_{n}=2 n^{2}$ (i.e, for the n-th electronic energy state, there are n^{2} orbital angular momentum states; 2 electron spin states

Two hyperfine energy states, $g_{\mathrm{U}}=3, g_{\mathrm{L}}=1$

- For linear molecules (e.g., CO) rotation, $g=2 J+1, J$ is the angular momentum quantum number.

Molecules in stars

Stellar matter largely gas or plasma; molecules form primarily below 6000 K , but only OB stars do not contain molecules.

Absorption band spectra, e.g., due to $\mathrm{MgH}, \mathrm{CaH}, \mathrm{FeH}, \mathrm{CrH}, \mathrm{NaH}$, $\mathrm{OH}, \mathrm{SiH}, \mathrm{VO}$, and TiO. Others include CN CH, MgF, NH, C2, SrF, zirconium monoxide, YO, ScO, BF, etc.
NH_{3} and collision-induced absorption by H_{2} in brown dwarfs

Fig. 2.-Spectra of those sources in which CO band head emission was detected. Linear baselines have been subtracted from each spectrum. The positions of the band heads are indicated at the top of the figure. Vertical scale marks are separated by $2 \times 10^{-17} \mathrm{~W} \mathrm{~cm}{ }^{-2} \mu \mathrm{~m}^{-1}$. Noise levels are indicated on the short wavelength data points.

CO band heads in the Becklin-Neugebauer (BN) object --- an infrared-emitting, embedded, massive protostar

Figure 5.8 Near-infrared spectrum of the BN object in Orion, shown at three different observing times. The relative flux is plotted against the wave number k, defined here as $1 / \lambda$.

Figure 5.9 High-resolution near-infrared spectrum of the embedded stellar source SSV 13. The structure of the $v=2 \rightarrow 0$ band head in ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ is evident. The smooth curve is from a theoretical model that employs an isothermal slab at 3500 K . Note that the spectrum here represents only a portion of the R-branch.

Effect of the new $\mathrm{H}_{2}-\mathrm{H}_{2}$ and $\mathrm{H}_{2}-\mathrm{He}$ CIA opacity on synthetic spectra of brown dwarfs. The spectra shown are cloudless models with $T_{\text {eff }}=$ 1500,1000 , and 500 K , with $\log g=$ 5 (cgs) and solar metallicity. The spectra computed with the new CIA opacities are shown in blue. The red lines show spectra computed with the older CIA opacity and the same (T, P) structures. The fluxes are calculated for $d=10 \mathrm{pc}$ and are displayed at a resolving power of $R=500$.

[^0]: ${ }^{1}$ Data from Wiese, Smith, and Glennon (1966).

