
Institute of Astronomy, National Central University

PHD QUALIFYING EXAMINATION 2021 — STELLAR ASTROPHYSICS

1. [TOTAL: 20%] Stellar Temperature and Magnitude:

Assume a star exhibits the strongest Balmer absoprtion lines in its spectrum when compared to the spectra taken from other stars, and this star has a measured radius of $2R_{\odot}$.

- (a) What are Balmer lines? [2%]
- (b) What is the corresponding effective temperature for this star? [3%]
- (c) Taking the surface temperature of the Sun as $T_{\odot} = 6000K$, then what is the luminosity of this star in Solar unit L_{\odot} ? [3%]
- (d) The bolometric magnitude for the Sun is $M_{\odot,\text{bol}} = 4.74$, then what is the absolute bolometric magnitude of this star? [3%]
- (e) Using the provided Figure, estimate the absolute V-band magnitude of this star. [3%]
- (f) If the observed V-band magnitude and color excess of this star is $m_V = 8.0$ mag and E(B-V) = 0.2, then what is the distance to this star? [3%]
- (g) Assume that there is a nearby faint star around this star such that our small telescope cannot resolved both stars. From observations with our small telescope we measured the V-band magnitude of this star is $m_V = 7.8$ mag, then what is the V-band magnitude of the faint (and unresolved) star? [3%]

2. [TOTAL: 20%] Massive Stars vs Low-Mass Stars:

List out 5 differences between a $50M_{\odot}$ star and a $1M_{\odot}$ star, from their internal structure to their evolution (each 4%). No "extra" points will be given if there are more than 5 differences being listed.

3. [TOTAL: 10%] Binary Stars:

Binary stars are important for measuring the physical quantities of stars. Explain how to use eclipsing binaries to measure the mass $(M_1 \text{ and } M_2)$ and radius $(R_1 \text{ and } R_2)$ for both stars, such as the equations involved, what observational data are needed, and etc. 5% each for the mass and radius.

Constants

Speed of light	$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$
Gravitational constant	$G = 6.67 \times 10^{-11} \mathrm{m^3 kg^{-1} s^{-2}}$
Planck constant	$h = 6.63 \times 10^{-34} \mathrm{Js}$
Boltzmann constant	$k = 1.38 \times 10^{-23} \mathrm{J}\mathrm{K}^{-1}$
Electron volt	$1 \mathrm{eV} = 1.60 \times 10^{-19} \mathrm{J}$
Stefan-Boltzmann constant	$\sigma = 5.67 \times 10^{-8} \mathrm{J m^{-2} s^{-1} K^{-4}}$
Radiation constant	$a = 7.56 \times 10^{-16} \mathrm{J}\mathrm{m}^{-3}\mathrm{K}^{-4}$
Avogadro constant	$N_A = 6.02 \times 10^{23} \mathrm{mol}^{-1}$
Atomic mass unit	$m_H = 1.66 \times 10^{-27} \mathrm{kg}$
electron mass	$m_e=9.11\times 10^{-31}\mathrm{kg}$
proton mass	$m_p = 1.6726 \times 10^{-27} \mathrm{kg}$
neutron mass	$m_n = 1.6749 \times 10^{-27} \mathrm{kg}$
helium-4 nucleus mass	$m_{He4} = 6.643 \times 10^{-27} \mathrm{kg}$
hydrogen atom mass	$1.674 imes 10^{-27} \mathrm{kg}$
helium-3 atom mass	$5.009 imes 10^{-27} \mathrm{kg}$
helium-4 atom mass	$6.648 imes 10^{-27} \mathrm{kg}$
ideal gas constant	$\mathcal{R} = 8.31 \times 10^3 \mathrm{J kg^{-1} K^{-1}}$
Solar mass	$M_\odot = 1.99 imes 10^{30} \mathrm{kg}$
Solar radius	$R_\odot = 6.96 \times 10^8 \mathrm{m}$
Solar luminosity	$L_{\odot} = 3.85 \times 10^{26} \mathrm{J s^{-1}}$
Earth mass	$M_\oplus = 5.98 \times 10^{24} \mathrm{kg}$
Earth radius	$R_{\oplus} = 6.38 \times 10^6 \mathrm{m}$
Astronomical unit	$1 \mathrm{AU} = 1.50 \times 10^{11} \mathrm{m}$
π	$\pi = 3.14$
cal and J	$1 \operatorname{cal} = 4.2 \operatorname{J}$

- 4 (20%) (a) What is the approximate temperature at the core of the Sun? Provide two pieces of observational evidence to support this. (b) A hypothetical star has a density profile varying linearly from the core, ρ_0 at radius r = 0, to the surface, $\rho \rightarrow 0$, at r = R. Estimate the total mass, central pressure, and central temperature of the star.
- 5 (10%) (a) What is the typical Fermi temperature of a white dwarf?(b) Derive qualitatively the mass-radius relation for white dwarfs.
- 6 (20%) Explain each of the following terms succinctly:
 - (1) Chandrasekhar-Schönberg limit; (2) Roche limit;
 - (3) Diffraction limit; (4) Eddington limit; (5) Kramers opacity;
 - (6) Gaunt factor; (7) Color excess; (8) Infrared excess; (9) Jeans mass;
 - (10) Gray atmosphere