Introduction to Astronomy

HW140303

1. How far away is a star that has a proper motion of 0.08 arcseconds per year and a tangential velocity (proper motion) of $40 \mathrm{~km} / \mathrm{s}$? For a star at this distance, what would its tangential velocity have to be in order for it to exhibit the same proper motion as Barnard's star?

A: The relation of the proper motion (μ, in unit of arcsec/yr), tangential velocity (v, in unit of AU/yr), and distance (d, in unit of pc) is as shown,

$$
d \mu \approx v
$$

Here $v=40 \mathrm{~km} / \mathrm{s}=40 \mathrm{~km} / \mathrm{s} \times 3 \times 10^{7} \mathrm{~s} / \mathrm{yr} / 1.5 \times 10^{8} \mathrm{~km} / \mathrm{AU}=8 \mathrm{AU} / \mathrm{yr}$
(a) $\mathrm{So}, d=8 \mathrm{AU} / \mathrm{yr} / 0.08 " / \mathrm{yr} \sim 100[\mathrm{pc}]$
(b) The proper motion of Barnard's star in RA and Declination is $\mu_{\alpha}=-0.799 " / \mathrm{yr}$, and $\mu_{\delta}=10.338 " / \mathrm{s}$ (http://en.wikipedia.org/wiki/Barnard's_Star), yielding the total motion on the sky $\mu=10.369$ " $/ \mathrm{yr}$. So now $v=d \mu=1036.9 \mathrm{AU} / \mathrm{yr}=5184 \mathrm{~km} / \mathrm{s}$.

