Collisional Processes

- Long range interaction --- between ions/electrons and ions/electrons; Coulomb 1/*r*
- Intermediate range interaction --- between ions/electrons and neutral atoms/molecules; Induced dipole 1/r⁴
- Short range interaction --- between neutrals, $1/r^6$

In general, for a two-body collision,

A + B \rightarrow Products, the reaction rate per unit volume = $n_A n_B < \sigma v >_{AB}$, where the rate coefficient is

$$<\sigma v>_{AB}=\int_0^\infty \sigma_{AB} v f(v) dv \ [cm3 s-1]$$

v = relative velocity between A and B $\sigma_{AB}(v) =$ reaction cross section; velocity depedent f(v) = velocity distribution function In thermal equilibrium

$$f_v \, dv = 4\pi \left(\frac{\mu}{2\pi kT}\right)^{3/2} e^{-\mu v^2/2kT} \, v^2 \, dv$$

In terms of energy

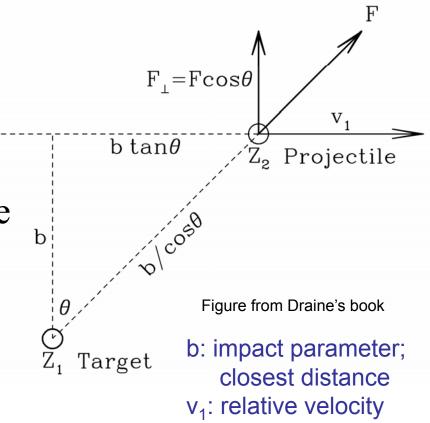
$$\langle \sigma v \rangle_{AB} = \left(\frac{8kT}{\pi\mu}\right)^{1/2} \int_0^\infty \sigma_{AB}(E) \frac{E}{kT} e^{-E/kT} \frac{dE}{kT}$$

If the density is high, e.g., in the Earth's atmosphere, three-body collision may become important,

 $A + B + C \rightarrow$ Products,

the reaction rate per unit volume = $k_{ABC} n_A n_B n_C$ where k_{ABC} is the three-body collisional rate coefficient [cm⁶ s⁻¹] Elastic scattering by an inversesquare force, e.g., Rutherford scattering

Exact solutions complicated; use the "**impact approximation**", i.e., motion in a straight line



Assumption: constant velocity during the encounter between the target and the projectile

Question: How much momentum is transferred (\perp direction)?

Impact Approximation

Coulomb force

$$F_{\perp} = \frac{Z_1 e Z_2 e}{(b/\cos\theta)^2} \cos\theta = \frac{Z_1 Z_2 e^2}{b^2} \cos^3\theta$$

Interaction time scale $dt = \frac{d(b \tan \theta)}{v_1} = \frac{b}{v_1} \frac{d\theta}{\cos^2 \theta}$

Total momentum transfer is

$$\Delta p_{\perp} = \int_{-\infty}^{\infty} F_{\perp} dt = \frac{Z_1 Z_2 e^2}{b v_1} \int_{-\pi/2}^{\pi/2} \cos \theta \, d\theta$$
$$= \frac{2Z_1 Z_2 e^2}{b v_1} \approx \frac{Z_1 Z_2 e^2}{b^2} \frac{b}{v_1}$$
Force at closest distance Time scale

In a collisional ionization, there must be enough momentum transfer. $(E=p^2/2m)$ Fast moving \rightarrow (1/2) m_e v² >> E_I

e⁻

⊕

$$(\Delta P_{\perp})^{2} > 2mE_{I} \Rightarrow (\frac{2Z_{1}Z_{2}e^{2}}{bv_{1}})^{2} > 2mE_{I}$$

So,
$$b^{2} < b_{\max}^{2}(v) = \frac{(2Z_{1}Z_{2}e^{2})^{2}}{v_{1}^{2} \cdot 2mE_{I}} = \frac{2Z_{p}^{2}e^{4}}{m_{e}v^{2}E_{I}}$$

and the ionization cross section becomes

$$\sigma(v) \approx \pi b_{\max}^2 = \frac{2\pi Z_p^2 e^4}{m_e v^2 E_I}$$
 This is ok if $v\uparrow\uparrow$.

For
$$v_{\min} = \frac{1}{2} m_e v_{\min}^2 = E_I$$

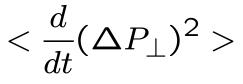
 $< \sigma v > = \int \sigma(v) v f(v) dv$
 $= \int_{v_{\min}}^{\infty} \frac{2\pi Z_p^2 e^4}{m_e v^2 E_I} v 4\pi \left(\frac{m_e}{2\pi kT}\right)^{3/2} v^2 e^{-m_e v^2/2kT} dv$
 $= Z_p^2 \left(\frac{8\pi}{m_e kT}\right)^{1/2} \frac{e^4}{E_I} e^{-E_I/kT}$

For an H atom at level n, $E_{\rm I} = 13.6 \,[{\rm eV}]/n^2$, so for a large n, e.g., $n \sim 100$, and $T \sim 10^4$ K, $E_{\rm I} \downarrow \downarrow (<< kT)$ \rightarrow in radio frequencies.

$$<\sigma v> \propto rac{1}{E_I} \propto n^2$$
, so is very large.

Deflection Timescale

Net momentum transfer



 $L_D \begin{pmatrix} e^{-} & e^{-} \\ p^{+} & e^{-} \end{pmatrix}$

There must be a range of distance, for which $b_{\rm min}=Z_1Z_2e^2/{\rm Energy}$, and $b_{\rm max}\approx L_D$ (Debye length)

In plasma, the distributions of ions and electrons are correlated because of charge neutrality.

Near a proton \rightarrow more electrons than protons \rightarrow the proton is "shielded"

Average charge within a region $\langle Q(L_D) \rangle = -e$

$$L_D = \left(\frac{kT}{4\pi n_e e^2}\right)^{1/2} = 690 \ T_4^{1/2} \left[\frac{n_e}{\text{cm}^-3}\right]^{-1/2} \text{ [cm]}$$

$$< rac{d}{dt} (\Delta P_{\perp})^2 > \propto rac{n_2}{v_1} \, \ln \Lambda$$

So Λ is large, $\equiv b_{\rm max}/b_{\rm min} \approx 20 - 35$ in ISM conditions.

 \Rightarrow For elastic scattering of electrons by ions, weak distant encounters (>> atomic scales) more important than close encounters. If an electron comes in in \approx atomic dimensions, the atom is

suddenly perturbed \rightarrow transision

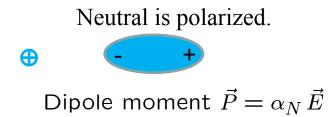
 \rightarrow deexcitation \rightarrow line radiation

$$<\sigma v>_{10}=rac{8.629 imes 10-8}{\sqrt{T_4}}\,rac{\Omega_{10}}{g_1}\,[{
m cm}^3\,{
m s}^{-1}]$$

where Ω_{10} is collision strength.

(i) almost independent of T for $T < T_4 = 10^4$ K (ii) $1 < \Omega_{10} < 10$

Ion-Neutral Collisions



Interaction potential

$$U(r) = -\frac{1}{2}\alpha_N \, \frac{Z^2 e^2}{r^4} \propto r^{-4}$$

where α_N is **polarizability** \approx a few a_0 . $a_0 = \text{Bohr radius} \equiv \frac{\hbar^2}{m_e e^2} = 5.292 \times 10^{-9} \text{ [cm]}$

For such a potential, if b < b b_0 , the deflection cross section is large. $\sigma = \pi b_0^2 \propto 1/v$, and the rate coefficient $\langle \sigma v \rangle \not\leftrightarrow T$ $b = 1.2b_{0}$ $b = 1.1b_{0}$ b=0.999b Usually if T \uparrow , $\sigma \downarrow$ Trajectories in r^{-4} Potential

The ion-neutral reactions are important in <u>cool</u> ISM.

Electron-Neutral Collisions

In low-ionization ISM (e.g., protoplanetary disks) ions are rare. e^{-} -neutral (H₂, He) scattering is important.

e⁻-H₂ scattering (1) If E < 0.044 eV → pure elastic scattering (2) If E > 0.044 eV → rotational excitation possible (3) If E > 0.5 eV → vibrational excitation possible (4) If E > 11 eV → electronic excitation

By experiment
$$\sigma \simeq 7.3 \times 10^{-6} \left(\frac{E}{0.01 \text{ eV}}\right) \text{ [cm}^2\text{]}$$

and
$$<\sigma v>\simeq 4.8 \times 10^{-9} \left(\frac{T}{10^2 \text{K}}\right)^{0.68} [\text{cm}^3 \text{s}^{-1}]$$

Neutral-Neutral Collisions

Repulsive if distance ↓ Weakly attractive if distance ↑ ∵ van der Waals interactions (mutual induced electric dipole)

 $U(r) \propto r^{-6}$

Hard sphere OK; radii $R \sim 1\text{\AA}$ $b < R_1 + R_2 \ \sigma = \pi (R_1 + R_2)^2 \sim 1.2 \times 10^{-15} [\text{cm}^2]$

$$<\sigma v>=1.81 imes 10^{-10} \left(rac{T}{10^2 \mathrm{K}}
ight)^{1/2} \left(rac{m_H}{\mu}
ight)^{1/2} \left(rac{R_1+R_2}{2 \mathrm{\AA}}
ight)^2 \left[\mathrm{cm}^3 \mathrm{s}^{-1}
ight]$$

Collision

Gas (hydrogen atoms) root-mean-squared speed $m_H\sqrt{\langle v^2 \rangle} = 3kT$ For H I regions, $T \sim 100$ K, $\langle v \rangle_{HI} \sim 1$ km s⁻¹ For e^- , $\langle v \rangle_{e^-} \sim 50$ km s⁻¹

Cross sections σ

• Hard sphere OK for neutral atoms, $\sigma = \pi (a_1 + a_2)^2$ i.e., 'physical' cross section

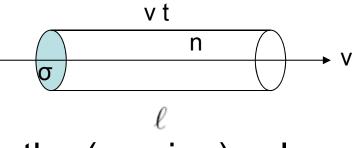
 $\sigma_{\rm HI,HI} \leftarrow a \sim 5.6 \times 10^{-9} {\rm cm}$

c.f., Bohr radius (first orbit) = 5.3×10^{-9} cm

Cross sections σ

 $\sigma >> \sigma_{\rm physical}$ because of Coulomb force, need QM $a \sim \frac{2.5 \times 10^{-2}}{v^2}$ cm (*v* in km) If $v_{e^-} \sim 50 \text{ km s}^{-1}$, $a \sim 10^{-5} \text{ cm for } e^- e^-$ collision $T = 3 \times 10^4 \text{ K}, < v > \sim 10^3 \text{ km s}^{-1}$ $\longrightarrow a \sim 2.5 \times 10^{-8} \text{ cm}$ c.f., classical electron radius $\sim 2.8 \times 10^{-13}$ cm Conventional unit for cross section $\frac{e^2}{r_0} = m c^2$ $1 \text{ barn} = 10^{-24} \text{ cm}^2$ $\sigma_{\rm HI,HI} = \sim 10^8 \text{ barns} (\sim 10^{-16} \text{ cm}^2) \quad r_0 = \frac{e^2}{mc^2} \sim 2.8 \times 10^{-13} \text{ cm}$

Collision



of collisions = # of particles in the (moving) volume $N = n\sigma v t$

of collisions per unit time = $N/t = n \sigma v$

Time (mean-free time) between 2 consecutive collisions (N=1) = $t_{\text{collision}} = \frac{1}{n \sigma v}$

Mean-free path $\ell = vt_{\text{collision}}, \text{ i.e.}, \ell = \frac{1}{n \sigma}$

Ex 1 $n_{\rm HI} \sim 10 \text{ cm}^{-3}$; $v_{\rm HI} \sim 1 \text{ km s}^{-1}$; $\sigma_{\rm HI,HI} \sim 10^{-16} \text{ cm}^2$ $t_{\rm HI,HI} \sim 10^{10} \text{ s} \sim 300 \text{ years}$ $\ell \sim 10^{15} \text{ cm} \sim 100 \text{ AU}$

. Collisions are indeed very rare.

Ex 2
$$\sigma_{e^-,HI} \sim 10^{-15} \text{ cm}^2 \text{ (polarization)}$$

 $t_{e^-,HI} \sim \frac{1}{10 \times 10^{-15} \times 10^5} \sim 30 \text{ years}$
Ex 3 $\sigma_{e^-,e^-} \sim 10^{-12} \text{ cm}^2; n_e \sim 0.2 \text{ cm}^{-3}$
 $t_{e^-,e^-} \sim \frac{1}{0.2 \times 10^{-12} \times 50 \times 10^5} \sim 10 \text{ days}$