Emission and Absorption

Two ways to decay from an excited state

1. X, > X, +hv
spontaneous emission
occurrence rate «» atomic properties

2. X,+hv—> X +2hv
stimulated emission
occurrence rate «» density of incoming
photons of the same v, polarization, and
direction of propagation
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Transition Probability

Considering a 2-level system., we want to calculate the
O J
emission arising from this transition,
Assuming j 0
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Asy: transition probability (per unit time) ~ 1071° s
for HI 21 cm line



Energy absorbed in a line [ergs s~ cm™ ster ™!

/H,, l,dv ~ 1, /H,, dv

This is valid for a sharp line, i.e., x, &~ ¢ function

Emission probability: A

Absorption probability: Bu, = B %
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In equilibrium, detailed balance
(equal probabilities) gives
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If this is to hold true for any T, the [eM/kT —1]
term must cancel out, i.e.,

g1 B1o = g2 Boj

and

8t hv3
c3

Apq = B21

In fact, the Einstein coefficients are properties of atoms,
so the relations hold whether 1t 1s TE or not.



1Line Shapes

Natural broadening: uncertainty principle

Doppler broadening: random thermal velocities of
particles

Pressure broadening: interruption of radiation train
(usually not important in ISM)

Opacity broadening: photons at the line wings have
smaller reabsorption probabilities than those near the
line center (line-of-sight effect)

Width



Lorentzian Profile
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Also known as the Cauchy probability distribution; the
solution of the differential equation describing forced
resonance.

The Lorentzian profile = an accurate approximation to the

actual line profile; more accurately by the Kramers-
Heisenberg formula.



Doppler Profile

Emitted light 1y shifted to v due to v.
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Natural Broadening
Described by the Lorentzian profile

Line very narrow; usually an order of magnitude or
less than other effects, e.g., intensity drops to 2% of
peak at 0.003 A from line center

2 v <> A, where 1/A = time 1n the upper level
(uncertainty principle AE At <h, 1.e., hAv (1/A) <h)

At optical frequencies (v ~ 101°) a typical strong line has
A~108st  — Av/iv~107



The nature width can be expressed in terms of the line-of-
sight velocity, so as to compare with Doppler width, for
example:

intrinsic
. (Av)RwHM _ A21721

intrinsic __
(Av)REWHM =
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the natural width for H Ly a, hv = (3/4) 13.6 ¢V, {,,=0.4162,
g,/g,=2/6, so the intrinsic (A v) =0.0121 km s-!
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0 Convolution of a Doppler profile (= Gaussian) and a
Lorentzian profile (Gaussian core + Lorentzian wings)

0 The Doppler profile is more strongly peaked

O Away from the line center (i.e., | v-v, | 1T = wings),
Lorentzian 1

[0 Gaussian core: FWHM=2.3556 ¢



Pressure (collisional)
Broadening

® Profile similar to Lorentzian, with width 1/t

where 7, 1s the mean time interval between collisions,
which in the ISM 1s about 1000 years

—> narrower even than the natural broadening

® Pressure broadening therefore 1s not important in the
ISM but important in stellar atmosphere where
collisions are frequent.



hv (nyBias — naBay)

The damping profile K, = ; b,
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Computation of b's 1s not trivial.

If hv >> k7" stimulating emission 1s negligible.



Define o, the absorption cross section per particle
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Under some conditions, the upper level may be “pumped”
(by collision or by radiative excitation of a higher level
followed by a decay).

If pumping more rapid than depopulation
2> nNn,/n,>4g,/g, (excitation temperature, T,, <0)
This is called a population inversion = stimulated

emission is stronger than absorption = radiation
ampl Ified. laser=Light Amplification by the Stimulated Emission of Radiation

Such inversions have been observed in microwave
transitions of H I, OH, and S10 (maser) (Elitzur 1992 ARAA)

Maser sources can be very bright = motion measured

by interferometry, e.g., Galactic SFRs, or supermassive
black hole in NGC 4258 (Herrnstein et al 1999)



