Radiative Transfer

$$
I_{v}(v, \boldsymbol{n}, \boldsymbol{r}, t) d v d \Omega
$$

Specific Intensity (or Brightness, Fluence)

$I_{\nu}\left[\mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2}\right.$ ster $\left.^{-1} \mathrm{~Hz}^{-1}\right]$
$\Delta E=I_{\nu} d A d t d \Omega d \nu$
The EM power per unit area, with frequencies in $[v, v+d v]$ propagating in direction \boldsymbol{n} within the solid angle $d \Omega$, including both polarizations.

Because $\Delta \omega \rightarrow 0$, the energy does not diverge. Intensity/brightness is independent of the distance from the source (i.e., light ray).

Mean Intensity $J_{\nu}=\frac{1}{4 \pi} \int I_{\nu} d \Omega$
Net Flux $F_{\nu}\left[\mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1}\right]$
$F_{\nu}=\int I_{\nu} \cos \theta d \Omega$
Total Flux $F=\int F_{\nu} d \nu$
Thermodynamic equilibrium = no net matter or energy flow into a system

Two systems in thermal equilibrium when T the same
Two systems in mechanical equilibrium when P the same
Two systems in diffusive equilibrium when μ chemical potentials the same

Momentum Flux

For photons, $d p_{\nu}=d F_{\nu} / c$
$p_{\nu}\left[\right.$ dynes $\mathrm{cm}^{-2} \mathrm{~Hz}^{-1}=\frac{1}{c} \int I_{\nu} \cos ^{2} \theta d \Omega$
Momentum Flux Rate $=$ Pressure

$$
P=[\text { force }] /[\text { area }]=m \cdot a_{\perp} / \text { area }=m \frac{d v_{\perp}}{d t} / \text { area }=\frac{d p_{\perp}}{d t d A}
$$

Energy Density

$u_{\nu}\left[\mathrm{ergs} \mathrm{cm}{ }^{-3} \mathrm{~Hz}^{-1}\right]=\frac{1}{c} \int I_{\nu} d \Omega=\frac{4 \pi}{c} J_{\nu}$
Total Energy Density $u=\int u_{\nu} d \nu=a T^{4} \quad$ Stefan-Boltzmann law

$$
a=\frac{4 \sigma}{c}=7.56 \times 10^{-15} \mathrm{ergs} \mathrm{~cm}^{-3} \mathrm{~K}^{-4}
$$

Radiation Pressure

Each quantum of energy, $E=h v$, there is associated a momentum $h v / c$
Radiation pressure \rightarrow net rate of momentum transfer
(cf. gas pressure)
Radiation passing per second through a unit area at an angle with the normal, in a solid angle $d \omega$ is $I \cos \theta d \omega$
\rightarrow Momentum transfer $=(I \cos \theta d \omega / c) \cos \theta$
$\therefore P_{R}=\frac{2}{c} \int I \cos ^{2} \theta \mathrm{~d} \omega$
$\underset{\text { Chap 4 Radrans }}{\text { For isotropic radiation, } P_{R}=\frac{4 \pi I}{3 c}=u / 3=a T^{4} / 3}$

Blackbody Radiation

$$
B_{v}(\mathrm{~T}) d v=\frac{2 h v^{3}}{c^{2}} \frac{1}{e^{h v / k T}-1} d v \quad \text { (Planck's law) }
$$

$\underline{\text { Energy density }} u(v, T) d v=\frac{4 \pi}{c} I=\frac{8 \pi h}{c^{3}} \frac{v^{3}}{e^{h v / k T}-1} d v$
Total Energy $u=\int u(v, T) d v, u=a T^{4}$ (Stefan-Boltzmann law)
In terms of wavelength,

$$
|d v|=c \frac{d \lambda}{\lambda^{2}}
$$

$$
B_{\lambda}(\mathrm{T}) d \lambda=\frac{2 h c^{2}}{\lambda^{5}} \frac{1}{e^{h c / \lambda k T}-1} d \lambda
$$

(Planck's law)

When $h v / k T \gg 1$

$$
B_{v}(\mathrm{~T}) d v \approx \frac{2 h v^{3}}{c^{2}} e^{-h v / k T} d v \quad \text { (Wien approximation) }
$$

When $h v / k T \ll 1$, (long wavelength or high temperature, valid in almost all radio regimes in astronomical conditions)

$$
\begin{array}{r}
B_{v}(\mathrm{~T}) d v \approx \frac{2 h v^{3}}{c^{2}} \frac{k T}{h v} d v=\frac{2 k T}{c^{2}} v^{2} d v=\frac{2 k T}{\lambda^{2}} d v e^{x} \approx 1+x+\cdots \\
\quad \text { (Rayleigh-Jeans approximation) }
\end{array}
$$

Because $B_{v} \propto T$, radio astronomy \rightarrow brightness temperature ... $T_{\text {antenna }}, T_{\text {noise }}$ etc. ... even if radiation is not thermal.

Absorption

Consider radiation through a slab of thickness $d x$, the intensity is reduced by an amount

$$
d I_{v}=-\kappa_{v}^{\prime} \rho I_{v} d s \ldots \ldots \ldots \ldots \ldots . .(1)
$$

Absorption coefficient $\kappa_{\nu}\left[\mathrm{cm}^{-1}\right]$
$d I_{\nu}=-\kappa I_{\nu} d s$
or $\kappa_{\nu}^{\prime}\left[\mathrm{cm}^{2} \mathrm{~g}^{-1}\right] \rightarrow$ mass absorption coefficient

This is opacity, i.e., what causes absorption lines.
Dividing (1) by I_{v} and integrating
$\rightarrow \ln I_{v}=-\kappa_{v} I_{v} s+$ const

$$
I_{\nu}=I_{v}^{0} e^{-\kappa_{v} s}
$$

Introducing (dimensionless) optical depth τ,

$$
d \tau_{v}=-\kappa_{v} d s
$$

$\operatorname{Or} \tau_{v}=\int_{S_{0}}^{s} \kappa_{v}\left(s^{\prime}\right) d s^{\prime}$ we get $\quad I_{v}=I_{v}^{0} e^{-\tau_{v}}$

Optical thickness:
$\checkmark \tau_{v} \gg 1 \rightarrow$ optically thick $=$ opaque
$\checkmark \tau_{v} \ll 1 \rightarrow$ optically thin $=$ transparent
$\tau_{v} \equiv 1 \rightarrow$ "surface", $1 / e$ (37\%) of emerging radiation
When $\kappa_{v}^{\text {abs }}$ and $\kappa_{v}^{\text {sca }}$ are independent of v, the opacities are gray. Why is the sky blue? Why is a cloudy sky gray?

Emission

$j_{v} d t d V d \omega d v=$ Energy emitted
$\kappa_{v} I_{v} d t d V d \omega d v=$ Energy absorbed
Spontaneous emission coefficient $=$ Emissivity

$$
\begin{aligned}
& j_{\nu}\left[\operatorname{ergs~s}^{-1} \mathrm{~cm}^{-3} \text { ster }^{-1} \mathrm{~Hz}^{-1}\right] \\
& d I_{\nu}=j_{\nu} d s, \hat{s} \text { along the line of sight }
\end{aligned}
$$

Radiative Transfer Equation

$$
\frac{d I_{v}}{d s}=-\kappa_{v} I_{v}+j_{v}
$$

How specific intensity varies with emission and absorption by a medium

If there is scattering \rightarrow radiation in and out of the solid angle \rightarrow an integrodifferential equation, solution complex

$$
\frac{d I_{v}}{d \tau_{v}}=-I_{v}+\frac{j_{v}}{\kappa_{v}}=-I_{v}+S_{v}
$$

$$
\tau_{v}(s)=\int_{s_{0}}^{s} \kappa_{v}\left(s^{\prime}\right) d s^{\prime}
$$

$$
S_{v} \equiv \frac{j_{v}}{\kappa_{v}} \text { is the source function. }
$$

This equation is used more often, because S_{v} is a simpler function of physical quantities, and τ_{v} is more intuitive (dimensionless). ${ }^{10}$
(1) $\kappa_{v}=0$ (emission only)

$$
I_{v}(s)=I_{v}\left(s_{0}\right)+\int_{s_{0}}^{s} j_{v}\left(s^{\prime}\right) d s^{\prime}
$$

Increase in brightness equals to the emission coefficient integrated along the line of sight.
(2) $j_{v}=0$ (absorption only)

$$
I_{v}(s)=I_{v}\left(s_{0}\right) \exp \left[-\int_{s_{0}}^{s} \kappa_{v}\left(s^{\prime}\right) d s^{\prime}\right]
$$

Brightness decreases exponentially by the absorption coefficient integrated along the line of sight.
(3) In general

$$
\frac{d I_{v}}{d \tau_{v}}=-I_{v}+S_{v}
$$

$$
I_{v}\left(\tau_{v}\right)=I_{v}(0) e^{-\tau_{v}}+\int_{0}^{\tau_{v}} \frac{j_{v}}{\kappa_{v}} e^{\tau_{v}^{\prime \prime}} d \tau_{v}^{\prime \prime}
$$

If ${ }^{j_{\nu}} / \kappa_{v}=$ const (not valid in ISM but OK in stellar atmosphere), then

$$
I_{v}\left(\tau_{v}\right)=I_{v}(0) e^{-\tau_{v}}+\frac{j_{v}}{\kappa_{v}}\left(1-e^{-\tau_{v}}\right)
$$

In LTE, $d I_{v} / d \tau=0 \rightarrow I_{v}=j_{v} / \kappa_{v}$ and $I_{v}=B_{v}(T) \frac{d I_{v}}{d \tau_{v}}=-I_{v}+S_{v}$

$$
j_{v}=B_{v} \kappa_{v} \text { (Kirchhoff's law) cf Kirchhoff's circuit law }
$$

Finally

$$
I_{v}\left(\tau_{v}\right)=I_{v}(0) e^{-\tau_{v}}+B_{v}(T)\left(1-e^{-\tau_{v}}\right)
$$

Note: Assumptions of (1) LTE, and (2) $T=$ const
Here T is the electron temperature, T_{e} (ISM)
In radio, intensity \rightarrow brightness temperature, T_{b} (signal)
$I_{v}=\left(2 k v^{2} / c^{2}\right) T_{b}$

$$
I_{v}\left(\tau_{v}\right)=I_{v}(0) e^{-\tau_{v}}+B_{v}(T)\left(1-e^{-\tau_{v}}\right)
$$

In Rayleigh-Jeans regime, $B_{v} \leftrightarrow T_{e}$, and $I \leftrightarrow T$

$$
T_{B}=T_{B}(0) e^{-\tau_{v}}+T_{e}\left(1-e^{-\tau_{v}}\right)
$$

If background is zero $\left(T_{B}(0)=0\right)$, dropping v,

(i) $\tau \gg 1 \rightarrow T_{B} \rightarrow T_{e}$ (measures only the "surface")
(ii) $\tau \ll 1 \rightarrow T_{B} \rightarrow \tau T_{e}$ (measures the entire medium)

$$
I_{v}\left(\tau_{v}\right)=I_{v}(0) e^{-\tau_{v}}+B_{v}(T)\left(1-e^{-\tau_{v}}\right)
$$

What we actually measure is the flux density,

$$
\mathrm{S}_{v} \equiv \int_{\text {source }} I_{v}(\theta, \phi) \cos \theta d \Omega
$$

If the source angular size is small $\ll 1 \mathrm{rad}, \cos \theta \approx 1$,

$$
\mathrm{S}_{v}=\int_{\text {source }} I_{v} \mathrm{~d} \Omega\left[\mathrm{ergs} \mathrm{~s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1}\right]
$$

Integrating over the solid angle subtended by the source,

$$
\mathrm{S}_{v}=\int_{\text {source }}^{\Omega} B_{v}\left(T_{e}\right)\left(1-e^{-\tau_{v}}\right) \mathrm{d} \omega \approx \Omega B_{v}\left(T_{e}\right)\left(1-e^{-\tau_{v}}\right)
$$

$S_{v} \propto$ distance $^{-2}$
spectral luminosity $L_{v}=4 \pi d^{2} S_{v}$
bolometric luminosity $L=\int_{0}^{\infty} L_{v} d v$

1 jansky (a spectral flux density, spectral irradiance)

$$
1 \mathrm{Jy}=10^{-23} \text { ergs s }^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1}=10^{-26} \text { watts } \mathrm{m}^{-2} \mathrm{~Hz}^{-1}
$$

Giant radio solar bursts $10^{8}-10^{9} \mathrm{Jy}$; other strong sources $\sim 10^{4} \mathrm{Jy}$; typically a few Jy; state-of-the-art a few mJy

AB magnitude $=-2.5 \log _{10}\left(\frac{S_{v}}{3631 \mathrm{Jy}}\right)$
$S_{v}^{\mathrm{V}=0}=3953 \mathrm{Jy}$

Exercise

Receiver noise: thermal motion of electron within the electronic circuitry

Thermal noise power per unit frequency from a resistor at temperature T_{N} is $p_{N}=k T_{N}$.

Show that at room temperature $(300 \mathrm{~K}), p_{N} \sim 4 \times 10^{5} \mathrm{Jy}$.

Exercise

Mayer et al (1958) measured an antenna temperature of 0.24 K at a wavelength of 3.15 cm for Mars, which subtended an angle of 18 ". The radio telescope had a beam of 0.116 deg (between two half-power points). Find the equivalent temperature of Mars.

Solution. The radius of the disk of Mars is 9 sec of arc or $9 / 3,600=0.0025^{\circ}$. Hence, the solid angle of the disk is given by

$$
\Omega_{u}=\pi r^{2}=\pi\left(0.0025^{\circ}\right)^{2}=2 \times 10^{-5} \mathrm{deg}^{2}
$$

The beam area Ω_{A} of the antenna is given approximately by (see Chap. 6)

$$
\Omega_{A}=4 / 3(0.116)^{2}=0.018 \mathrm{deg}^{2}
$$

Hence, assuming a constant temperature over the disk, the average equivalent temperature of Mars by this measurement is, from (3-118),

$$
T=T_{A} \frac{\Omega_{A}}{\Omega_{\mathrm{a}}}=0.24 \frac{0.018}{2 \times 10^{-6}}=216 \mathrm{~K}
$$

Radian: unit of a planar angle; $\theta=\operatorname{arc} /$ radius; $2 \pi \mathrm{rad}=360 \mathrm{deg}$

Steradian (sr) : unit of a solid angle; $\Omega=$ area/radius; $4 \pi \mathrm{sr}=$ whole sky
$1 \mathrm{sr}=\left(\frac{180}{\pi}\right)^{2} \approx 3283 \mathrm{deg}^{2}$
Entire sky $\approx 41,253 \mathrm{deg}^{2}$

