Equivalent Width

Line profile $\quad \phi_{\nu}=\frac{I_{c}-I_{\lambda}}{I_{c}}$

$$
W_{\lambda}=\int_{-\infty}^{\infty} \frac{I_{c}-I_{\lambda}}{I_{c}} d \lambda=\int 1-e^{\tau_{\nu}} d \lambda
$$

measures the total absorption (strength) in a line, where I_{c} is the continuum and I_{λ} is the line profile.
W_{λ} has the dimension of λ, e.g., \AA, or $\mathrm{m} \AA$.
In optical and UV $(h \nu \gg k T)$, stimulating emission can be neglected, i.e., $\left(1-e^{h \nu / k T}\right) \rightarrow 1, \sigma_{\nu} \rightarrow \sigma_{0}$

$$
\tau_{\nu}=\kappa_{\nu} d s=n \sigma_{\nu} d s=N \sigma_{\nu}
$$

where N is the column density $\quad \sigma_{\nu}=\left(\frac{\pi e^{2}}{m c}\right) f \phi_{\nu}, \sigma_{\nu} d \nu=\sigma_{\lambda} d \lambda$

$$
\tau_{\lambda}=N\left(\frac{\pi e^{2}}{m c^{2}}\right) f \lambda_{0}^{2} \phi_{\lambda}
$$

(i) For weak lines $\left(\tau_{\lambda} \ll 1\right)$

$$
W_{\lambda}=\int \tau_{\lambda} d \lambda=N \frac{\pi e^{2}}{m c^{2}} f \lambda_{0}^{2} \propto N f
$$

or

$$
\frac{W_{\lambda}}{\lambda}=N \frac{\pi e^{2}}{m c^{2}} f \lambda_{0}=8.85 \times 10^{-13} N f \lambda
$$

where N is in $\left[\mathrm{cm}^{-2}\right]$, and λ in $[\mathrm{cm}]$.
(ii) For strong lines $\left(\tau_{\lambda} \gg 1\right)$

$$
W_{\lambda} \propto \sqrt{N f}
$$

(iii) Intermediate case
$W_{\lambda} \propto \sqrt{\ln N f}$

Figure 9.22 A general curve of growth for the Sun. (Figure from Aller, Atoms, Stars, and Nebulae, Revised Edition, Harvard University Press, Cambridge, MA, 1971.)

