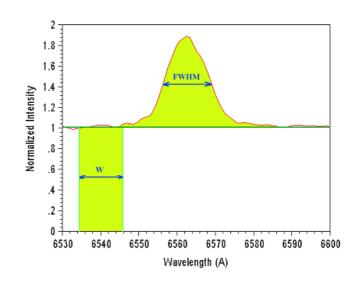
Equivalent Width

$$\phi_{\nu} = \frac{I_c - I_{\lambda}}{I_c}$$

$$W_{\lambda} = \int_{-\infty}^{\infty} \frac{I_c - I_{\lambda}}{I_c} \ d\lambda = \int 1 - e^{\tau_{\nu}} \ d\lambda$$



measures the total absorption (strength) in a line, where I_c is the continuum and I_{λ} is the line profile.

 W_{λ} has the dimension of λ , e.g., Å, or mÅ.

In optical and UV $(h\nu >> kT)$, stimulating emission can be neglected, i.e., $(1 - e^{h\nu/kT}) \to 1$, $\sigma_{\nu} \to \sigma_{0}$

$$\tau_{\nu} = \kappa_{\nu} \, ds = n \sigma_{\nu} \, ds = N \, \sigma_{\nu}$$

where N is the column density $\sigma_{\nu} = (\frac{\pi e^2}{mc}) f \phi_{\nu}, \ \sigma_{\nu} d\nu = \sigma_{\lambda} d\lambda$

$$\tau_{\lambda} = N(\frac{\pi e^2}{mc^2}) f \lambda_0^2 \phi_{\lambda}$$

(i) For weak lines $(\tau_{\lambda} \ll 1)$

$$W_{\lambda} = \int \tau_{\lambda} \ d\lambda = N \frac{\pi e^2}{mc^2} \ f \ \lambda_0^2 \propto N \ f$$

or

$$\frac{W_{\lambda}}{\lambda} = N \frac{\pi e^2}{mc^2} f \lambda_0 = 8.85 \times 10^{-13} \ N f \lambda$$

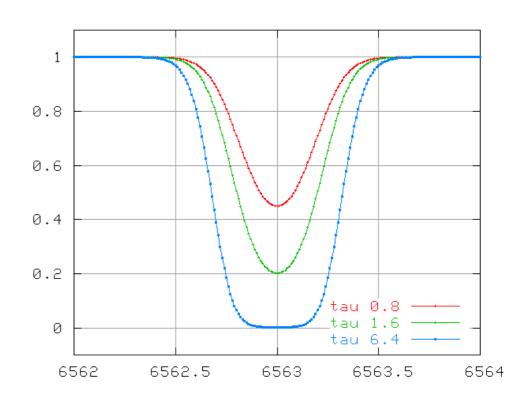
where N is in $[\text{cm}^{-2}]$, and λ in [cm].

(ii) For strong lines $(\tau_{\lambda} \gg 1)$

$$W_{\lambda} \propto \sqrt{N f}$$

(iii) Intermediate case

$$W_{\lambda} \propto \sqrt{\ln N f}$$



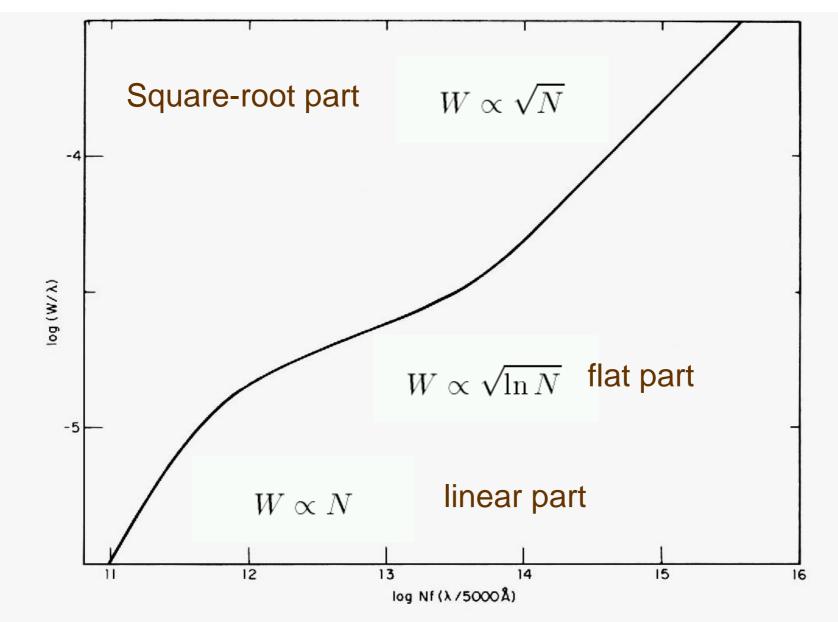


Figure 9.22 A general curve of growth for the Sun. (Figure from Aller, Atoms, Stars, and Nebulae, Revised Edition, Harvard University Press, Cambridge, MA, 1971.)