Excitations

Principle of detailed balance

Consider a 2-level system, excitation occurs if the incoming free electrons have kinetic energy $\frac{1}{2} m v^{2}>\chi$

Define the excitation rate coefficient γ_{01} so that \# of excitation $\mathrm{s}^{-1} \mathrm{~cm}^{-3}\left(=n_{e} n_{0} v \sigma\right) \equiv n_{e} n_{0} \gamma_{01}$ where both n_{e} and n_{0} have units of $\left[\mathrm{cm}^{-3}\right]$.

$$
\gamma_{01} \equiv<\sigma v>=\int_{\chi=\frac{1}{2} m v^{2}}^{\infty} v \sigma_{01}(v) f(\vec{v}) d^{3} \vec{v}
$$

Here σ_{01} is the excitation cross section, and $f(\vec{v})$ is the Maxellian distribution function

$$
f(v ; T) d v=4 \pi\left(\frac{m}{2 \pi k T}\right)^{3 / 2} v^{2} e^{-\frac{m v^{2}}{2 k T}} d v
$$

So
$\gamma_{01}=\frac{4}{\sqrt{\pi}}\left(\frac{1}{2 k T}\right)^{1 / 2} \int_{\chi=\frac{1}{2} m v^{2}}^{\infty} v^{3} \sigma_{01}(v) e^{-\frac{m v^{2}}{2 k T}} d v$

This is the upward transition.

Downward transition:

- spontaneous emission, rate $=n_{1} A_{10}$
- deexcitation by collisions, rate $=n_{1} n_{e} \gamma_{10}$, where $\gamma_{10}=\int_{0}^{\infty} v \sigma_{10}(v) f(v) d v=\gamma_{10}(T)$

Detailed balancing
In steady state, [upwards] $=$ [downwards]

$$
\begin{align*}
& n_{0} n_{e} \gamma_{01}(T)=n 1\left[A_{10}+n_{e} \gamma_{10}(T)\right] \\
& \frac{n_{1}}{n_{0}}=\frac{n_{e} \gamma_{01}}{A_{10}+n_{e} \gamma_{10}}=\frac{\gamma_{01}}{\gamma_{10}} \frac{1}{1+\frac{A_{10}}{n_{e} \gamma_{10}}} \tag{B}
\end{align*}
$$

(i) At high densities, i.e., $\mathrm{n}_{\mathrm{e}} \rightarrow \infty$, (i.e., collisional excitation and deexcitation dominate \rightarrow in TE)

$$
\frac{n_{1}}{n_{0}}=\frac{\gamma_{01}}{\gamma_{10}}
$$

But since $\frac{n_{1}}{n_{0}}=\frac{g_{1}}{g_{0}} e^{-\chi / k T}$,

$$
\frac{\gamma_{01}}{\gamma_{10}}=\frac{g_{1}}{g_{0}} e^{-\chi / k T} \text { for } n_{e} \gg 1
$$

When collision dominates, recall (A),

$$
\begin{aligned}
& n_{e} n_{0} v_{0}^{3} \sigma_{01}\left(v_{0}\right) \exp \left(-\mu v_{0}^{2} / 2 k T\right) d v_{0} \\
& \quad=n_{e} n_{1} v_{1}^{3} \sigma_{10}\left(v_{1}\right) \exp \left(-\mu v_{1}^{2} / 2 k T\right) d v_{1},
\end{aligned}
$$

where μ is the reduced mass, and v_{0}, and v_{1} are relative velocities of the colliding particles.

$$
\begin{aligned}
& \text { Energy: }(1 / 2) \mu v_{0}^{2}=(1 / 2) \mu v_{1}^{2}+\chi, \\
& \text { so } v_{0} d v_{0}=v_{1} d v_{1}
\end{aligned}
$$

Plugging back, we get

$$
\begin{aligned}
n_{0} v_{0}^{2} \sigma_{01} \exp \left(-\frac{\mu v_{0}^{2}}{2 k T}\right) & =n_{1} v_{1}^{2} \sigma_{10} \exp \left(-\frac{\mu v_{1}^{2}}{2 k T}\right) \\
& =\frac{n 0 g_{1}}{g_{0}} e^{-\chi / k T} v_{1}^{2} \sigma_{10} e^{-\frac{\mu v_{1}^{2}}{2 k T}}
\end{aligned}
$$

The exponential parts cancel out from the energy conservation.

$$
g_{0} v_{0}^{2} \sigma_{01}=g_{1} v_{1}^{2} \sigma 10
$$

(ii) At low densities, i.e., $\mathrm{n}_{\mathrm{e}} \rightarrow 0$

upward by collision

$$
\frac{n_{1}}{n_{0}} \rightarrow \frac{\gamma_{01}}{\gamma_{10}} \frac{n_{e} \gamma_{10}}{A_{10}}=\frac{n_{e} \gamma_{01}}{A_{10}} \longleftarrow \underset{\substack{\text { downward by } \\ \text { radiation only }}}{\leftarrow}
$$

This means every collisional excitation is followed by the emission of a photon.
Note: The cooling rate $\left[\mathrm{cm}^{-3} \mathrm{~s}^{-1}\right]$ is $n_{1} A_{10} \mathrm{~h} v_{10}$

$$
=n_{\mathrm{e}} n_{0} \gamma_{01} \mathrm{~h} v_{10}
$$

Consider the radiative transition $1 \rightarrow 0$, the rate of emission of line photons $\left[\mathrm{s}^{-1}\right.$ atom $\left.{ }^{-1}\right] \ldots$ recall eq. (B)

$$
\frac{n_{1}}{n_{0}} A_{10}=A_{10} \frac{\gamma_{01}(T)}{\gamma_{10}(T)} \frac{1}{1+\frac{A_{10}}{n_{e} \gamma_{10}(T)}}
$$

(i) At high densities

$$
\frac{n_{1} A_{10}}{n_{0}}=A_{10} \frac{\gamma_{01}}{\gamma_{10}}=A_{10} \frac{g_{1}}{g_{0}} e^{-\chi / k T} \nLeftarrow n_{\mathrm{e}}
$$

(ii) At low densities

$$
\frac{n_{1} A_{10}}{n_{0}}=A_{10} \frac{\gamma_{01}}{\gamma_{10}} \frac{n_{e} \gamma_{10}}{A_{10}}=n_{e} \gamma_{01} \quad \longleftrightarrow \quad T
$$

This is what we had earlier ; i.e., every collisional excitation
\rightarrow emission of a line photon.

Collisions between electrons and ions in a lower level

This is for the electron velocity. Ions are neglected.

$$
\begin{cases}\sigma_{01}=0 & \text { if }(1 / 2) m v^{2}<\chi \\ \sigma_{01}(v) \propto 1 / v^{2} & \text { if }(1 / 2) m v^{2}>\chi\end{cases}
$$

Usually express σ in terms of collisional strength $\Omega(0,1)$

$$
\sigma_{01}(v)=\frac{\pi \hbar^{2}}{m_{e}^{2} v_{0}^{2}} \frac{\Omega(0,1)}{g_{0}}
$$

Ω is on the order of unity
Recall that $g_{0} v_{0}^{2} \sigma_{01}=g_{1} v_{1}^{2} \sigma_{10}, \Omega(0,1) \equiv \Omega(1,0)$

So the deexcitation rate coefficient is

$$
\begin{aligned}
\gamma_{10} & =\int_{0}^{\infty} v \sigma_{10}(v) f(v) d v \\
& =\sqrt{\frac{2 \pi}{k T}} \frac{\hbar^{2}}{m^{3 / 2}} \frac{\Omega(0,1)}{g_{1}} \\
& =\frac{8.629 \times 10^{-6} \Omega(0,1)}{g_{1} T^{1 / 2}}
\end{aligned}
$$

Excitation per volume per time is $n_{e} n_{0} \gamma_{01}$ where $\gamma_{01}=\left(g_{1} / g_{0}\right) \gamma_{10} \exp (-\chi / k T)$
Ω 's must be calculated quantum mechanically and can be found tabulated with specific temperature values.

Forbidden Lines

Allowed (= electric dipole) transitions that satisfy the selection rules:

1. Parity much change.
2. $\Delta \mathrm{L}=0,1$.
3. $\Delta \mathrm{J}=0,1$, but $\mathrm{J}=0 \rightarrow 0$ is forbidden.
4. Only one single-electron wave function $n \ell$ changes, with $\Delta \ell=1$.
5. $\Delta \mathrm{S}=0$: Spin does not change.

Spectroscopic Notation...

Ionization State

I ---- neutral atom, e.g., $\mathrm{HI} \rightarrow \mathrm{H}^{0}$
II --- singly ionized atom, e.g., $\mathrm{H} \mathrm{II} \rightarrow \mathrm{H}^{+}$
III - doubly ionized atom, e.g., O III $\rightarrow \mathrm{O}^{++}$
..... and so on....e.g., Fe IIIXX

Peculiar Spectra

e (emission lines), p (peculiar, affected by magnetic fields), m (anomalous metal abundances) e.g., B5 Ve

Allowed (regular) Line: due to electric dipole; A $\sim 10^{+8} \mathrm{~s}^{-1}$; denoted by no bracket, e.g., C IV, O I
Forbidden Line: fails to fulfill at least one of the selection rules 1 to 4 . It may be a magnetic dipole or an electric quadrupole transition; A $\sim 10^{0}--10^{-4}$; denoted by with a pair of square brackets, e.g., [O III], [N II]; the H 21 cm line $\mathrm{A}=2.88 \times 10^{-15} \mathrm{~s}^{-1}$, or $1 /[11$ Myr].

Semi-forbidden (intercombination or

 intersystem) Line: all electric dipole selection rules except $\Delta \mathrm{S} \neq 0, \mathrm{~A} \sim 10^{+2} \mathrm{~s}$, denoted by a single bracket, e.g., [OII- Normally an atom stays in the excited state for $10^{-8} \mathrm{~s}$.
- A forbidden transition occurs for excitation levels < a few eV , and stays in the excited state for seconds or longer before returning to the ground state.
- In the lab $n \uparrow \uparrow \uparrow$, both excitation and de-excitation take place frequently, so radiative transition (emitting a photon) is unlikely.
- In ISM, the electrons are not energetic enough to excite the atoms to normal levels (10-20 eV) , but enough to excite to metastable levels.
- Once (collisionally) excited (kinetic energy) \rightarrow emission \rightarrow escaped \rightarrow efficient cooling

4861Å line from
hydrogen $\mathrm{n}=4 \rightarrow 2$
(called H_{β} line)
\rightarrow gas is highly
excited

1-D spectrum shows little continuum, and a few emission lines
\rightarrow A line spectrum

> 4959Å and 5007Å doublet from twiceionized oxygen, O++, or OIII in spectroscopic notation
> \rightarrow (oxygen) gas is ionized, with T > a few thousand K and density $<100 / \mathrm{cm}^{3}$

Excitation Theory --- Applications

Consider a 3-level system, with the two upper levels close together.
$\frac{j_{\lambda 3729}}{j_{\lambda 3726}}=\frac{j_{21}}{j_{31}}=\frac{n_{2} A_{21} h \nu_{21}}{n_{3} A_{31} h \nu_{31}}$

Recall that $n_{e} \rightarrow \infty$, collisional excitation and deexcitation
$n_{e} \rightarrow 0$, every collisional excitation is followed by emission
[O II]

Draine

$$
\begin{aligned}
& n_{e} \rightarrow \infty \\
& \qquad \frac{j_{21}}{j_{31}}=\frac{g_{2}}{g_{3}} \frac{A_{21}}{A_{31}} \frac{\nu_{21}}{\nu_{31}} e^{-E 23 / k T} \approx \frac{g_{2}}{g_{3}} \frac{A_{21}}{A_{31}}=\frac{6}{4} \frac{3.6 \times 10^{-5}}{1.8 \times 10^{-4}}=0.3
\end{aligned}
$$

Note: $\Delta \lambda=0.3 \mathrm{~nm} \rightarrow$ needs high-resolution spectrograph
$n_{e} \rightarrow 0$
$\frac{j_{21}}{j_{31}}=\frac{\gamma_{12}}{\gamma_{13}}=\frac{g_{1}}{g_{3}} e^{-E_{23} / k T} \approx \frac{g_{2}}{g_{3}}=\frac{6}{4}=1.5$
$\gamma_{21} \approx \gamma_{12}$ and $E_{23} \ll k T$
Statistical weight $=2 \mathrm{~J}+1$, so $g_{2}=2 \times(5 / 2)+1=6$

So with this level configuration ([O II] or [S II]), the line ratio is sensitive to the electron number density.

Some examples of density determinations ...
table 5.6
Electron densities in H II regions
Object $\quad \frac{I(\lambda 3729)}{I(\lambda 3726)} \quad N_{e}\left(\mathrm{~cm}^{-3}\right)$

NGC 1976 A	0.50	3.0×10^{3}	
NGC 1976 M	1.26	1.4×10^{2}	
M 8 Hourglass	0.65	1.5×10^{3}	
M 8 outer	1.26	1.5×10^{2}	
NGC 281	1.37	7	$\times 10$
NGC 7000	1.38	6	$\times 10$

TABLE 5.7
Electron densities in planetary nebulae

	[O II]		$[\mathrm{S} \mathrm{II}]$	
Nebula	$\frac{\lambda 27}{\lambda 3729}$		$N_{e}{ }^{a}\left(\mathrm{~cm}^{-3}\right)$	$\frac{\lambda 6716}{\lambda 6731}$
		$N_{e} a$	$\left(\mathrm{~cm}^{-3}\right)$	
NGC 40	0.78	1.1×10^{3}	0.69	2.1×10^{3}
NGC 650/1	1.23	2.1×10^{2}	1.08	4.0×10^{2}
NGC 2392	0.78	1.1×10^{3}	0.88	9.1×10^{2}
NGC 2440	0.64	1.9×10^{3}	0.62	3.2×10^{3}
NGC 3242	0.62	2.2×10^{3}	0.64	2.8×10^{3}
NGC 3587	1.30	1.4×10^{2}	1.25	1.8×10^{2}
NGC 6210	0.47	5.8×10^{3}	0.66	2.5×10^{3}
NGC 6543	0.44	7.9×10^{3}	0.54	5.9×10^{3}
NGC 6572	0.38	2.1×10^{4}	0.51	8.9×10^{3}
NGC 6720	1.04	4.7×10^{2}	1.14	3.2×10^{2}
NGC 6803	0.57	2.8×10^{3}	-	
NGC 6853	1.16	2.9×10^{2}	-	-
NGC 7009	0.50	4.6×10^{3}	0.61	3.3×10^{3}
NGC 7027	0.48	5.2×10^{3}	0.59	4.0×10^{3}
NGC 7293	1.32	1.3×10^{2}	1.28	1.6×10^{2}
NGC 7662	0.56	3.0×10^{3}	0.64	2.8×10^{3}
IC 418	0.37	3.2×10^{5}	0.49	9.5×10^{3}
IC 2149	0.56	3.0×10^{3}	0.57	4.6×10^{3}
IC 4593	0.63	2.0×10^{3}	-	-
IC 4997	0.34	1.0×10^{6}	0.45	1.0×10^{5}

${ }^{a} N_{e}$ given for assumed $T=10^{4}{ }^{\circ} \mathrm{K}$; for any other T divide listed value by $\left(T / 10^{4}\right)^{1 / 2}$.

Now consider a different level configuration with [O III] or [NII], for which the two lower levels are close together.

Note: Rate of excitation to ${ }^{1} S$ and ${ }^{1} D$ levels $\leftarrow T$

When $n \rightarrow 0$, i.e., collisional deexcitation is negligible

- Every excitation to ${ }^{1} D \rightarrow \lambda 5007$ or $\lambda 4959$ (probability 3:1)
- Every excitation to ${ }^{1} S \rightarrow \lambda 4363$ or $\lambda 2321$

$$
\longrightarrow \lambda 5007 \text { or } \lambda 4959
$$

It is left for homework to show that

$$
\begin{aligned}
& I_{4959} \propto \gamma_{\left({ }^{3} P,{ }^{1} D\right)} \frac{A_{\left({ }^{1} D,{ }^{3} P_{1}\right)}}{A_{\left({ }^{1} D,{ }^{3} P_{2}\right)}+A_{\left({ }^{1} D,{ }^{3} P_{1}\right)}} h \nu_{4959} \\
& I_{5007} \propto \gamma_{\left({ }^{3} P,{ }^{1} D\right)} \frac{A_{\left({ }^{1} D,{ }^{3} P_{2}\right)}}{A_{\left({ }^{1} D,{ }^{3} P_{2}\right)}+A_{\left({ }^{1} D,{ }^{3} P_{1}\right)}} h \nu_{5007} \\
& I_{4363} \propto \gamma_{\left({ }^{3} P,{ }^{1} S\right)} \frac{A_{\left({ }^{1} S,{ }^{1} D\right)}}{A_{\left({ }^{1} S,{ }^{1} D\right)}+A_{\left({ }^{1} S,{ }^{3} P\right)}} h \nu_{4363}
\end{aligned}
$$

So

$$
\begin{aligned}
\frac{j_{4959}+j_{5007}}{j_{4363}} & =\frac{\Omega_{\left({ }^{3} P,{ }^{1} D\right)}}{\Omega_{\left({ }^{3} P,{ }^{1} S\right)}}\left[\frac{A_{\left({ }^{1} S,{ }^{1} D\right)}+A_{\left({ }^{1} S,{ }^{3} P\right)}}{A_{\left({ }^{1} S,{ }^{1} D\right)}}\right] \frac{\bar{\nu}_{\left({ }^{3} P,{ }^{1} D\right)}}{\nu_{4363}} \exp (\Delta E / k T) \\
& \approx \frac{7.73 \exp \left[\left(3.29 \times 10^{4}\right) / T\right]}{1+4.5 \times 10^{-4}\left(N_{e} / T^{1 / 2}\right)}
\end{aligned}
$$

where

$$
\bar{\nu}=\frac{A_{\left({ }^{1} D,{ }^{3} P_{2}\right)} \nu_{5007}+A_{\left({ }^{1} D,{ }^{3} P_{1}\right)} \nu_{4959}}{A_{\left({ }^{1} D,{ }^{3} P_{2}\right)}+A_{\left({ }^{1} D,{ }^{3} P_{1}\right)}}
$$

and ΔE is the energy difference between ${ }^{1} D$ and ${ }^{1} S$.
This holds up to $n_{e} \approx 10^{5} \mathrm{~cm}^{-3}$.
At higher densities, collisionalde-excitation begins to play a role.

Similarly, for [N II],

$$
\frac{j_{6548}+j_{6583}}{j_{5755}} \approx \frac{6.91 \exp \left[\left(2.50 \times 10^{4}\right) / T\right]}{1+2.5 \times 10^{-3}\left(N_{e} / T^{1 / 2}\right)}
$$

So with this kind of level configuration ([O III] or [N II]), the line ratio is sensitive to the temperature.

Problems:

1. I_{4959} and I_{5007} are strong but I_{4363} is weak
2. I_{4363} is close to $\mathrm{Hg} \mid \lambda 4358$

Some examples of temperature determinations ...

TABLE 5.1
Temperature determinations in H II regions

[N II]				[O III]	
Nebula	$\frac{I(\lambda 6548)+I(\lambda 6583)}{I(\lambda 5755)}$	$T\left({ }^{\circ} \mathrm{K}\right)$	$N_{e} / T^{1 / 2}$	$\frac{I(\lambda 4959)+I(\lambda 5007)}{I(\lambda 4363)}$	$T\left({ }^{\circ} \mathrm{K}\right)$
NGC 1976 2b	81	10,000	51	338	8,700
NGC 1976 1a	102	9,100	68	371	8,500
NGC 1976 5b	111	8,900	21	310	8,900
NGC 1976 5a	189	7,500	12	263	9,300
M 81	162	7,900	(10)	445	8,100
M 17 I	257	6,900	(10)	330	8,700
NGC 2467 1a	46	13,000	(1)	129	11,600
NGC 2467 1b	53	12,200	(1)	137	11,400
NGC 2359 av	-	-	(1)	90	13,200

Typically T~10,000 K

TABLE 5.2
Temperature determinations for planetary nebulae

Nebula	$T[\mathrm{~N} \mathrm{II}]$ $\left({ }^{\circ} \mathrm{K}\right)$	$T[\mathrm{O}$ III $]$ $\left({ }^{\circ} \mathrm{K}\right)$
NGC 650	9,500	10,700
NGC 4342	10,100	11,300
NGC 6210	10,700	9,700
NGC 6543	9,000	8,100
NGC 6572	-	10,300
NGC 6720	10,600	11,100
NGC 6853	10,000	11,000
NGC 7027	-	12,400
NGC 7293	9,300	11,000
NGC 7662	10,600	12,800
IC 418	-	9,700
IC 5217	-	11,600
BB 1	10,500	12,900
Haro 4-1	-	12,000
K 648	-	13,100

Gum Nebula

41 deg wide

