Grains and Molecules
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Formation of Grains

Atoms -2 diatomic molecules (e.g., CH, CO, CN)
- 10 to20 atoms as condensation nuclei
-> growth by accretion

In HI clouds, ny = 10 — 100 cm™> = molecules form too slowly

Grains likely formed in (1) atmospheres of cool stars, or
(2) dark molecular clouds

IR observations detect grains in both.

Generally, depletion of elements = grain formation
Those with higher condensation temperatures condense first,
so condense/deplete more 7



With condensation nuclei (small, refractory particles), volatile
materials such as CO,, CH,, NH;, H,0 condense as mantles

Dark clouds show grain sizes

(a = 1 um), larger than

Core: size about
0.05 micron; made
of silicates, iron,

typical ISMa<0.2-0.5 pum \_and/or carbon

_——

A large number a < 0.015 um

Surface of molecules and
simple organic compounds

C, N, O depletion consistent with
this, i.e., these elements locked
into ices on the grains

VAN

Mantle: size = 0.5 um;
made of ices of CO2, H20,

HN3, CH4

http://cosmos.swin.edu.au/entries/dustgrain/dustgrain.html

ISM grain (nuclei, mantles) = grain growth = planetesimals

-> planets
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Take A = 1, € = 1, then t = 10"-10° yr to grow to
0.1pm.

In much denser environments, e.g., inside dark clouds, or in the
envelopes of cool stars, the time scales are considerably shorter.

The initial nucleation is extremely slow; general diffuse ISM
cannot do it =» Need high densities: (1) star-forming regions,
(2) cool stellar atmospheres, (3) (super)novae or PNe:
expanding gas shells

We indeed see evidence of dust in all these objects.
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Stellar photosphere

IR excess: reradiation of stellar radiation (UV and optical) by
heated circumstellar dust (in IR)

A distribution of T, = superposition of bb spectra

Chap 11 GrainsMol



Log[4nr®vF,]

5T T T T 1T T 711

T Tau

Chap 11 GrainsMol

ng [1"' Lvl:rE}]

33

IRS5 L1551

L

Ln



ALMA

Direct imaging (HST or 8-meter ground-based)

Near-IR interferometry
- e

Mid-IR interferometry =

Magnetospheric
accretion

Planet-forming
region

Dust inner rim

0.03 AU 0.1..1TAU

UV continuum, Near-IR dust 104U
H-recombination lines continuum
Near-IR continuum Mid-IR: (Sub)millimeter:
(origin unclear so far) dust continuum dust continuum 100 AU
+ atomic lines (Br-y) + molecular lines + molecular rot-lines
+ occasional molecular (H,0, CO,, ...)
lines (H,0, CO, OH)
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Destruction of Grains

Evaporation
CH,: 20 K; NH;: 60 K; H,0: 100 K CR

Sputtering b/
Maybe important in diffuse clouds;
grains otherwise better shielded in dense clouds

uv

Grain-grain collision
Kinetic energy (a few km/s) = dust heated
and evaporated; important in shocked media;
may not be important in ISM otherwise

Heating
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Formation of Molecules

Grains catalyze the reactions between atoms which otherwise
do not meet together (Gould & Salpeter 1963; Hollenbach & Salpeter 1971).

Grain
absorbs
energy

O O
\@/ﬂ ., Two-body collision unlikely in ISM

molecule Cannot form H, (no dipole)
atom another atom
O O
D @/\ Molecules form on
~ 1 keV to expel, > general LU
E,.. in HI clouds - sticking surface; binding energy

= 4.47 eV - heatifig



Take H, as an example (Hollenbach & Salpeter, 1971, Ap], 163, 155)

Fraction of H atoms that stick: s

........................ move across and find another H: &
......................... react:

......................... come off the grains: n

Overall, rate y: fraction that hit and then make an H,

Yy =5¢4n

In the lab,s ~1/3,and for H,¢,¢,n all ~ 1
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[# of H, formed s™'cm™3] = R nyny

=(1/2)ynyng vra?
P

where R [cm3s™1] 2 atoms

44 poas 10 1.6 x 10724
——— ny=maipy = pa = e =
I E T 00

R=1(1/2) ynd/nH/v T a®
=(1/2) (1/3) (4 x 10712)/10 (105 7 (2 x 107>)?
=107 [cm?3 s71]

Time scale for H, formation is (R ng)~! = 1017 /ny [s]
= 3 X 109/nH [yI‘]
e.g., forny = 100 cm™3, then (R ny) ™! = 3 x 107 yr
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Dissociation of Molecules ]
el
\O S -

Tais ~ 10720 — 1071 ¢m? i o

Wavelength (nm)

General ISM stellar radiation is equivalent to 10,000 K
diluted by W ~ 1074

I:WJBT4
[ WopT*
-1 m—271_ L Wos
# of photons [s™" cm™“]| = — "
WJBT4

# of dissociation [s™1] = .
v
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9¢ ~
T dissociation ™ 3 X107 s =100 yrs

So it takes some 107 years to form an H, molecule, but it is
destroyed in 100 years.

=> need shielding!

* Photodissociation is the main process to destroy IS H,.

* Usually stronger lines have stronger self-shielding.
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Photodissociation Region (PDR)

Far-UV photons (6 eV < £<13.6 €V), not energetic enough

to ionize hydrogen, but can dissociate most molecules (e.g.,
H,, CO)

Photodissociation Region
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FIG. 3. A schematic diagram of a photodissociation region.
The PDR is illuminated from the left and extends from the

. predominantly atomic surface region to the point where O, i
Hollenback & Tielens, 1999, 3R

not appreciably photodissociated (A=10). Hence the PDR

includes gas whose hydrogen i1s mainly H, and whose carbon 1s

Chap 11 GrainsMol ReV MOd Phy, 71, 173 mostly CO. Large columns of warm O, C, C*, and CO, and
vibrationally excited H; are produced in the PDR.



The PDR region
in the Orion
Bar region,
seen edge-on

PAH
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FIG. 2. (Color) The Orion Bar region mapped in the 3.3-um PAH feature (blue), H, 1-0 S(1) emission (yellow), and CO J
=1-0 emission (red; Tielens et al., 1993). The (0,0) position corresponds to the (unrelated) star 6* A Ori. The illuminating source,
#' C Ori, and the ionized gas are located to the northwest (upper right). For all three tracers, the emission is concentrated in a bar
parallel to but displaced to the southeast from the ionization front. The PDR is seen edge on: a separation of =10" is seen between
the PAH emission and the H, emission, and between the H, emission and the CO emission, as predicted by PDR models (see 16
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Hollenback & Tielens (1999)



benzene

Polycyclic aromatic hydrocarbon

Chemicals contains C and H only, with multiple aromatic rings
(ring-shaped and planar, e.g., benzene C6H6; very stable)

Line-angle schematic Ball-and stick model Microscopy image

https://en.wikipedia.org/wiki/Polycyclic_aromatic_hydrocarbon o



https://en.wikipedia.org/wiki/Polycyclic_aromatic_hydrocarbon

PERICONDENSED CATACONDENSED

¢
vos

Pyrene Coronene Naphthalene Phenanthrene
Cigt1o CagHyz C1oHg Cy4H4p
Perylene Benzo[ghi]perylene Tetraphene Chrysene
CaoM12 Caotya CqgHi2 CygH12
seos Negiossee
=
Antanthrene Ovalene Pentaphene Pentacene
CapHyz CagHyg CooHyg CagHyy

FiG. 1.—Structures of some representative pericondensed and catacondensed polycyclic aromatic hydrocarbons (PAHs). Hydrogen atoms, located on the
periphery, are not represented.
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Interstellar Molecules

e All from abundant elements (H, C, N, O, S, Si) + simple
molecules (H,CO, CH, OH radicals)

e There are diatomic, triatomic, and more complicated
polyatomic molecules, such as ammonia NH;, water H,0,
hydrogen cyanide HCN, methanal (¥ #) H,CO,
oxomethylium ion HCO*, alcohol CH;0H

e Diatomic molecules with identical nuclej, e.g.,, H,, N,, O,,
are called homonuclear (5 #%), as oppose to heteronuclear
(2 #%) molecules, such as HD, OH, or CO.

Chap 11 GrainsMol 20



e Molecules also have term symbols, but they are complicated
because of the projection, e.g., of the angular momentum
onto the internuclear axis.

e The ground term of H, is*¢ g; it has zero electronic orbital
angular momentum, has zero electron spin, is symmetric
under reflection through the center of mass (g), and is
symmetric under reflection through planes containing the
nuclei (+).

o If the protons have spin 0 = para-H,;
if two protons are parallel, with total spin 1 < ortho-H,.

Chap 11 GrainsMol 21
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Rotational Transitions

Rotational spectra arise from transitions between rotational
energy states.

Only molecules with electric dipole moments can absorb or
emit photons in such transitions. Non-polar diatomic
molecules, e.g., H,, and symmetric polyatomic molecules, e.g,,
CO, (0=C=0) or CH,, do not exhibit rotational spectra, unless
they are collisionally excited (molecules “distorted”).

Even in molecules with a permanent dipole moment,
selection rules apply for rotational transitions.

In practice, rotational spectra are always seen in absorption,
so | = a higher |
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e H, has no permanent electric dipole moment, and the
vibrational states and the rotational states radiates very
weakly, via the time-variation of the electric quadrupole
moment as the molecule vibrates or rotates.

e Often one uses, e.g., CO, as the tracer of molecular species.
This is valid if collisional equilibrium is established.

e Rotational energy
1 L* JJg+1)
2 21 21
Thatis, v, ;41 = % (J + 1); with equally spaced lines.
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Vibrational Transitions

* A molecule not only rotates, it also vibrates when sufficiently
excited = a harmonic oscillator

* Vibrational energy
k

E,= (v+1/2)h
u

N
where v is the vibrational quantum number, k is the vibrational force
constant, and u is the reduced mass.

: O Lo ~00
e Selectionrule: Av =+1 !
- Soon /H OHN\ ‘h H,
o A Varlety Of mOdes nes symmetric symmetric asymmetric
bending stretching stretching



Types of Molecular Clouds

Type Av (mag) Examples
Diffuse Molecular Cloud <1 Rho Oph
Translucent Cloud 1to5 HD 24534 cloud
Dark Cloud 5to 20 B 335

Infrared Dark Cloud 20 to > 100  TRDCG028.53-00.25
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IRDCs discovered in 1996 by the ISO = formation sites of
massive stars?

Composite Image (3.6-8.0 microns) “Coreshine” (3.6 microns) Dark Cloud Core (8.0 microns)

“Coreshine” in the L183 Dark Cloud Spitzer Space Telescope * IRAC
NASA / JPL-Caltech / L. Pagani (Observatoire de Paris/CNRS]) sig10-020
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