Heating and Cooling of the ISM

Most of the IS gas in the MW is neutral, and 78% of
the neutral hydrogen is atomic.

References

Draine, Sec. 24.1 for dust; Chap 30 for H I; Chap 27 for H 11
Spitzer, Chap. 6; p. 131

Scheffler & Elsasser, p. 285

Bowers & Deeming, p. 357

Chap 12 HeatCool



Heating

e Photoionization (by x rays)

e [onization by cosmic rays

e Photoelectric effect on grain surface

e H, formation on grains

e Shock heating and other MHD phenomena

Cooling

e Collisional excitation followed by radiation
(molecular rotation, vibration, atomic fine structure)

e Free-free emission of electrons
e Dust emission --- Collisions between gas and dust
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Adopting a typical diffuse cloud (H I) parameters,
T =~ 50— 150 K, mean = 80 K,

ny ~ 10 — 1000 cm™3, mean = 20 cm~3,
ne ~ 107* ny,

M =400 Mg,

R =5pc

Total gravitational energy E; ~ (3GM?/5R) =~ 2 x 10*° ergs

Thermal energy U ~ (3 MkT /2my) ~ 10*° ergs
So clouds generally are not gravitationally bound.
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Internal energy heat
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For monatomic gas (w/o internal degree of freedom),
= (3/2)kT
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2w gy — =1 A
2" k T L T
I': Energy Gain (i.e., heating) [ergs s~ cm™3]

A: Energy Loss (i.e., cooling)

Note: This does not include evaporation, melting, conduction,
or any time dependent effects (e.g., a collapsing cloud).
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In a steady state, I'(T) = A(T)
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Heating by Photolonization For each ionization, the
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For protons (Spitzer, p. 136)

2.07 x 1074
VT

NeMp _ .
- 2{ Eyn (3)—kTx1 (3)} ergs s~ cm™
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Heating by cCosmic Rays Collisional 1onization of H
() CR by cosmic ray particles

O O—, © Energy gained by gas <E>
CR

# of CR ionization [s"'cm ™3] = (., ny

(E) =~ 3.4 eV (Spitzer & Tomasko, 1968, ApJ)
(g =7x%x10718g71

Each “primary” 1onization by a CR creates a “secondary” electron
with mean Kinetic energy of ~35 eV, which may Ionize or excite
bound states of H, H,, and He which will deexcite radiatively.
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Photoelectric Heating on Grain Surface
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grain

This effect is important in H [ regions.
uv

Stellar flux =cu
g, = cross section = a* Q. (expectQ,.~1atUV)

y, = yield factor = |# of e~ given off]|/[# of photon incident]
i.e., not every photon liberates an electron
E, = energy gained off by the electron to the gas; for small
particles, < E, > ~5eV

A)cury. Eo
Ped—nd/Jd( ii)\y/ Qdy

Within a cloud at an optical depth, u; ~u,, e "
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1 3

_9R — _ _
Foy=1.8x10* yonge ™ ergs s~! cm

001<y, <10 If 10eV<hv<13.6eV

For example, if t<<1,y,~ 1
> T, ~2%x107%° ny[ergss—1 cm™3]

e The work function for graphite is 4.5 eV; it is 5.0 eV for
lunar surface material.

e Photons > 8 eV dominate photoelectric heating by dust.

e Small grains absorb UV effectively, and have larger
photoelectric yields, so I',;is dominated by photoelectrons
from very small grains, including the PAHs.
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Heating by H, Formation on Grains

e
H >

—— @ H, (ejected into ISM)
H 0/

# of H, formed [s™ cm™3] = R ny ng; R~ 107 [s71 cm ™3]

Binding energy of H,, £, (H,) = 4.48 |eV]
—> Kinetic energy of H, afterwards = z,;, X 4.48 [eV]

FHQ — (4.48 X ZHQ)RTLH ng
= 2.2 X 10_28zH2 n%{ ergs st em™?
z,,,=0.04-0.1

~ —29 2 -1 =3
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Summary of ISM Heating

Process ergss cm™3
photoionization 8 x 1072° n%
Cosmic rays 3.8x 1074 n
photoelectric 2%X107%°n

H, formation 2x107%%n 2
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Cooling by Collisional Excitation

O

/\v‘ j k (collisional excitation) = k-> j (radiative deexcitation)

O / b = E,-E,

Nei = n'ezj>k (niﬂjk o nikf}/kj)

collisional deexcitation

With T, ~ 7,000 K for the primary coolants O II, O IIl and N II,
A/ nn,~107* [ergss~'cm™’]

=» Inelastic collisions between electrons and ions are
important cooling mechanisms in both H I and H Il regions.
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Cooling by Free-Free Emission of Electrons

App =dmesp = 1.426x 107 ZQ\/Tnenig}f ergs st cm ™’

AN

~ 1.3 (1.0 to 1.5)

Cooling by Collisions between Gas and Dust
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Gas (molecules, atmos) © > //(warme up)
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Cooling In HI cloud
< 10* K — mainly by the [C II] 158 um fine structure line,
> 100 K— |0 I] 63 um plays a role
> 10* K — Lyman alpha dominates

10 25 : LI II| I I I LI I|
- nH—OISCnl
- n_/n,=1.7x107?

\

Tot8~1

— — — — —

10 10% 103 104
Chap 12 HeatCool
P T(K) Draine Fig 30.1



For low-ionization environs
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Thermal Equilibrium in H Il Regions
Heating: primarily by photoionization

Cooling: excitation of C, N, O, Ne (excitation levels of a few eV
above ground level) very efficient;

but (fortunately?) of relative low abundances with respect to
H (excitation energy 10.2 eV)
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Ion
N II
O II
O III
Ne II
SII
S 111
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Main Collisionally Excited
Cooling Lines in H Il Regions

lines
6585 A, 6550 A
3730 A, 3727 A
88.36 um, 51.81 um, 5008 A, 4960 A
12.81 um
6733 A, 6718 A
33.48 um, 18.71 um, 9071 A, 9533 A

Draine Table 27.2
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Draine Figure 27.1a



