Heating and Cooling of ISM

Ref: Spitzer p. 133; Scheffler & Elsasser p. 285

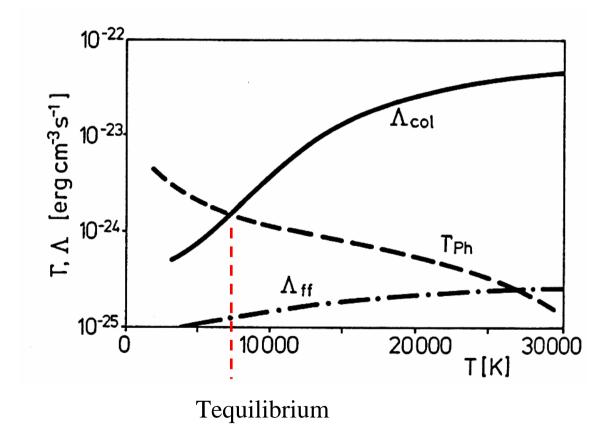
Heating:

- Photoionization
- Ionization by cosmic rays
- Photoelectric effect on grain surface
- H₂ formation on grains
- Shock heating

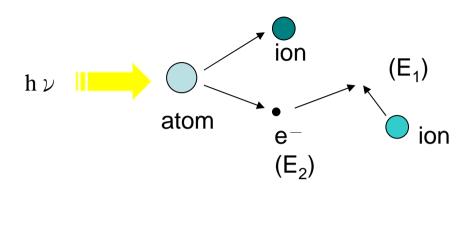
Cooling:

- Collisional excitation followed by radiation (molecular rot., vib., atomic fine structure)
- Free-free emission of electrons
- Dust emission --- Collisions between gas and dust

nternal energy heat
$$dE = \delta Q - p dV \rightarrow \frac{dQ}{dt} = \frac{dE}{dt} + p \frac{dV}{dt}$$


For monatomic gas (w/o internal degree of freedom), E = (3/2)kT

$$\frac{d}{dt}(\frac{3}{2}nkt) - \frac{5}{2}kt\frac{dn}{dt} = (3/2)kn\frac{dT}{dt} - kt\frac{dn}{dt} \equiv \Gamma - \Lambda$$


 $\begin{array}{l} \Gamma: \text{Energy Gain (i.e., heating)} \\ \Lambda: \text{Energy Loss (i.e., cooling)} \end{array} \quad [\text{ergs cm}^{-3} \text{ s}^{-1}] \end{array}$

<u>Note</u>: This does not include evaporation, melting, conduction, or any time dependent effects (e.g., a collapsing cloud)

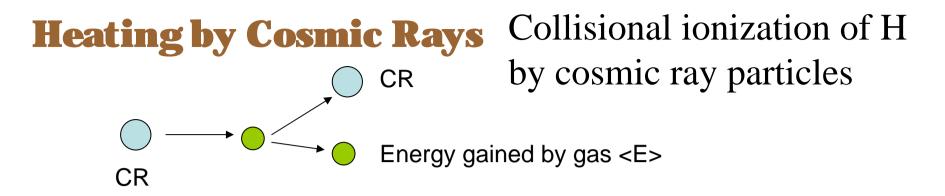
In a steady state, $\Gamma(T) = \Lambda(T)$

Heating by Photoionization

For each ionization the electron gains kinetic energy E_2 .

Each recombination loses E_1 .

Recall that # of photoionization = Recombination to all states


$$n_e n_i \alpha^{(1)} = n_e n_i \sum v \sigma(v)$$
Averaging over
Maxwellian distribution
$$\Gamma_{ei} = n_e n_i v \sigma_j E_2 - n_e n_i v' \sigma_j E_1$$

$$= n_e n_i \{ < v \sigma_j > \bar{E}_2 - < v \sigma_j > \bar{E}_1 \}$$

$$= n_e n_i \{ \alpha^{(1)} \bar{E}_2 - \frac{1}{2} m_e \sum_j < v^3 \sigma_{ij} > \}$$

For protons (Spitzer, p. 136)

$$\Gamma_{ph} = \frac{2.07 \times 10^{-11} n_e n_p}{\sqrt{T}} \{ \bar{E}_2 \phi_1(\beta) - kT \chi_1(\beta) \} \text{ ergs s}^{-1} \text{ cm}^{-3}$$

of CR ionization [s⁻¹ cm⁻³] = $\zeta_{\rm H} n_{\rm H}$

 $\langle E \rangle \sim 3.4 \text{ eV}$ (Spitzer & Tomasko, 1968, ApJ)

$$\zeta_{\rm H} = 7 \ {\rm x} \ 10^{-18} \ {\rm s}^{-1}$$

$$\Gamma_{cr} = 3.8 \times 10^{-29} n_H \text{ ergs s}^{-1} \text{ cm}^{-3}$$

Heating by Photoelectric Effect on Grain Surface

This effect is important in H I regions.

Stellar flux = c u σ_d = cross section = $\pi a^2 Q_{abs}$ (expect $Q_{abs} \sim 1$ at UV) y_e = yield factor = [# of e⁻ given off]/[# of photon incident] i.e., not every photon liberates an electron E_2 = energy gained off by the electron to the gas; for small particles, $\langle E_2 \rangle \sim 5 \text{ eV}$

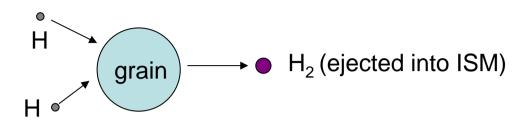
 e^{-}

grain

a

 (E_{2})

$$\Gamma_{ed} = n_d \int \frac{\sigma_d(\lambda) c u_\lambda y_e E_2}{h\nu} \, d\nu$$

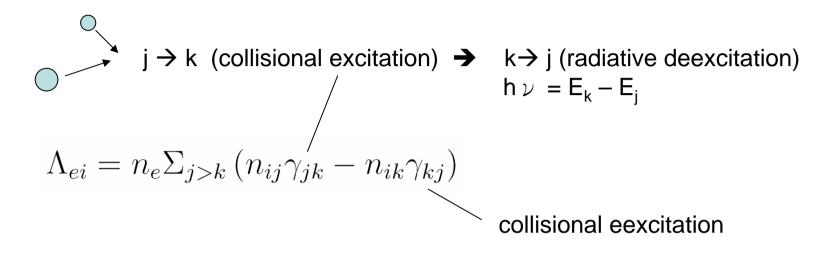

Within a cloud at an optical depth, $u_{\lambda} \sim u_{\lambda 0} e^{-\tau}$

$$\Gamma_{ed} = 1.8 \times 10^{-25} y_e n_H e^{-\tau} \text{ ergs s}^{-1} \text{ cm}^{-3}$$

$0.01 < y_e < 1.0$ if $10 \text{ eV} < h \nu < 13.6 \text{ eV}$

For example, if
$$\tau \ll 1$$
, $y_e \sim 1$
 $\rightarrow \Gamma_{ed} \sim 2 \ge 10^{-25} n_{H}$ [ergs s⁻¹ cm⁻³]

Heating by H₂ Formation on Grains


of H₂ formed [s⁻¹ cm⁻³] = R n_H n_H R ~ 10⁻¹⁷ [s⁻¹ cm⁻³] Binding energy of H2, Eb(H₂) = 4.48 [eV] \rightarrow Kinetic energy of H₂ afterwards = z_{H2} • 4.48 [eV] $\Gamma_{H2} = (4.48 \times z_{H2})R n_H n_H$ $= 2.2 \times 10^{-28} z_{H2} n_H^2 \text{ ergs s}^{-1} \text{ cm}^{-3}$ $z_{H2} = 0.04 - 0.1$

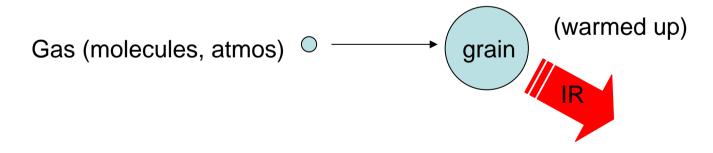
 $\Gamma_{H2} \approx 2 \times 10^{-29} n_H^2 \text{ ergs s}^{-1} \text{ cm}^{-3}$

Summary of ISM Heating

Process	Ergs s ⁻¹ cm ⁻³
photoionization	8 x 10 ⁻²⁵ n _H ²
Cosmic rays	3.8 x 10 ⁻²⁹ n _H
photoelectric	2 x 10 ⁻²⁵ n _H
H2 formation	2 x 10 ⁻²⁹ n _H ²

Cooling by Collisional Excitation

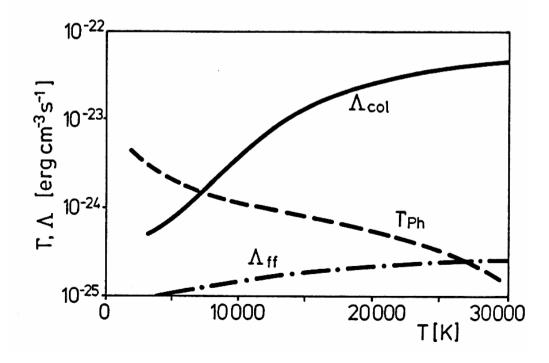
With Te ~ 7,000 K for the primary coolants O II, O III and N II, $\Lambda/n_e n_p \sim 10^{-24}$ [ergs s⁻¹ cm⁻³]


→ Inelastic collisions between electrons and ions are important cooling mechanisms in both H I and H II regions.

Cooling by Free-Free Emission of Electrons

$$\Lambda_{ff} = 4\pi\epsilon_{ff} = 1.426 \times 10^{-27} Z^2 \sqrt{T} n_e n_i g_{ff}^- \text{ ergs s}^{-1} \text{ cm}^{-3}$$

$$\sim 1.3 \text{ (1.0 to 1.5)}$$


Cooling by Collisions between Gas and Dust

Thermal Equilibrium in H II Regions

Heating: primarily by photoionization

Cooling: excitation of C, N, O, Ne (excitation levels of a few eV above ground level) very efficient; but (fortunately?) of relative low abundances with respect to H (excitation energy 10.2 eV)

