

• To study the properties of celestial objects by means of observations

以觀測的手段瞭解宇宙天體的性質,探討其來源、演化,以及彼此之交互作用

Star → EM radiation → Detection → Analysis

Properties of stars ← Interpretation

宇(上下四方)宙(古往今來)

空間

時間

天球 (celestial sphere)

因果關係

--- 角度 (angle)

(con)sequences

距離 (深度、沿視線方向; 徑向)

北天極北極軸地表演

Action, reaction, interaction

altitude (仰角)

(= elevation) -90° to $+90^{\circ}$

azimuth (方位角)

e.g., measured from north, clockwise 0° to 360°

Zenith distance = 90° -Alt

Measuring the Sky

1 astronomical unit (AU) 天文單位 =149.6 x 10⁶ km

約一億五千萬公里

1 light year (ly) =9.460 x 10^{12} km $\sim 6x 10^4$ AU

1 parsec (pc) = 206,265 AU $\frac{100}{100}$ $\frac{1}{100}$ $\frac{1}{100}$

• Unit of separation (on the sky)

1 degree = 60 minutes of arc (arcminutes) = 60'

1 arcminute = 60 arcseconds = 60"

Earth's Revolution 地球公轉

The Earth revolves around the Sun. The passage is called the **ecliptic** (黄道).

黄道面: The ecliptic plane intercepts the celestial equator with an angle of 23.4 degrees.

圖 2-12 (a)從地球看太陽一年當中的運動,最北時達到赤緯北方 23.5 度,然後通過天球赤道,繼續南行直到赤緯南方 23.5 度。

(b)黃道面與天球赤道成 23.5 度傾角,兩個面的交點分別稱為春分點及秋分點,黃道面最(上)北方的點稱為夏至,最南方的點則稱為冬至。

圖 2-11 黄道面與天球赤道成 23.5 度傾角,兩個面的交點分別稱為春分點及秋分點,黃道面最(上) 北方的點稱為夏至,最南方的點則稱為冬至。

At different hours in a night, one sees different night sky. At different months one sees also different sky → 黃道十三宮 (zodiac signs)

		Table 1-1 tellations of the Zodiac
	Constellation	Dates of Sun's Passage Through
	Pisces	March 13-April 20
	Aries	April 20-May 13
	Taurus	May 13-June 21
	Gemini	June 21-July 20
	Cancer	July 20-August 11
	Leo	August 11-September 18
	Virgo	September 18-November 1
	Libra	November 1-November 22
missing	Scorpius	November 22-December 1
	Ophiuchus 蛇夫座	December 1-December 19
	Sagittarius	December 19-January 19
	Capricorn	January 19-February 18
	Aquarius	February 18-March 13

Earth's Rotation (Spin) 地球自轉

- Counterclockwise (west → east) if viewing from the above (the north pole) → Sun, moon and stars rise in the east and set in the west
- Earth's orbital motion also counterclockwise
- Extending Earth's spin axis

 →天(球)北極 (north celestial pole; NCP)

 NCP appears not to spin; all other stars seem to move around the NCP or SCP in a day
- 北極星 (**Polaris**): closest to NCP <u>now</u> (< 1°)
- Babylonians 3000 years ago 360 days
 → 360 deg in a circle

• Longitude and Latitude

Greenwich longitude = 0格林威治當地時間 (local time)

→ Universal Time

(UT;國際標準時)

Taiwan Time = UT + 8 hr

赤道 latitude = 0

北極:北緯90度;

南極:90°S or -90°N

似的坐標系統應用在天球上,用以描述天體的位置

• Sidereal Time (恆星時)

Time as measured by reference to the stars

- = hour angle of the **vernal equinox**
- = right ascension of stars currently on the observer's **meridian**
- Solar Time (太陽時)

Time with respect to the sun

= hour angle of the sun plus 12 hours

apparent solar time → true sun, irregularly **mean solar time** → for timekeeping

Solar time loses about 4 minutes a day against sidereal time; a star rises **4 minutes earlier** a day

Q: Which is longer, a solar day or a sidereal day? By how much?

- 1. Solar day; one hour
- 2. Solar day; 4 minutes
- 3. Sidereal day; one hour
- 4. Sidereal day; 4 minutes

- The sidereal day is 23 h 56 m 04.1 s
- Each apparent solar day in a year is different, with a variation of ~30 s
- One mean solar day, by definition, is exactly 24 hours.
- The mean sidereal day is about 4 minutes shorter than the mean solar day.
 - → 相同的夜空隔天會早約四分鐘升起
- Other sidereal periods sidereal month for the Moon = 27.32166 d c.f. (mean) synodic month 朔望月=29.53059 d sidereal day; sidereal year

星座 (constellation) --- Stars in a constellation may not be associated with each other. They are at different distances but merely projected onto the same part of the sky. There are a total of 88 constellations for the whole sky.

A constellation is more than a "star pattern". It stands for a patch (region) of the sky. A star chart (星圖) shows Leo and its neighboring constellations.

Celestial Coordinates

- The sky position of a star is specified by its RA and DEC coordinates.
- But there is **precession of the equinox**; i.e., the
 position of the vernal
 equinox changes with
 time

The Earth's spin axis precesses with a period of ~ 26,000 years. By AD13,000 the Polaris will become the star Vega.

A star's RA and DEC coordinates change with time! B1950 equinox vs J2000 equinox

Coordinate Systems

- Horizontal (observer) system
- Equatorial system
 Fundamental plane=earth's equator
- Galactic system
 Fundamental plane=Galactic plane
- Ecliptic system

 Fundamental plane=ecliptic plane

Q: What causes the seasoning?

- 1. The sunspot activities on the surface of the Sun
- 2. Inclination of the Earth's spin axis
- 3. Change of distance between the Sun and the Earth
- 4. Periodical changes of atmospheric turbulences

圖 2-13 (a)太陽直射時陽光分布在幾乎圓形的最小面積,(b)太陽斜射時,陽光分布在較大的橢圓面積裡,因此地面單位面積內接收到比較少的能量。(a)圖中的情形有如七、八月時,中午太陽直射北半球地面,因此北半球為夏天。(b)的情形則如一、二月時,同樣是中午,太陽在南方地平線上斜射地面,因此北半球平均溫度低,時值冬季。

- 春分 (vernal equinox)、夏至 (summer solstice)
 秋分 (autumn equinox)、冬至 (winter solstice)
- Sun at vernal equinox around March 21 each year
- Direct sunshine → summer; longer days than nights
- Opposite season in southern hemisphere
- At equinoxes, same duration of day and night
- Seasoning has nothing to do with sun-earth distance (difference only 2%).
- In fact Earth at **perihelion** (近日點) in January, at **aphelion** (遠日點) in July

Remember: Sun at RA=0h around March 21 (vernal equinox 春分), and moves 2 h every month.

An exercise....

- The center of the Milky Way galaxy has the equatorial coordinates of RA~17h and DEC~
 —30 deg. What is the best month/season to observe the Galactic center (銀河中心) from Taiwan?
- Is it better to observe the Galactic center in Australia? If so, why? If not, why not?