

Spectral Region	Wavelength Range (microns)	Temp. Range (Kelvin)	What We See
Near- Infrared	(0.7-1) to 5	740 to (3,000-5,200)	Cooler red stars Red giants Dust is transparent
Mid- Infrared	5 to (25-40)	(92.5-140) to 740	Planets, comets and asteroids Dust warmed by starlight Protoplanetary disks
Far- Infrared	(25-40) to (200-350)	(10.6-18.5) to (92.5-140)	Emission from cold dust Central regions of galaxies Very cold molecular clouds

• Thermal Background

 l_{max} T $\approx 3000 \text{ mm}$ K (Wien's displacement law) So if T~ 300 K (room) $\rightarrow l_{\text{max}} \sim 10 \text{ mm}$

To reduce background

 → 'chopping', e.g., by a wobbling secondary mirror, with a typical throw angle of 1' at 10-100 Hz

 \rightarrow 2D detectors

Infrared Astronomical Satellite (IRAS)

- 1983 by USA, Netherlands, and UK
- In vacuum → cooled entire telescope in liquid helium without condensation → background ↓10¹² X
- All-sky survey found 10⁶ sources down to 1 Jy

Disadv: limited lifetime of cryogenics, ~300 d for *IRAS*

IRAS in orbit -Artist Rendition

infrared bands to detect and characterize point sources brighter than about **1 mJy** in each band, with signal-to-noise ratio greater than 10, using a pixel size of **2.0**". This has achieved an 80,000fold improvement in sensitivity relative to earlier surveys.

2MASS used two highly-automated **1.3-m telescopes**, one at Mt. Hopkins, AZ, and one at CTIO, Chile. Each telescope was equipped with a three-channel camera, each channel consisting of a 256 \times 256 array of HgCdTe detectors, capable of observing the sky simultaneously at J (1.25 microns), H (1.65 microns), and K_s (2.17 microns), with 10-sigma limit of **15.8** (J), **15.1** (H), **14.3** (K) mag.

Data are fully accessible online at IPAC with substantial interfaces.

Optical (left) and near-infrared (right) image of IC348, an embedded star cluster

For infrared astronomy, refer to http://www.ipac.caltech.edu/Outreach/Edu/

For more information about other infrared applications, e.g., in environment, medicine, navigation, etc, see http://sirtf.caltech.edu/EPO/IRapp/benefits.html

Infrared study of blood flow in legs (showing injured right ankle and weight transfer to the left leg

Invisible text on the Dead Sea Scroll

Infrared image of a house reveals areas of heat loss, indicating poor insulation.

http://www.spitzer.caltech.edu/

- The most successful UV satellite (may well be any scientific space mission in terms of investment/return)
- 1978 launched by National Aeronautics and Space Administration (NASA, USA), European Space Agency (ESA, Europe), and Science and Engineering Research Council (SERC, UK) as a 2-3 year mission

• turned off in 1996 only because of budget limit