Charge-Coupled Device (CCD) Detectors

- As revolutionary in astronomy as the invention of the telescope and photography
- semiconductor detectors → a collection of miniature photodiodes, each called a picture element, or pixel

- Light-sensitive **silicon chip** + **electronics** (recording and digitization)
- + **cryogenics** (cooling system: thermoelectric, liquid
 - N₂/He, refrigerator, etc)

Plate Scale and Field of View Recall that the focal ratio of a telescope f/ = [focal length]/ [diameter] (of primary) Plate scale P = 206.265 m/ f [arcsec/pixe] where m: pixel size [in microns] f : focal length of the primary [in mm] e.g., Lulin 1 m, f = 8000 mm AP-8 CCD camera m = 24 μm, P = 0.62"/pixel FOV = P x 1024 ~ 10.6

- The intensity of the object can be retrieved because our image is of **digital** nature
- Objects fainter than the sky can be imaged
- Dynamical range is a concern

Number of bits	Resolution (shades of gray)
8	256
10	1,024
12	4,096
14	16,384
16	65,536

CCD Operation

- Generate charge photoelectric effect Photons → photoelectrons
- Collect charge
- Transfer charge applying differential voltage
- Detect charge charge → output voltage → (A/D converter) digitally recorded

Advantages of CCD Detectors

- High QE(>80%)
- Linearity between incident light and measured output; i.e., no reciprocity failure
- High dynamical range (>10⁴) cf. ~100 for photographic plates
- **Digital form** --- easy storage and manipulation of data
- Geometric stability pixels structurally fixed; cf. possible emulsion shifts during development

Prime Focus camerafor the William Herschel Telescope, with 2 EEV-42-80 thinned and AR coated CCDs to give a 4k x 4k mosaic. Pixel size is 13.5 micron, giving FOV 16.1'.

