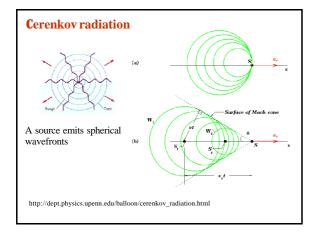

Effects of Earth's Atmosphere on Astronomical Observations

- 1. Limited wavelength ranges (有限的波段)
- 2. Extinction (消光)
- 3. Refraction (折射)
- 4. Curvature (曲率)
- Atmospheric turbulences (大氣擾動)

1. Limited wavelength ranges Transparent relatively in optical, radio (and some infrared) → atmospheric "windows" Optical window: 300 nm to 1.4 μm O₃ (ozone) H=25 km Radio window: 8 mm to ~15 m Reflection in ionosphere H~100 km

Q: 波長越短應該吸收越多 但為何 射線吸收少?

大氣吸收的機制:


電子躍遷 (electronic transition) 分子振動 (vibration; stretching) 分子彎擺 (bending) 分子轉動 (rotation) In addition to photons, the atmosphere also stops energetic charged particles
 → cosmic rays (mainly p⁺, e⁻) from space; E~10¹⁰-10²⁰ e V

High-speed particles, if v ↑↑
 v > c/n (=light speed in the medium, n: refractive index)

→ ? erenkov radiation

- Even beyond earth's atmosphere, there is absorption
 - → [dust + gas] in the solar system, in the interstellar medium (星際物質), and circumstellar medium (環星物質)

Dust strong absorption in visual and UVGas strong absorption in EUV and soft X-ray

2. Extinction • Absorption (吸收) photons are "destroyed" • Scattering (散射) photon energy and direction redistributed → Effectively an absorption in the direction to the source

Q: 如何知道某顆星有多亮?

觀測 但,觀測什麼呢?

來自天體的電磁波 → 星際消光

- → 大氣消光 → 望遠鏡收集
- → 偵測器感應 → "讀數" (count)

把這個讀數和「標準星」的讀數 相比 → 亮度

例如某顆星的讀數為 1000.0,而 利用相同儀器某標準星(視星等 為9.0等)讀數為 500.0,那麼 ...

O: 天空為何是藍色的?

Scattering

Size of particles a

- 1. 2 a << (radio) P scattering?
 - $$\begin{split} & I_{scattering} \; \mu \quad \ ^{\text{-4}} \; (\; Rayleigh \, scattering \,) \\ & \quad \quad Blue \; sky \end{split}$$
- 2. 2 a>> P scattering

Gray sky in a cloudy day!

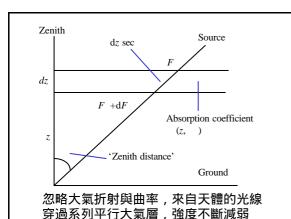
- 3. 2 a \tilde{a} (dust, optical) P $I_{scattering} \mu$
 - ⇒ Interstellar reddening (紅化)

3. Refraction

Apparent Altitude	Angle of Refraction
0	35'21"
1	24'25"
3	14'24"
10	05'18"
30	01'41"
60	00'34"
90	00'00"

• Sun/moon at zenith distance = 90 ° (refraction ~ 35'), but their sizes ~ 30', so when we seen center at horizon, they in fact are below the horizon

4. Curvature


Curvature and refraction can be ignored if zenith distance 45°

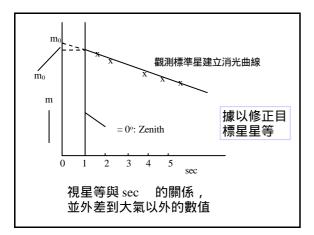
If we ignore curvature and refraction,

→ Atmosphere = a series of plane parallel layers, with thickness dz at height z.

$$dF_1 = -\mathbf{k}F_1 \cdot \sec \mathbf{z} |dz|$$

where = (z,) is the absorption coefficient

If F_0 = flux outside atmosphere, then integrating z, we obtain flux at ground level (z=0)


$$\Rightarrow F_{I}(\mathbf{z}) = F_{0} \exp[-\sec \mathbf{z} \int_{0}^{\infty} \mathbf{k}(z, \mathbf{l}) dz]$$

At the zenith (=0)

$$F_{\boldsymbol{l}}(0) = F_0 \exp[-\int_{0}^{\infty} \boldsymbol{k}(z, \boldsymbol{l}) dz]$$

$$\Rightarrow \log F_1(\mathbf{z}) = \log F_0 + \sec \mathbf{z} \cdot \log \frac{F_1(0)}{F_0}$$

Since $m_I = -2.5\log F_I + const$

$$m_1 = m_0 + \Delta m_0 \cdot \sec \mathbf{z}$$

m: observed from ground

 m_0 : would have observed outside atmosphere m_0 : absorption in terms of magnitude at zenith

(cf.
$$y = b + ax$$
)

So, m_0 and m_0 can be estimated by measuring m (observable) at different (known).

For $60\,^{\circ}$, refraction and curvature have to be considered

Define similarly, $m_1 = m_0 + \Delta m_0 \cdot M(\mathbf{z})$

where M() is the **air mass** = absorption (length) along the curved light-path

For small , M () ~ sec

亦即若天頂角小, sec 約就是大氣質量

Otherwise determine empirically

⇒ look-up table

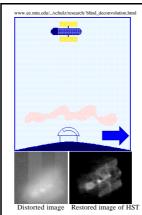
But air is not static

→ Try to observe as close to zenith as possible

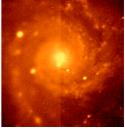
Apparent zenith distance (degrees)	Air mass
40	01.30
50	01.55
60	02.00
70	02.90
75	03.82
80	05.60
85	10.40
87	15.36
88	19.79

5. Atmospheric Turbulences

大氣擾動 → 有如在游泳池底看世界


Cause the stellar image to

• blink (scintillation) variation of air malong line of sight 一閃一閃亮晶晶


 move around ('seeing') variation of refractive index along line of sight 晃來晃去看不清

"seeing" (視相寧靜度) a point source, after long exposures, is smeared into a 'seeing' disk

Typically, seeing (disk) ~ a few arcsec across

Effects of Astronomical Seeing --- M74 (NGC 628)

http://www.astr.ua.edu/gifimages/m74seeing.html

- Extended sources are not affected as much (averaged out)
 - e.g. Planets ~ 10"-30" would appear 'steady' but stars (point sources) 'twinkle'.

Usually optical telescopes are seeing-limited

At radio s, with very small-scale turbulences, seeing/scintillation are not important

Radio telescopes are diffraction-limited i.e., limited by the optics, rather than by atmosphere

Radio s are affected by interplanetary and ISM scintillation

To overcome rapid scintillation

⇒ Fast (high-time-resolution) observations

Radio _s⇒ Hewish in 1960s tried to study IS scintillation

⇒ Discovered pulsars

Optical ⇒ 'speckle' imaging

Speckle Imaging (散斑成像) 連續快速 (0.1 s) 曝 (0.1 s) 曝 光 , 把大氣 擾動「凍結」 經過影像處理 斑點干涉影像 (左圖) , 發 現這是顆雙星 一般長期 (40 s) 曝 光 , 大氣擾 動造成星點 影像模糊 Movie http://www.ciw.edu/alycia/speckle.html