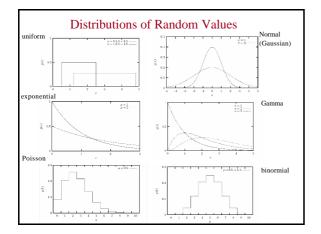
Astronomical Image Processing

- Data/Image Processing: a raw image → calibrated image
- Data analysis
- Data reduction \rightarrow calibrated data product


Photometric Accuracy

- What we measure = star (S) + (sky) background (B) + noise (N)
- What determines the faintest object detectable? *S* > *B*?

No!

It is the *S/N* that determines the photometric accuracy and the detectability of the faintest object (the detecting limit)

e.g., *S*/*N*~3, a 3-sigma detection, would be a rather secured detection

Poisson Distribution (1/4) most commonly used to model the number of random occurrences of some phenomenon i

random occurrences of some phenomenon in a specified unit of space or time

For example

- 1. number of phone calls received by a telephone operator in a 10-minute period
- 2. number of flaws in a bolt of fabric
- 3. number of typos per page made by a secretary

http://stat.tamu.edu/stat30x/notes/node70.html

Poisson Distribution (2/4)

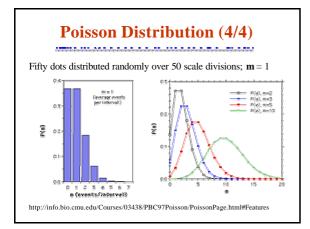
• For a Poisson random variable, the probability that *X* is some value *x* is given by the formula

$$P(X=x) = \mathbf{m}^{x} e^{-\mathbf{m}} / x!$$

where μ is the average number of occurrences in the specified interval.

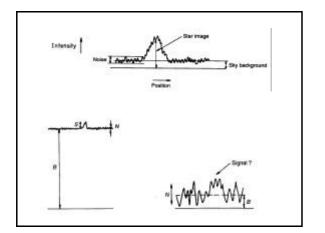
• For the Poisson distribution,

1


$$E(X) = \mathbf{m}, \quad Var(X) = \mathbf{m}$$

• That is, SD = uncertainty = SQRT(total events)

Poisson Distribution (3/4)


• EXAMPLE 1: The number of false fire alarms in a suburb of Taipei averages 2.1 per day. Assuming that a Poisson distribution is appropriate, the probability that 4 false alarms will occur on a given day is given by

$$P(X = 4) = 2.1^4 e^{-2.1} / 4! = 0.0992$$

Poisson Distribution --- Example

The spatial distribution of craters in a particular region of the moon has a Poisson distribution with average occurrence of 900 craters per square kilometer. NASA is planning a moon landing in the region and wants to know the probability that there are no craters within a circle of 50 meters in diameter from a preselected point in the region. What diameter circle will guarantee no craters inside with probability 0.9? For the solution, see http://amath.colorado.edu/courses/4570/ 2003fall/SEC001002/q5solutions.pdf

Signal-to-Noise Ratio (S/N; SNR)

For a random Poisson noise
 N ~ SQRT(S)

so $S/N = S / SQRT(S) = SQRT(S) \sim SQRT(t)$

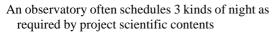
S/N increases as the square-root of the integration time.

More appropriate figure of merit for a detector

→ Detective Quantum Efficiency (DQE)

 $DQE = [(S/N)_{out}/(S/N)_{in}]^2$

Educated guess

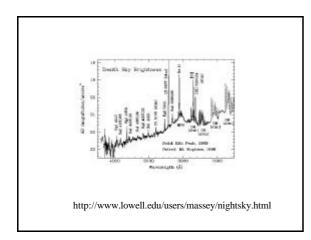

- A railroad company numbers its locomotives in order, $1, 2, \dots N$.
- (a) One day, you see a locomotive, and its number is 60. What is your best guess for the total number N of locomotives which the company owns?
- (b) On the following days, you see four more locomotives, all with numbers smaller than 60. What is your best guess for N based on this additional information?
- Describe your reasoning carefully and in detail.

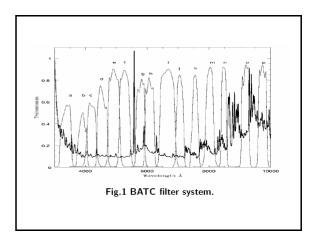
Effects of Sky Background

• Scattered moonlight or sunlight

When the moon is up, i.e., a week around Full Moon, the sky is very bright and accurate photometry is not possible.

Radio observations, and some infrared observations, are possible during the day.

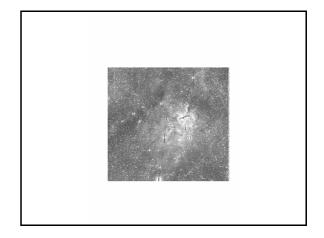

- dark almost no moon (1 week near New Moon) sky~21 mag/sq"
- >gray no moon for half of the night (second ½ near First Quarter; first ½ near Third Quarter)
- > bright moon visible nearly all night
 (1 week near Full Moon) sky~13 mag/sq"!

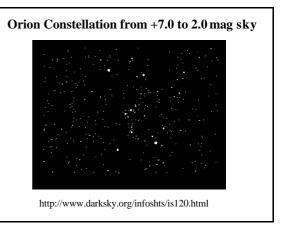

Effects of Sky Background ...

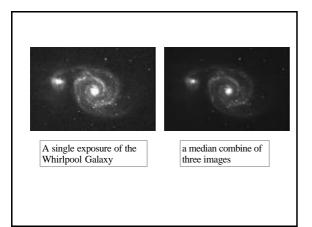
• Airglow

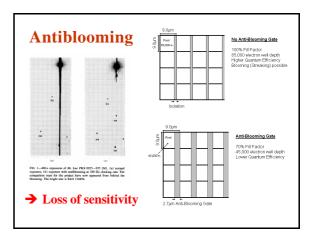
Upper atmosphere of the Earth constantly bombarded by high-energy radiation or energetic particles, mostly from the sun. atoms/molecules \rightarrow excited or ionized \rightarrow emit spectral lines

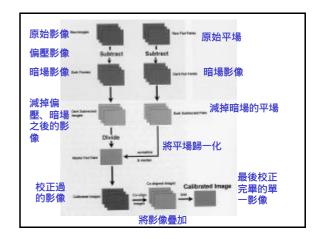
May design special filters to 'bypass' airglow lines

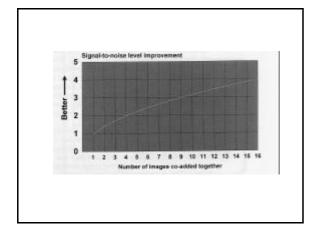



Effects of Sky Background ...

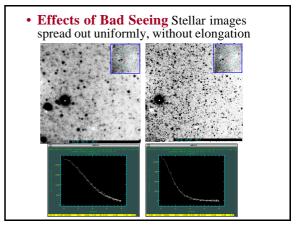

• Light Pollution

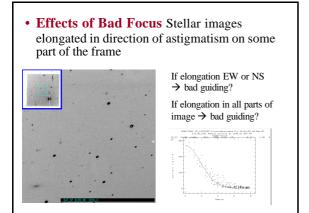

- ✓ Large cities, mainly from mercury and sodium street lights, often poorly shielded
- ✓ Artificial satellites, e.g., P2242523.FIT
- ✓ Zodiacal light: sunlight scattered off dust particles in a band centered around the ecliptic
- ✓ Faint, unresolved stars

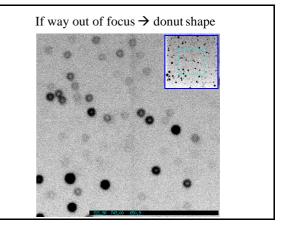

- +7.0 mag sky → a total of 14,000 stars, so a person in a perfect site can see ~7,000 stars
- +6.0 mag sky \rightarrow ~2,400 stars visible
- +5.0 mag sky → ~800 stars visible, Milky Way barely visible
- +4.0 mag sky → < 250 stars visible, Milky Way not visible
- +3.0 mag sky \rightarrow < 50 stars (typical in a city)
- +2.0 mag sky \rightarrow < 25 stars (center of a big city)

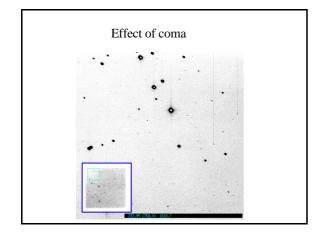


- **Bias frame** --- an exposure of zero time with the CCD covered, i.e., with the shutter closed. It is an image of the electronic noise present in the camera
- **Dark frame** --- an image produced by covering the CCD and taking a blank exposure. The exposure time is normally of the same duration as that of the target frame.
- Flat field--- an image of a totally uniform object such as a white screen. Used to correct the image for non-uniformity caused by the CCD itself and the optics.

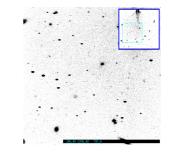

Noises

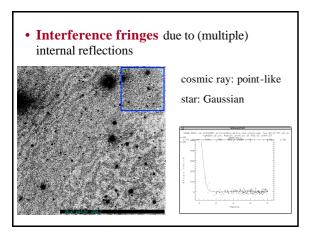

- **Photon (shot) noise** --- light arrives as discrete photon events → fluctuations in arrival rates
- Thermal (Johnson or Nyquist) noise --generated in all resistors, from random nature of the motion of the charge carriers
- Readout noise --- errors introduced by stray capacitance in the (CCD) readout circuit
 → s²_{total}= S_i s²_i

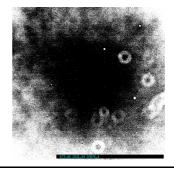

Arts of Imaging Processing


- Q: What can go wrong with CCD imaging?
- A: Everything!
 - seeing, focusing, guiding
 - cosmic rays
 - fringing
 - dust rings
 - reflections
 - diffraction spikes

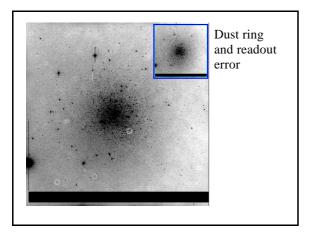
http://www.ciw.edu/vonbraun/obs_mishaps/mishaps.html

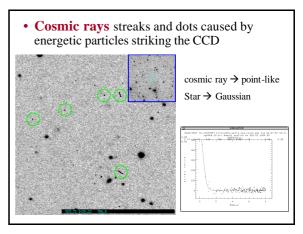


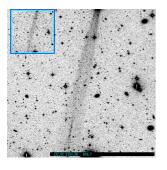


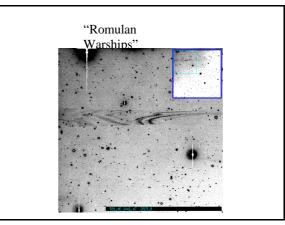


• Effects of Bad Guiding Stellar images elongated in NS or EW uniformly in the frame




• **Dust rings** caused by dust ondewar window or filters; show up in all frames


Dewar window dust \rightarrow stationary

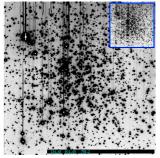

Filter dust \rightarrow moved throughout run (and even in a night) \rightarrow evening and dawn flats

• **Reflection** caused by reflection or scattering off some part of the telescope (or dome)

• **Diffraction spikes** caused by by (the Fourier Transform of) the support struts which hold the secondary mirror in place.

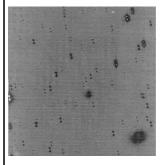
Internal reflection Part of the light hitting the CCD surface is reflected back toward the dewar window and the filter, then reflected back toward the CCD surface where it is perceived as out of focus (thus the doughnuts).

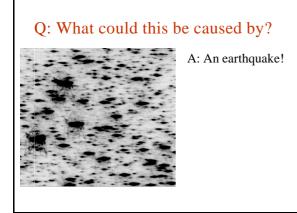
Circularly symmetric in this case



Reflecting surface or the CCD is tilted.

"Hole" in the center of each donut \rightarrow alignment ok!


A: guider jumped


Q: What could this be caused by?

A: Shutter failure bright trails of stars caused by the fact that the shutter was not closed when the CCD was read out.

Q: What could this be caused by?

