
Application of a Probabilistic Neural Network
in radial velocity curve analysis of the

spectroscopic binary stars Schulte 3, HD 37366,
HD 195987, HD 101131 and HD 93205

K.Ghaderi1∗ and A.Pirkhedri2

1 Islamic Azad University, Marivan Branch, Department of Science,
Marivan, Iran

2 Islamic Azad University, Marivan Branch, Department of Computer
Engineering, Marivan, Iran

Using measured radial velocity data of five double-lined spectroscopic binary
systems Schulte 3, HD 37366, HD 195987, HD 101131 and HD 93205, we find
corresponding orbital and spectroscopic elements via a Probabilistic Neural Net-
work (PNN). Our numerical results are in good agreement with those obtained
by others using more traditional methods.

PACS numbers: 97.80.Hn, 97.80.Fk

Key words: Stars: binaries: eclipsing – Stars: binaries: spectroscopic

Electronic address: K.Ghaderi.60 @ gmail.com

1. Introduction

Analysis of both light and radial velocity (hereafter VR) curves of binary systems
helps us to determine the masses and radii of individual stars. One historically
well-known method to analyze the VR curve is that of Lehmann-Filhés [1]. Some
other methods were also introduced by Sterne [2] and Petrie [3]. The different
methods of the VR curve analysis have been reviewed in ample detail by Karami
& Teimoorinia [4]. Karami & Teimoorinia [4] also proposed a new non-linear
least squares velocity curve analysis technique for spectroscopic binary stars.
They showed the validity of their new method to a wide range of different types
of binary See Karami & Mohebi [5-7] and Karami et al. [8].

Probabilistic Neural Network (PNN) is a new tool to derive the orbital pa-
rameters of the spectroscopic binary stars. In this method the time consumed
is considerably less than the method of Lehmann-Filhés and even less than the
non-linear regression method proposed by Karami & Teimoorinia [4].

In the present paper we use a Probabilistic Neural Network (PNN) to find the
optimum match to the four parameters of the VR curves of the five double-lined
spectroscopic binary systems: Schulte 3, HD 37366, HD 195987, HD 101131 and
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HD 93205. Our aim is to show the validity of our new method to a wide range
of different types of binary.

Schulte 3 is a double-lined eclipsing binary and it is a probable member of
Cyg OB2. The spectral type is O6IV and O9III for the primary and the sec-
ondary star, respectively, and the orbital period is P =4.7464 days [9]. HD 37366
is a double-lined spectroscopic binary with a period of P =31.8188 days. The
primary of HD 37366 is classified as O9.5 V, and it contributes approximately
two-thirds of the optical flux. The less luminous secondary is a broad-lined,
early B-type main-sequence star [10]. HD 195987 is a moderately metal-poor
double-lined binary system with an orbital period of P =57.32161 days. The
continuum from the secondary typically tends to fill in the spectral lines of the
primary, which then appear weaker as if the star were more metal-poor and the
combined-light photometry is reddened [11]. HD 101131 is a brightest objects in
the young open cluster IC 2944. This system is a double-lined spectroscopic bi-
nary in an elliptical orbit with a period of P= 9.64659 days. It is a young system
(approximately 2 million years old) and The spectral type is O6.5 V((f)) and
O8.5 V for the primary and the secondary star , respectively [12]. HD 93205 is
an O-type spectroscopic binary and The spectral type is O3V and O8V for the
primary and the secondary star, respectively, and the orbital period is P=6.0803
days [13].

This paper is organized as follows. In Sect. 2, we introduce a Probabilistic
Neural Network (PNN) to estimate the four parameters of the VR curve. In Sect.
3, the numerical results are reported, while the conclusions are given in Sect. 4.

2. VR curve parameters estimation by the Probabilistic Neu-
ral Network (PNN)

Following Smart [14], the VR of a star in a binary system is defined as follows

VR = γ +K[cos(θ + ω) + e cosω], (1)

where γ is the VR of the center of mass of system with respect to the sun. Also
K is the amplitude of the VR of the star with respect to the center of mass
of the binary. Furthermore θ, ω and e are the angular polar coordinate (true
anomaly), the longitude of periastron and the eccentricity, respectively.

Here we apply the PNN method to estimate the four orbital parameters, γ,
K, e and ω of the VR curve in Eq. (1). In this work, for the identification of
the observational VR curves, the input vector is the fitted VR curve of a star.
The PNN is first trained to classify VR curves corresponding to all the possible
combinations of γ, K, e and ω. For this one can synthetically generate VR curves
given by Eq. (1) for each combination of the parameters:

– −100 ≤ γ ≤ 100 in steps of 1;

– 1 ≤ K ≤ 300 in steps of 1;
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– 0 ≤ e ≤ 1 in steps of 0.001;

– 0 ≤ ω ≤ 360◦ in steps of 5.

This gives a very big set of k pattern groups, where k denotes the number of
different VR classes, one class for each combination of γ, K, e and ω. Since this
very big number of different VR classes causes to some computational limitations,
hence one can first start with the big step sizes. Note that from Petrie [3], one
can guess γ, K and e from a VR curve. This enable one to limit the range of
parameters around their initial guesses. When the preliminary orbit was derived
after several stages, then one can use the above small step sizes to obtain the
final orbit. The PNN has four layer including input, pattern, summation, and
output layers, respectively (see Fig. 5 in Bazarghan et al. [15]). When an input
vector is presented, the pattern layer computes distances from the input vector
to the training input vectors and produces a vector whose elements indicate
how close the input is to a training input. The summation layer sums these
contributions for each class of inputs to produce as its net output a vector of
probabilities. Finally, a competitive transfer function on the output layer picks
the maximum of these probabilities, and produces a 1 for that class and a 0
for the other classes [16,17]. Thus, the PNN classifies the input vector into a
specific k class labeled by the four parameters γ, K, e and ω because that class
has the maximum probability of being correct.

3. Numerical Results

Here, we use the PNN to derive the orbital elements for the five different double-
lined spectroscopic systems Schulte 3, HD 37366, HD 195987, HD 101131 and
HD 93205. Using measured VR data of the two components of these systems
obtained by Kiminki et al. [9] for Schulte 3, Boyajian et al. [10] for HD 37366,
Torres et al. [11] for HD 195987, Gies et al. [12] for HD 101131 and Morrell
et al. [13] for HD 93205, the fitted velocity curves are plotted in terms of the
photometric phase in Figs. 1 to 5.

The orbital parameters obtaining from the PNN for Schulte 3, HD 37366,
HD 195987, HD 101131 and HD 93205 are tabulated in Tables 1, 3, 5, 7 and 9,
respectively. Tables show that the results are in good accordance with the those
obtained by Kiminki et al. [9] for Schulte 3, Boyajian et al. [10] for HD 37366,
Torres et al. [11] for HD 195987, Gies et al. [12] for HD 101131 and Morrell et
al. [13] for HD 93205.

Note that the Gaussian errors of the orbital parameters in Tables 1, 3, 5, 7
and 9 are the same selected steps for generating VR curves, i.e. ∆γ = 1,∆K =
1,∆e = 0.001 and ∆ω = 5. These are close to the observational errors reported
in the literature. Regarding the estimated errors, following Specht [17], the error
of the decision boundaries depends on the accuracy with which the underlying
Probability Density Functions (PDFs) are estimated. Parzen [18] proved that
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the expected error gets smaller as the estimate is based on a large data set.
This definition of consistency is particularly important since it means that the
true distribution will be approached in a smooth manner. Specht [17] showed
that a very large value of the smoothing parameter would cause the estimated
errors to be Gaussian regardless of the true underlying distribution and the
misclassification rate is stable and does not change dramatically with small
changes in the smoothing parameter.

The combined spectroscopic elements including mp sin
3 i, ms sin

3 i, (mp +
ms) sin

3 i, (ap+as) sin i and ms/mp are calculated by substituting the estimated
parameters K, e and ω into Eqs. (3), (15) and (16) in Karami and Teimoorinia
[4]. The results obtained for the five systems are tabulated in Tables 2, 4, 6, 8
and 10 show that our results are in good agreement with the those obtained by
Kiminki et al. [9] for Schulte 3, Boyajian et al. [10] for HD 37366, Torres et al.
[11] for HD 195987, Gies et al. [12] for HD 101131 and Morrell et al. [13] for HD
93205, respectively. Here the errors of the combined spectroscopic elements in
Tables 2, 4, 6, 8 and 10 are obtained by the help of orbital parameters errors.
See again Eqs. (3), (15) and (16) in Karami and Teimoorinia [4].

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−300

−200

−100

0

100

200

300

 Photometric Phase

R
V

 (
K

m
 S

−
1 )

Schulte 3

 

 

pri
sec

Figure 1. Radial velocities of the primary and secondary components of Schulte 3

plotted against the photometric phase. The observational data have been measured by

Kiminki et al. [9].
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Figure 2. Radial velocities of the primary and secondary components of HD 37366

plotted against the photometric phase. The observational data have been measured by

Boyajian et al. [10].
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Figure 3. Radial velocities of the primary and secondary components of HD 195987

plotted against the photometric phase. The observational data have been measured by

Torres et al. [11].
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Figure 4. Radial velocities of the primary and secondary components of HD 101131

plotted against the photometric phase. The observational data have been measured by

Gies et al. [12].
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Figure 5. Radial velocities of the primary and secondary components of HD 93205

plotted against the photometric phase. The observational data have been measured by

Morrell et al. [13].

Table 1. Orbital parameters of Schulte 3

This Paper Kiminki et al. [9]

γ
(
kms−1

)
−26± 1 −26.4(1.7)

Kp

(
kms−1

)
113± 1 113.2(14.5)

Ks

(
kms−1

)
257± 1 256.7(2.4)

e 0.071± 0.001 0.070(0.009)

ω(◦) 10± 5 5.5(0.7)
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Table 2. Combined spectroscopic elements of Schulte 3

Parameter This Paper Kiminki et al. [9]

mp sin3 i/M⊙ 17.1707± 0.0019 —

ms sin3 i/M⊙ 7.5498± 0.0015 —

(mp +ms) sin3 i/M⊙ 24.7205± 0.0034 —

ap sin i/R⊙ 7.8855± 0.0692 7.4(0.9)

as sin i/R⊙ 17.9343± 0.0685 16.7(0.2)

(ap + as) sin i/R⊙ 25.8197± 0.1377 —

ms/mp 0.4397± 0.0113 —

Table 3. Orbital parameters of HD 37366

This Paper Boyajian et al. [10]

γp
(
kms−1

)
18± 1 13.3± 0.2

γs
(
kms−1

)
18± 1 21.6± 0.9

Kp

(
kms−1

)
89± 1 88.7± 0.2

Ks

(
kms−1

)
118± 1 117.4± 1.2

e 0.331± 0.001 0.330(fixed)

ω(◦) 210± 5 211.6(fixed)

Table 4. Combined spectroscopic elements of HD 37366

Parameter This Paper Boyajian et al. [10]

mp sin3 i/M⊙ 14.0053± 0.0007 13.9± 0.3

ms sin3 i/M⊙ 10.5633± 0.0006 10.42± 0.08

(mp +ms) sin3 i/M⊙ 24.5687± 0.0014 —

ap sin i/R⊙ 52.7734± 0.5733 52.62± 0.13

as sin i/R⊙ 69.9692± 0.5669 69.7± 0.7

(ap + as) sin i/R⊙ 122.7426± 1.1403 —

ms/mp 0.7542± 0.0037 —
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Table 5. Orbital parameters of HD 195987

This Paper Torres et al. [11]

γ
(
kms−1

)
−5± 1 −5.867± 0.038

Kp

(
kms−1

)
29± 1 28.944± 0.046

Ks

(
kms−1

)
37± 1 36.73± 0.21

e 0.310± 0.001 0.3103± 0.0018

ω(◦) 355± 5 357.03± 0.35

Table 6. Combined spectroscopic elements of HD 195987

Parameter This Paper Torres et al. [11]

mp sin3 i/M⊙ 0.8226± 0.002 0.808± 0.010

ms sin3 i/M⊙ 0.6447± 0.0002 0.6369± 0.0046

(mp +ms) sin3 i/M⊙ 1.4673± 0.0004 —

ap sin i/106km 21.7437± 0.7423 21.689± 0.036

as sin i/106km 27.7420± 0.7403 27.52± 0.16

(ap + as) sin i/R⊙ 71.0332± 2.1282 70.70± 0.24

ms/mp 0.7838± 0.0095 0.7881± 0.0047

Table 7. Orbital parameters of HD 101131

This Paper Gies et al. [12]

γp
(
kms−1

)
6± 1 -4.9 (25)

γs
(
kms−1

)
6± 1 11 (5)

Kp

(
kms−1

)
118± 1 117 (4)

Ks

(
kms−1

)
210± 1 211 (7)

e 0.155± 0.001 0.156 (29)

ω(◦) 125± 5 122 (12)
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Table 8. Combined spectroscopic elements of HD 101131

Parameter This Paper Gies et al. [12]

mp sin3 i/M⊙ 21.7710± 0.0014 21.8 (21)

ms sin3 i/M⊙ 12.2332± 0.0012 12.1 (13)

(mp +ms) sin3 i/M⊙ 34.0043± 0.0026 —

ap sin i/R⊙ 22.2082± 0.1847 22.0 (7)

as sin i/R⊙ 39.5231± 0.1819 39.7 (12)

(ap + as) sin i/R⊙ 61.7314± 0.3666 —

ms/mp 0.5619± 0.0066 —

Table 9. Orbital parameters of HD 93205

This Paper Morrell et al. [13]

γ
(
kms−1

)
−9± 1 −8.8± 1.3

Kp

(
kms−1

)
145± 1 144.5± 2.6

Ks

(
kms−1

)
312± 1 312.1± 2.5

e 0.371± 0.001 0.37± 0.01

ω(◦) 55± 5 52.0± 1.3

Table 10. Combined spectroscopic elements of HD 93205

Parameter This Paper Morrell et al. [13]

mp sin3 i/M⊙ 32.8719± 0.0018 33.0± 1.6

ms sin3 i/M⊙ 15.2770± 0.0014 15.3± 1.5

(mp +ms) sin3 i/M⊙ 48.1489± 0.0033 —

ap sin i/106km 11.2640± 0.0728 11.2± 0.2

as sin i/106km 24.2371± 0.0673 24.3± 0.3

(ap + as) sin i/106km 35.5011± 0.1401 —

ms/mp 0.4647± 0.0079 0.463± 0.012
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4. Conclusions

a Probabilistic Neural Network to derive the orbital elements of spectroscopic
binary stars was applied. PNNs are used in both regression (including parame-
ter estimation) and classification problems. However, one can discretize a con-
tinuous regression problem to such a degree that it can be represented as a
classification problem [16,17], as we did in this work.

Using the measured VR data of Schulte 3, HD 37366, HD 195987, HD 101131
and HD 93205 obtained by Kiminki et al. [9], Boyajian et al. [10], Torres et al.
[11], Gies et al. [12] and Morrell et al. [13], respectively, we find the orbital
elements of these systems by the PNN. Our numerical results shows that the
results obtained for the orbital and spectroscopic parameters are in good agree-
ment with those obtained by others using more traditional methods.

This method is applicable to orbits of all eccentricities and inclination angles.
In this method the time consumed is considerably less than the method of
Lehmann-Filhés. It is also more accurate as the orbital elements are deduced
from all points of the velocity curve instead of four in the method of Lehmann-
Filhés. The present method enables one to vary all of the unknown parameters
γ , K, e and ω simultaneously instead of one or two of them at a time. It is
possible to make adjustments in the elements before the final result is obtained.
There are some cases, for which the geometrical methods are inapplicable, and
in these cases the present one may be found useful. One such case would occur
when observations are incomplete because certain phases could not have been
observed. Another case in which this method is useful is that of a star attended
by two dark companions with commensurable periods. In this case the resultant
velocity curve may have several unequal maxima and the geometrical methods
fail altogether.
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