Star Clusters

--- Links between Galaxies and Stars

- Star clusters as stellar birth places
- Open clusters, globular clusters, and others
- Star clusters as targets of investigation

■ Star clusters as tools in stellar \& galactic studies
■ Latest and outstanding issues

Wen-Ping Chen Graduate Institute of Astronomy National Central University Taiwan
http://ps1tw.astro.ncu.edu.tw/ps1sc/tmp_20191028/ StarClusters2019ISYA42Yunnan.pdf
https://bit.ly/2BRlp7K

DABTH AT NIGITT

Study of Star Clusters

- Historically one of the oldest subjects in astronomy, next to stars and planets, e.g., the Messier objects ...
- Progress paused for a few decades because CCD sizes did not catch up
- Interest revived because of sky surveys and OIR widefield imaging, and Gaia measurements
- Current Milky Way census: 3000+ open clusters, 100+ globular clusters
- Latest interests mainly in massive star clusters, dissolving/dissolved (extended clusters, moving groups), and extragalactic systems

Star Clusters

- Long recognized by naked eyes in the night sky

OCs: 26

Messier "Catalogue des Nébuleuses et des Ams e'Étoiles" ("Catalogue of Nebulae and Star Clusters" (1771)

$$
\begin{aligned}
& \text { Hyades } \\
& \mathrm{d}=47 \mathrm{pc}(\text { closest to Sun }) \\
& \Theta=330^{\prime} \\
& M=400 M_{\odot} \\
& \tau=625 \mathrm{Myr}
\end{aligned}
$$

Pleiades ($=\mathrm{M} 45$)

$\mathrm{d}=136$ pc (most obvious)
$\theta=110^{\prime}$
$\tau=75-150 \mathrm{Myr}$

Formation of Stars

Stars are formed in groups out of dense molecular cloud cores, and planets are formed, at the same time as the stellar birth, in circumstellar disks.

Star Formation $=$ Cluster Formation

Figure 2 CO contour map of the Taurus molecular cloud with positions of dense NH_{3} cores, embedded infrared sources, and visible T Tauri stars (from Myers 1986).

Filamentary Molecular Clouds

Giant Molecular Clouds
$\mathrm{D}=20 \sim 100 \mathrm{pc}$
$\mathcal{M}=10^{5} \sim 10^{6} \mathcal{M}_{\odot}$
$\rho \approx 10 \sim 300 \mathrm{~cm}^{-3}$
$T \approx 10 \sim 30 \mathrm{~K}$
$\Delta v \approx 5 \sim 15 \mathrm{~km}^{-1}$

Molecular clumps/ clouds/condensations

$$
\begin{aligned}
& n \sim 10^{3} \mathrm{~cm}^{-3}, D \sim 5 \mathrm{pc}, \\
& M \sim 10^{3} \mathrm{M}_{\odot}
\end{aligned}
$$

Dense molecular cores

$$
\begin{aligned}
& n \geq 10^{4} \mathrm{~cm}^{-3}, \mathrm{D} \sim 0.1 \mathrm{pc}, \\
& M \sim 1-2 \mathrm{M}_{\odot}
\end{aligned}
$$

GMCs are short lived \rightarrow Most young stellar groups are not gravitational bound at birth ("high infant fatality rates").

Those that survive and remain gravitational bound are the star clusters we see today: open clusters and globular clusters
Those recently dissolved with then-members still sharing similar space motion: stellar associations or moving groups (e.g., Beta Pictoris MG, AB Doradus MG)

Similar properties: OB associations or T association;
Reflection nebulae: R associations (e.g., Mon R2)
Disintegrated star clusters supply the field stars.

Nearby Examples

Massive Star-Forming Region

- Orion OB Association (350-400 pc) omc 05:56-01:48

Low-Mass Star-Forming Regions

- Taurus Molecular Cloud (TMC-1) (140 pc) TMC 04:41 +25:52
- Rho Ophiuchi cloud (130 pc) |Oph 16:28-24:32
- Lupus (140 pc)
- Chamaeleon (160 pc)
- Corona Australis (130 pc)

4/5 in the southern sky ...
why?
CrA 19:01-36:59

The Gould Belt, a (partial) ring in the sky, $\sim 1 \mathrm{kpc}$ across, centered on a point 100 pc from the Sun and tilted about 20 deg to the Galactic plane, containing star-forming molecular clouds and OB stars (OMC, Sco-Cen OB, Cepheus OB2, Perseus OB2, TMC, parts of Serpens clouds)
= local spiral arm
Origin unknown (dark matter induced star formation 30 Myrs ago?)

http://galaxymap.org/detail_maps/download_maps/gould.png

http://hera.ph1.uni-koeln.de/~heintzma/All/OB stars.htm

Gould belt

de Zeeuw+99?

Fig. 29.-Locations of the kinematically detected OB associations projected onto the Galactic plane (right) and a corresponding cross section (left) (cf. Fig. 1). The gray circles indicate the physical dimensions as obtained from the angular dimensions and mean distances, on the same scale. The lines represent the streaming motions, derived from the average proper motions, mean distances and median radial velocities of the secure members, corrected for "standard" solar motion and Galactic rotation (see § 9.2). The ellipse around the α Persei cluster indicates the Cas-Tau association. The small dots schematically represent the Olano (1982) model of the Gould Belt.

Bobylev 2014

Fig. 2. Bird's-eye view of the Star Formation Handbook cloud catalog (colored blue points), looking down on the Galactic disk with the sun (orange circle) at the center. The catalog is overlaid on the 3D "Bayestar 19" dust map from Green et al. (2019) integrated from $z= \pm 300 \mathrm{pc}$ off the plane. The points have been arbitrarily scaled according to their dust extinction (between $A_{V}=0$ mag and $A_{V}=9 \mathrm{mag}$), so larger scatter points indicate more extinguished sightlines. The statistical errors (corresponding to the 16th/84th percentile of the cloud distances) are indicated via the line segments; an additional systematic uncertainty is expected, as reported in Table A.1. Right-hand panels: zoom-ins of the clouds towards $l=90^{\circ}$ (top), clouds near the Sagittarius arm (middle), and clouds within the nearest 375 pc of the sun (bottom). In case this 3D figure does not render, an interactive 3D version is also accessible online and at https://faun.rc.fas.harvard.edu/czucker/Paper_Figures/ handbook_distances.html.

Barnard 72 in Ophiuchus

http://www.robgendlerastropics.com/B72JMM.jpg

Figure 1.1 A portion of the Northern sky. The Milky Way is depicted as light grey, while the darker patches indicate giant molecular clouds. Also shown, according to their relative brightness, are the more prominent stars, along with principle constellations.

Drion in visible light

(Bok) Globules silhouetted against emission nebulosity

A dark cloud core seen

 against a star field
$+\mathrm{AO}$
© Anglo-Australian Observatory

Frerking et al. (1987)

Star Formation in a Nutshell

Cloud of mass \mathcal{M}, radius $R, \quad E_{\text {rot }}=\frac{1}{2} I \omega^{2} \quad I=\frac{2}{5} M R^{2}$ temperature T, density ρ rotating at ω

$$
\Omega=-\frac{3}{5} \frac{G M^{2}}{R} \frac{m v^{2}}{r}=\frac{G m M}{r^{2}}
$$

Onset of spontaneous cloud collapse --- Virial Theorem $2 \mathrm{~K}+\mathrm{U}=0$ If $\omega=0, P_{\mathrm{ext}}=0$

$$
2 \cdot \frac{3}{2} \frac{M}{\mu m_{H}} k T-\frac{3}{5} \frac{G M^{2}}{R}=0
$$

$$
\mathcal{M}_{J}=\left(\frac{\pi k_{B} T}{4 \mu m_{H} G}\right)^{3 / 2} \sqrt{\frac{1}{\rho}} \approx 1.0\left(\frac{T}{10 \mathrm{~K}}\right)^{3 / 2}\left(\frac{n_{\mathrm{H}_{2}}}{10^{4} \mathrm{~cm}^{-3}}\right)^{-1 / 2}\left[\mathcal{M}_{\odot}\right]
$$

If $\mathcal{M}_{\text {cloud }}>\mathcal{M}_{\mathrm{J}}$ (Jeans critical mass) \rightarrow cloud collapse

Virial theorem

Equation of motion (in the Lagragian form)

$$
\begin{equation*}
\varrho \frac{d^{2} \vec{r}}{d t^{2}}=\vec{f}-\nabla P \tag{1}
\end{equation*}
$$

In hydrostatic equilibrium, $\frac{d^{2} \vec{r}}{d t^{2}}=0$, so $\vec{f}=\nabla P$, and assuming spherical symmetry and the force is self-gravitation

$$
\frac{d P}{d r}=-\frac{G m(r) \varrho(r)}{r^{2}} \text { (Hydrostatic equilibrium) }
$$

and $m(r)=\int_{0}^{r} 4 \pi r^{2} \varrho d r$ (mass continuity/distribution)

Take vector dot of \vec{r} of (1), divide by ϱ, define $\boldsymbol{F}=\boldsymbol{f} / \varrho$ (force per unit mass, and integrate, using the boldface for vectors

$$
\begin{equation*}
\int d m \boldsymbol{r} \cdot \frac{\boldsymbol{d}^{2} \boldsymbol{r}}{\boldsymbol{d} \boldsymbol{t}^{2}}=\int \boldsymbol{r} \cdot F d m-\int \boldsymbol{r} \cdot \nabla P \frac{d m}{\varrho} \tag{2}
\end{equation*}
$$

Given $\frac{d}{d t}\left(\boldsymbol{r} \cdot \frac{d \boldsymbol{r}}{d t}\right)=\boldsymbol{r} \cdot \frac{d^{2} \boldsymbol{r}}{d t^{2}}+\left(\frac{d \boldsymbol{r}}{d t}\right)^{2}=\frac{1}{2} \frac{d^{2}}{d t^{2}} \boldsymbol{r}^{2}$
So, $\int d m \boldsymbol{r} \cdot \frac{\boldsymbol{d}^{2} \boldsymbol{r}}{\boldsymbol{d} \boldsymbol{t}^{2}}=\frac{1}{2} \frac{d^{2}}{d t^{2}} \int \boldsymbol{r}^{2} d m-\int\left|\frac{d \boldsymbol{r}}{d t}\right|^{2} d m$

$$
=\frac{1}{2} \frac{d^{2} I}{d t^{2}}-2 \mathcal{E}_{\mathrm{kin}}
$$

I: moment of inertia
$\mathcal{E}_{\text {kin }}:$ kinetic energy

Because $d m=\varrho d V$, the last term in (2),

$$
\begin{aligned}
\int \boldsymbol{r} \cdot \nabla P \frac{d m}{\varrho} & =\int \boldsymbol{r} \cdot \nabla P d V=\int \nabla(\boldsymbol{r} P) d V-3 \int P d V \\
& =\oint P \boldsymbol{r} \cdot d \boldsymbol{S}-3 \int P d V
\end{aligned}
$$

Assuming spherical symmetry,

$$
=4 \pi R^{3} P_{s}-3 \int P d V
$$

Note:

$$
\begin{aligned}
& \int \nabla(\boldsymbol{r} P)=(\nabla \cdot \boldsymbol{r}) P+\boldsymbol{r} \cdot \nabla P \\
& \nabla \cdot \boldsymbol{r}=3 \\
& \text { Gauss's theorem } \rightarrow \text { volume integral }
\end{aligned}
$$

of the divergence to surface integral

Putting together, we have

$$
\frac{1}{2} \frac{d^{2} I}{d t^{2}}=2 \varepsilon_{\mathrm{kin}}+3 \int P d V+\int \boldsymbol{r} \cdot F d m-\oint P \boldsymbol{r} \cdot d \boldsymbol{S}
$$

where $\boldsymbol{r} \cdot F$ (work) is virial;
or

$$
\frac{1}{2} \frac{d^{2} I}{d t^{2}}=2 \varepsilon_{\text {kinetic }}+3 \int P d V+\varepsilon_{\text {potential }}-4 \pi R^{3} P_{\text {external }}
$$

For stars, under hydrostatic equilibrium and $P_{\text {ext }}=0$,
$2 \varepsilon_{\mathrm{k}}+\varepsilon_{\mathrm{p}}=0$

$$
\frac{1}{2} \frac{d^{2} I}{d t^{2}}=2 \varepsilon_{\mathrm{k}}+\varepsilon_{\mathrm{p}} \quad \begin{aligned}
& \text { LHS }=0 \rightarrow \text { stable } \\
& \text { LHS }<0 \rightarrow \text { collapsing } \\
& \text { LHS }>0 \rightarrow \text { expanding }
\end{aligned}
$$

\mathcal{E}_{k} : a variety of kinetic energies
\checkmark Kinetic energy of molecules
\checkmark Bulk motion of clouds
\checkmark Rotation
\checkmark...
\mathcal{E}_{p} : a variety of potential energies
\checkmark Gravitation
\checkmark Magnetic field
\checkmark Electrical field
\checkmark...
$\varepsilon_{\text {total }}=\varepsilon_{k}+\varepsilon_{p}$, governs if the system is bound $\left(\varepsilon_{\text {total }}<0\right)$
For stars, mostly $\varepsilon_{p}=\Omega$ (gravitational energy; negative)

If $P_{\text {ext }} \neq 0$ (Bonnor - Ebert sphere) $2 K+U-3 P_{\text {ext }} V=0$
Typical parameters for molecular dense cores or Bok globules \rightarrow OK to collapse
In reality, resistance by $\overrightarrow{\mathcal{B}}, \overrightarrow{\boldsymbol{\omega}}$, turbulence, etc. \rightarrow low star formation efficiency (a few \%) in typical clouds

For GMCs $\rightarrow \mathcal{M}_{J} \approx 100 \sim 1000 \mathcal{M}_{\odot}$
But stars have masses $\approx 0.08 \mathcal{M}_{\odot}$ to $150 \mathcal{M}_{\odot}$. (What if not?)
So what happens?

Formation of Star Clusters

Recall $\mathcal{M}_{\mathrm{J}} \propto \frac{T^{3 / 2}}{\rho^{1 / 2}}$, and a smaller \mathcal{M}_{J} favors cloud collapse
Cloud collapse $\rightarrow \rho$ always \uparrow, if gravitational energy radiated away \rightarrow optically thin \rightarrow cooling $\rightarrow T \approx$ const (isothermal collapse)
denser \rightarrow more collisions \rightarrow more excitations and line emission
\rightarrow if photons escape \rightarrow cooling
$\rightarrow \mathcal{M}_{\mathrm{J}} \propto \rho^{-1 / 2} \longrightarrow \mathcal{M}_{\mathrm{J}} \downarrow$, i.e., easier to exceed the threshold
\rightarrow fragmentation to fragments or cores \rightarrow a star cluster
cloud opaque \rightarrow photons do not escape
When a dense core becomes very dense \rightarrow optically thick (adiabatic collapse) $\rightarrow T \propto \rho^{3 / 2} \uparrow$, and $\mathcal{M}_{\mathrm{J}} \propto \rho^{1 / 2} \uparrow$ with time, i.e., ever more difficult to collapse \rightarrow individual stars

NGC 6520

Barnard 86

Types of Star Clusters

Morph The there are two general kinds of star clusters \square Gala There e vision vo here ar is vichrop tree sour hot ryuroperices ante chur ways v^{v} where ties of berlusteres between. \checkmark Spherically shape, concentrated
with clear: between are yet south hinds.

> some falling, in
$\checkmark 10^{4}$ to 10^{6} members
\checkmark Old members; Pop II ("metal" poor)
\checkmark 100s known; mostly in the halo , orbiting/concentrated toward the GC

M80 HST

NGC 2158 $d=5200 \mathrm{pc}$ $\tau=1.05 \mathrm{Gyr}$

[^0]

Galactic Longitude

OCs preferentially on the disk plane

GCs preferentially away from the disk in the halo; centering around the Galactic center

Most known star clusters within 1-2 kpc (why?)

Spatial Distribution of Galactic Open Clusters

Young open clusters ($<100 \mathrm{Myr}$) are located near the Galactic plane. Older systems are more scattered above and below the plane.

Metallicity gradients

Age-Metallicity Relation

Fig. 8.-(a) Radial and (b) vertical abundance gradient for 118 open clusters. The least-square fitting results in a gradient of -0.063 ± 0.008 and -0.295 ± 0.050 dex kpc^{-1}, respectively. The typical error bar for $[\mathrm{Fe} / \mathrm{H}]$ is about 0.1 dex, as shown in the lower left corner of the figures. In deriving the vertical gradient, the radial gradient has been corrected.

Fig. 10.-Age-metallicity relation (AMR) for the 118 open clusters after correcting for the radial gradient. The solid line is a least-square fit for the open cluster data.

Chen, L. +2003

> A globular cluster is very compact that even the $H S T$ cannot resolve individual stars near the core.

Star Clusters

as
 Targets of Investigation

How to determine the luminosity and surface temperature, chemical composition, etc., of a star? How to determine its distance and age of a star?

It is much easier if the star is a cluster member, because all the members were formed at the same time (coeval) out of the same molecular cloud, and at the same distance from us.

Stellar Properties in a Nutshell

A star generates energy by thermonuclear fusion reactions at its core \rightarrow (outward) thermal pressure (gradient) to counteract (inward) gravitational pull

\rightarrow hydrostatic equilibrium

 in every part of a starStars with stable supply of H as nuclear fuel \rightarrow main sequence stars
$=$ normal stars

Main-sequence stars

$\leftarrow T$
\square core hydrogen fusion; a stellar mass sequence
\square MS stars have similar radii.
\square Massive stars \rightarrow fusion rate $\uparrow \uparrow \uparrow$ at the core \rightarrow luminous $\mathcal{L} \uparrow \uparrow \uparrow$ \rightarrow large energy flux through stellar surface $4 \pi \mathcal{R}^{2} \rightarrow T \uparrow$
Low-mass stars \rightarrow moderate fusion rate \rightarrow luminous $\mathcal{L} \downarrow$
\rightarrow smaller flux through surface $\rightarrow T \downarrow$
\rightarrow A diagonal band in the Hertzsprung-Russell (HR) diagram

Stellar Evolution in a Nutshell

\square Massive MS stars \rightarrow fusion rate $\uparrow \uparrow \uparrow \rightarrow$ luminous $\mathcal{L} \uparrow \uparrow \uparrow$ \rightarrow nuclear fuel (H) used up rapidly \rightarrow lifetime $\tau \downarrow \downarrow$
Low-mass MS stars \rightarrow moderate fusion rate \rightarrow luminous $\mathcal{L} \downarrow$ \rightarrow fuel used up slowly $\rightarrow \tau \uparrow$
\square When central hydrogen exhausted ($\sim 10 \%$ for the Sun)
\rightarrow core contracts until being stopped
\checkmark by next rounds of fusion Nuclear waste (e.g., He) \rightarrow nuclear fuel
$>$ by electron degenerate pressure (a white dwarf)
$>$ by neutron degenerate pressure (a neutron star)
$>$ by spacetime singularity (a black hole)
\square Disruptive/explosive ending \rightarrow complex nuclei to ISM

Member stars in a star cluster are formed out of the same molecular cloud, so should have the same age, same chemical abundances, and at the same distance from us.

But ...
What if there is significant time lapse in star formation?
\rightarrow different ages
For nearby systems, the depth may no longer be negligible \rightarrow different distances

What if member stars are not from the same cloud?
\rightarrow different abundances

Hertzsprung-Russell Diagram (physical)

Color-Magnitude Diagram (CMD) (observational, a proxy of the HRD)

To Determine the Distance of a cluster

Main Sequence Fitting

$$
m_{\lambda}-M_{\lambda}=5 \log d_{\mathrm{pc}}-5+A_{\lambda}
$$

$$
\left(m_{\lambda 1}-m_{\lambda 2}\right)=\left(M_{\lambda 1}-M_{\lambda 2}\right)+E(\lambda 1-\lambda 2)
$$

$$
E(\lambda 1-\lambda 2) \equiv A_{\lambda 1}-A_{\lambda 2}
$$

ISM (dust) reddening

More distant \rightarrow fainter and redder

$$
\begin{aligned}
& \text { ISM "Reddening law" (Rieke \& Lebofsky 1985) } \\
& A_{B}=1.324 A_{V} \\
& A_{J}=0.282 A_{V} \\
& A_{K}=0.112 A_{V} \\
& \quad R \equiv A_{V} / E(B-V) \approx 3.1
\end{aligned}
$$

To Determine the Age of a Star Cluster

$\leftarrow \log \left(T_{\mathrm{e}} / \mathrm{K}\right)$
As a cluster (its member stars) ages, massive stars leave the MS first and evolve to the post-main sequence phase, then progressively followed by lower-mass members.

The MS is "peeled off" from the top (upper MS) down.

Only the low-mass stars remain on the MS.

Evolution of individual stars of different masses

A collection of stars at different evolutionary stages

- Snapshot of different stellar masses at this age
- Star clusters at different ages \rightarrow theory of stellar evolution

1-2 main sequence
2-3 overall contraction 3-4 H thick shell burning $5-6 \mathrm{H}$ thin shell burning 6-7 red giant
7-10 core He burning 8-9 envelope contraction

Theoretical isochrones

Assumptions:
\checkmark coeval star formation
\checkmark same metallicity
\checkmark same distance How good are these ...

Age of the cluster
$=$ the main sequence lifetime of stars at the MSTO

Post-MS members, while rarer than MS, are useful.

CMD 3.6

Observed CMDs

Surface Temperature

Test of Stellar Evolution by Star Clusters

> Examples of HR diagrams of four open clusters, arranged by age, each showing the zero-age main sequence (ZAMS) and the best-fit isochrone.

Effect of Metallicity

Given the same mass, a metal poorer star is bluer and brighter.

Fig. 1.-Paths in the theoretical Hertzsprung-Russell diagram for $M=M \odot$. Luminosity in units of $L \odot=3.86 \times 10^{33} \mathrm{erg} / \mathrm{sec}$ and surface temperature T_{t} in units of ${ }^{\circ} \mathrm{K}$. Solid curve constructed using a mass fraction of metals with $7.5-\mathrm{eV}$ ionization potential, $X_{M}=5.4 \times 10^{-5}$. Dashed curve constructed with $X_{M}=5.4 \times 10^{-6}$.
"metals" \rightarrow low ionization/excitation potentials \rightarrow effective coolants

A metal poorer cluster \rightarrow bluer

A younger cluster retains a longer upper MS, and even contains some PMS stars.

Gaia
https://www.cosmos.esa.int/web/gaia/iow_20220523

Blue Stragglers

Common among GCs, even in some OCs.
Possible mechanisms of formation
\checkmark They formed later, therefore live longer (Roberts 1960)?
But the age difference would have been large, and GCs do not seem to contain much gas.
\checkmark Binary merging as a result of mass transfer between equal-mass components (ben 1986) ?
\checkmark Stellar collisions (Hills \& Day 1976) ?
\checkmark Prolonged MS lifetimes due to rotation or \boldsymbol{B} field (Wheeler 1979) ?
\checkmark Do not suffer as much mass loss as normal stars (slow rotators)?

Fig. 5. Hertzsprung-Russell diagram of model C, at ca. $t=12 \mathrm{Gyr}$. 10^{4} stars (corresponding to about the total number of stars in the core) were selected randomly from all stars involved in the simulation.

Stellar collisions between evolving stars.

A synthetic CMD at 12 Gyr , with the simulation starting at 10 Gyr , with a population of MS (single) stars with a flat mass spectrum, plus white dwarfs and neutron stars

Note the blue stragglers and yellow stragglers

Horizontal Branch

Different morphologies of GCs ...

Fig. 2.2. The color-magnitude diagrams of NGC 1904 (left) and NGC 6637 (right) illustrating differences in horizontal branch morphology and the location of the main-sequence turn-off. (From data supplied by R. Buonanno and A. Sarajedini.)

Metallicity as the "first parameter"; higher $z \rightarrow$ redder

But not every metal-poor GC has an extended blue HB tail!

Red Clump

Clustering of cool horizontal-branch giants (core He fusion, metal-rich)

$$
\ldots 5,000 \mathrm{~K} \text { and } M_{V} \sim 0.5
$$

Distance to M31 With the HST and Hipparcos Red Clump Stars (1998)

Using the red clump stars to

 determine the distance to M31systematic
$$
R_{M 31}=784 \pm 13 \pm 17 \mathrm{kpc}
$$
Statistical error

Fig. 2. The red clump dominated parts of CMDs for the Hipparcos stars (upper-left panel) and for three fiedds in AS31 observed with the HST. The dashed rectangles surround the red clump regions used for the comparison between the local and the A331 red clump stars.

Sub-subgiants = red stragglers

NGC 6791

More oddities

Blue sub-dwarfs: sdB, sdO

Figure 1

Sketch of a Hertzsprung-Russell diagram highlighting the position of hot subdwarf (sdB and sdO) stars and the extreme horizontal branch (EHB) located to the left and below the hot end of the main sequence but above the white dwarf cooling sequence. The EHB is separated from the blue horizontal branch (BHB). The location of stars having evolved from the postasymptotic giant branch is shown for comparison. The hot subdwarf stars have nothing in common with traditional cool subdwarfs found below the lower main sequence. Courtesy of ESO, with modifications by S. Geier and K.S. de Boer.

Star Clusters --- Lecture 2

Star Clusters

--- Links between Galaxies and Stars

- Star clusters as stellar birth places

- Open clusters, globular clusters, and others
\square Star clusters as targets of investigation
■ Star clusters as tools in stellar \& galactic studies
■ Latest and outstanding issues

Wen-Ping Chen
Graduate Institute of Astronomy

Theorists believe in their own results, while others don't. Observer do not believe in their own results, but others do.

A theoretician develops theories to confront with observations. An observer acquires data to compare with theories.
An experimentalist conducts experiments to compare with
It is all what you do to answer the question. You should know it all, though usually master on one aspect for now.

Yes, you should concentrate on what you are doing, and do not stretch yourself too thin. You may decide to do only one thing in your life and do it well. But you should not decide what it is now. Is this what my adviser is doing (asked me to do)? Why am I doing it? Is it challenging? Am I excited?
Do not limit yourself.

Practicality

A hands-on exercise

Catalogues of galactic open clusters

\checkmark Lynga (1987)
\checkmark WEBDA (originally by Mermilliod, latest 2013) compilation MW and LMC+SMC
\checkmark Catalog of Open Cluster Data
\checkmark Dias+ (2002..2015), Sampedro et al. (2017), $N=1876$
\checkmark Kharchenko et al. (2005) based on ASCC-2.5, a few 100s
\checkmark Cantat-Gaudin et al. 2018, Gaia/DR2, N=1229 w/ members
Catalogues of galactic globular clusters
\checkmark Harris $(1996,2010) N=157$

Optically visible open clusters and Candidates：B／ocl

[^1]Inserted into VizieR ：12－Jul－2002
Last modification ：22－Jun－2018

Dias 2015, N=2167

Dias 2015

Dias 2015, N=2167

To Identify Members in a Star Cluster

Member stars are grouped in at least 6-dimensional space, 3 in location (position and distance) and 3 in motion (proper motion and radial velocity) (and in metalicity, etc.)
\rightarrow To secure the member list, find
-grouping in space (sky coordinates + distance)

- grouping of proper motions (and radial velocity)
- grouping along the main sequence/isochrone (CMD)

Members: similar in positions and in space motions ...

A Case Study M67 an OC $\sim 4 \mathrm{Gyr}$ old (i.e., solar age), $[\mathrm{Fe} / \mathrm{H}]=-0.1$,

 distance 800 to 900 pc , an apparent angular diameter $>30^{\prime}$

2 old OCs

Fig. 10. Worthey-VandenBerg-Kurucz isochrone models fit to the observed $\left(m_{3890}-m_{6075}\right)$ vs m_{3890} CMD. $(m-M)_{0}=9.47$ and $\mathrm{E}(B-V)=0.05$ are assumed; see text for details. The values of age and $[\mathrm{Fe} / \mathrm{H}]$ of each isochrone are shown in the graphs. Data for stars with known membership probabilities $\geqslant 80 \%$ are plotted as open circles; all other stars are plotted as dots.

Fig. 11. Worthey-VandenBerg-Kurucz isochrone models fit to the observed ($m_{6075}-m_{7215}$) vs m_{6075} CMD. Same models, distance modulus and [$\left.\mathrm{Fe} / \mathrm{H}\right]$ as for Fig. 10.

Two Micron All Sky Survey
 (2MASS) data

M67 field vs a Galactic field

Gaia (Space Telescope)
$\checkmark 2013$ to 2022? by ESA
\checkmark High-precision astrometry (position) \rightarrow distance + motion \rightarrow 3D map of MW and beyond; quasars, exoplanets
$\checkmark<20 \mathrm{mag}(1 \% \mathrm{MW})$

Orbit @Sun-Earth L2
L5
$1.45 \mathrm{~m} \times 0.5 \mathrm{~m}$ primary

Gaia's Sky in Color

14 GCs

https://www.dlr.de/content/en/images/2020/4/gaia-hyades-star-cluster.html

Gaia DR3 Part 1. Main source : I/355

Access to $\begin{gathered}\text { viziti } \\ \text { VizieR }\end{gathered}$	FTP	ReadMe	TAP	$\begin{array}{r} 6 \\ \times \mathrm{ma} \\ \times \end{array}$						
Authors: Gaia collaboration			Artic	Origin	Description	Acknowledgment	See also	Prov	FTP	VizieR

VizieR DOI : 10.26093/cds/vizier. 13559 Cite Bibcode : 2022yCat.1355....0G (ADS)

UAT : Proper motions, Surveys, Asteroids, Astronomical object identification, Trigonometric parallax, Astrometry, Variable stars, Radial velocity, Photographic photometry, Photometry, Standard stars, Optical astronomy

Observation (OC)
Records: 1811709771 sources

Gaia Data Release 3 (Gaia DR3) Part 1 Main source. (2022)

Keywords : catalogs - astrometry - parallaxes - proper motions - techniques photometric - techniques: radial velocities
Abstract:Gaia Data Release 3 (Gaia DR3) will be released on 13 June 2022. The Gaia DR3 catalogue builds upon the Early Data Release 3 (released on 3 December 2020) and combines, for the same stretch of time and the same set of observations, these already-published data products with numerous new data products such as extended objects and non-single stars.

Go to the CDS Gaia portal

Download all Gaia Sources as VOTable, FITS or CSV here.

Gaia DR3 is splited in 6 VizieR catalogues

- I/355: Gaia DR3 Part 1. Main source (tap/sql)
- I/356 : Gaia DR3 Part 2. Extra-galactic
- 1/357 : Gaia DR3 Part 3. Non-single stars
- I/358: Gaia DR3 Part 4. Variability
- I/359 : Gaia DR3 Part 5. Solar System
- I/360 : Gaia DR3 Part 6. Performance verification

\checkmark Try to query "m67" (What is it?)
\checkmark Start out with 2'
\checkmark Uncheck all entries; then select those needed
\checkmark Column-wise data format; empty fields? NAN?
\checkmark Preferences: try "999-filled"?, ";-separated-Values"
\checkmark Then download stars within a radius of 30^{\prime} (i.e., 1 -deg FOV), unlimited, ;-separated

m67GaiaDR3r30m．tsv－記事本

m67GaiaDR3r30m．tsv－記事本
䓨案（ F ）編輯（E）格式（O）檢視（V）說明
\＃Column RA＿ICRS（F15．11）
\＃Column e＿$\overline{\mathrm{R} A}$＿ICRS
\＃Column DĒ IC̄RS（F15．11）
\＃Column e＿DE＿ICRS
＊Column PI ${ }^{2}$
\＃Column e Plx
\＃Column pmRA
\＃Column e＿pmR
\＃Col umn pmDE

\＃Column e＿pmDE（F13．10）？Proper motion in declination direction（pmdec）［ucd＝pos．pm；pos．eq．dec］
\＃Con ？Standard error of proper motion in declination direction（pmdec＿error）
\＃Column e Gmag（F9．6）？Error on G－band mean magnitude（added by CDS）（phot＿g＿mean＿mag＿error）［ucd＝stat．error；phot．mag；stat．mean］
\＃Column BP̄mag（F9．6）？Integrated BP mean magnitude（phot＿bp＿mean＿mag）${ }^{\text {B }}$［ucd＝phot．mag；em．opt．B］
\＃Column e EBPmag（F9．6）
\＃Column RPmag
（F9．6） ？Error on integrated BP mean magnitude（added by CDS）（phot bp＿mean＿mag＿error）
\＃Column RPmag（F9．6）？Integrated RP mean magnitude（phot＿rp＿mean＿mag）［ucd＝phot．mag；em．opt．R］［ucd＝stat．error；phot．mag；stat．mean］
\＃Column e RPmag（F9．6）？Error on integrated RP mean magnitude（added by CDS）（phot＿rp＿mean＿mag＿error）
\＃Column RV（F7．2）？Radial velocity（radial velocity）［ucd＝spect．dopplerVeloc．opt；em．opt．I］
\＃Column e RV（F5．2）？Radial velocity error（radial velocity error）［ucd＝stat．error；spect．dopplerVeloc．opt；em．opt．I］
\＃Column GLON（F15．11）Galactic longitude（1）－［ucd＝pos．galactic．lon］
\＃RA＿ICRS；e＿RA＿ICRS；DE＿ICRS；e＿DE＿ICRS；Plx；e＿Plx；pmRA；e＿pmRA；pmDE；＿＿pmDE；Gmag；e＿Gmag；BPmag；e＿BPmag；RPmag；e＿RPmag；RV；e＿RV；GLON；GLAT
deg；mas；deg；mas；mas；mas；mas／yr；mas／yr；mas／yr；mas／yr；mag；mag；mag；mag；mag；mag；km／s；km／s；deg；deg
$132.82324495428 ; 0.6874 ;+11.32104457462 ; 0.3702$ $132.79455651590 ; 0.0763 ;+11.31711090920 ; 0.0422$ $132.79919740613 ; 0.2030 ;+11.33571449125 ; 0.1112$ $132.90535751792 ; 0.4101 ;+11.32276901959 ; 0.2088$ 132．89330324433；0．3908；＋11．33356129894；0．1942 132．88842427825；4．4251；＋11．32576936097；2．4825 $\neq 132.91338632856 ; 0.0160 ;+11.31984853573 ; 0.0087$ 132．92176291704； $9.9507 ;+11.31988770986 ; 4.8028$ \＃132．91823922268； $0.0548 ;+11.31940526656 ; 0.0303$ 132．91593385025；0．0221；＋11．31951550992；0．0120 $\neq 132.92685960450 ;-1228 ;+11.32563958577 ; 2.8403$ ； 13.0508972506 ，1．3563，＋11．33325184882；0．7388 13． $05069757262 ; 0.0294 ;+11.33274810872 ; 0.0159$ $132.95227406305 ; 0.3425 ;+11.33956594461 ; 0.6521$ $132.95682690880 ; 0.0329 ;+11.34036285640 ; 0.0178$ $132.95682690880 ; 0.0329 ;+11.34036285640 ; 0.0178$ ； $1132.90783293354 ; 0.2120 ;+11.34590712001 ; 0.1077$ $132.91876295298 ; 0.6105 ;+11.35203094298 ; 0.2919$ ； $132.93188361331 ; 0.4326 ;+11.35422794192 ; 0.2146$ 32．92524640303；0．0393；＋11．34807727381； 0.0208 2．95522365017； $0.4227 ;+11.35801105862 ; 0.2219$ $32.94448609465 ; 0.0707 ;+11.36581785856 ; 0.0371$ ； 2．94652719872；0．0838；＋11．35387628734；0．0452 2．93896787686： $773164 \cdot+1135632101421$ 12 6923
$\begin{array}{llrl}1.3918 ; & 0.8175 ; & -8.996 ; 0.866 ; \\ 1.1370 ; & 0.0951 ; & -11.087 ; 0.098 ;\end{array}$ ． $4080 ; 0.2505 ;-11.087 ; 0.098$ ． $4014 ; 0.4824 ;-1.007 ; 0.251$ ，
 $0.4041 ; 0.0260 ;-3.385 ; 0.028$ ；

2．0348ः 1.8335 ＇ $1.2210,1.8335$
1.5702 ； 0.4024 ？ $0.6415 ; 0.0386 ;$
$0.3090 ; 0.2511$ $\begin{array}{ll}0.3090 ; & 0.2511 \\ 0.5649 ; & 0.7378 \\ 0.007\end{array}$ $0.1607 ; 0.4987$ $0.2731 ; 0.0482$ $0.2731 ;$
$1.5343 ; 0.0482$
$0.5074 ;$ ．．2816； 0.0833 ， $1.2375 ; 0.0997$
－2．333；0．515
－4．375； 0.020
$-2.333 ; 0.515$
$-0.102 ; 0.488$

0．943；2．101
$-10.990 ; 0.037$
－2．911； 0.437 ； $3.594 ; 0.042$
－1．481；0．273；
－8．658； 0.844 ；
－1．186； 0.576
－5．761； 0.051
－17．491；0．540；
$-0.449 ; 0.088$
10．848； 0.106
 2．906；0．0702638924；17．255587；0．002881；18．084774；0．015169；16．354883；0．006938； ． $821,0.1875699610 ; 18.908665 ; 0.003421 ; 19.278086 ; 0.036142 ; 18.480879 ; 0.031556$ ； $0.397 ; 0.3662209511 ; 19.762663 ; 0.004438 ; 20.888371 ; 0.098232 ; 18.725853 ; 0.048292$ ； $-0.010 ; 0.3486736417 ; 19.658030 ; 0.004394 ; 20.352005 ; 0.072773 ; 18.717747 ; 0.040411 ;$ $\begin{array}{rrrrrr} & 0.3486736417 ; 19.658030 ; & 0.004394 ; 20.352005 ; & 0.072773 ; 18.717747 ; & 0.040411 ; \\ 6.550 ; & 0.0156378560 ; 13.316372 ; & 0.015699 ; 20.086136 ; & 0.103437 ; 18.491127 ; & 0.047049 ;\end{array}$ $6.550 ; 0.0156378560 ; 13.846713 ; 0.002765 ; 14.088270 ; 0.002967 ; 13.452337 ; 0.003819 ;$ $1.162 ; 0.0548818074 ; 16.652040 ; 00.028320 ; 21.001007 ; 0.224625 ; 19.904161 ; 0.159792 ;$ $-1.162 ; 0.0548818074 ; 16.652040 ; 0.002812 ; 16.949883 ; 0.006610 ; 16.182043 ; 0.005374 ;$ $-3.445 ; 0.0219418686 ; 14.700944 ; 0.002764 ; 15.155030 ; 0.003356 ; 14.081526 ; 0.003843$ ； 5．${ }^{\circ} ; 21.099483 ; 0.026644 ; 21.329391 ; 0.248270 ; 20.116404 ; 0.167928$ ； $-5.051 ; 1.2093850374 ; 20.809517 ; 0.009118 ; 21.647915 ; 0.192925 ; 19.567259 ; 0.073921$ ； $2.802 ; 0.0293484107 ; 15.412397 ; 0.002795 ; 15.856246 ; 0.003860 ; 14.802280 ; 0.004315$ ； $1.549398 ; 0.030578 ; 20.962090 ; 0.251847 ; 19.173334 ; 0.137459 ;$ $-1.391 ; 0.3134528399 ; 19.514935 ; 0.004147 ; 20.684006 ; 0.089679 ; 18.302921 ; 0.024054 ;$ $; 15.559451 ; 0.002773 ; 15.880468 ; 0.003479 ; 15.072409 ; 0.004274 ;$ $12.438 ; 0.1941874027 ; 18.873524 ; 0.003424 ; 19.226139 ; 0.033012 ; 18.339108 ; 0.030620$ ； $0.013 ; 0.5536866784 ; 20.181393 ; 0.005927 ; 21.297129 ; 0.183231 ; 19.048273 ; 0.031223$ $2.741 ; 0.3892843723 ; 19.905783 ; 0.004764 ; 20.564522 ; 0.082848 ; 19.048119 ; 0.037191$ $-3.973 ; 0.0376939736 ; 15.906367 ; 0.002786 ; 16.207590 ; 0.004431 ; 15.442074 ; 0.004273$ ； 15．398； $0.4230279326 ; 19.856251 ; 0.004723 ; 21.111031 ; 0.123293 ; 18.726480 ; 0.031837 ;$ 3．538；0．0687142834；17．101488；0．002844；17．482079；0．008929；16．555628；0．006974； $-3.124 ; 0.0798023641 ; 17.412605 ; 0.002899 ; 18.451990 ; 0.015721 ; 16.407856 ; 0.006849$ ，
 ；216．19655472848； ；216．17900688819； ，216．24454704218， 216．22716536398$28.28 ; 3.78 ; 216.25157674089$ ，216．25562215500$95.66 ; 5.47 ; 216.25317466659$． 55701409230；216．25090120542
;216.22109096876
; 116. 21989188108
;216.22394753025
;216.23129639606
;216.21773281010;

Cluster members move differently from field stars (solar motion)

Parallax distribution

allOK=WHERE(gmag ne 0 and bpmag ne 0 and rpmag ne 0 and rad lt radO and pmRAD lt pmRADO and dis GT 200)

Gaia proper motions

Gaia parallaxes

Gaia CMD

The cluster sequence stands out clearly in the CMD, though there are many contaminations, i.e., nonmembers.

With some preliminary selection criteria in sky coordinates, proper motion, and parallax ...

> Ok=WHERE (plx LT 10 and plx GT 0 and plx LT 1.5 and plx GT 0.5 and ABS (pmra+12) LT 5 and ABS (pmde+4) LT 5)

$$
\mathrm{plx}(\max)=1.15 \rightarrow \mathrm{~d}=870 \mathrm{pc}
$$

Iterative membership selection
\checkmark Age and distance
\checkmark Blue stragglers
\checkmark Red clump giants
\checkmark "Blue clump"?
\checkmark Binaries
\checkmark White dwarfs?
\checkmark Brown dwarfs?

An Example Stellar Isochrone on Demand: The "Padova" tracks

http://stev.oapd.inaf.it/cgi-bin/cmd

Exercises

\square Using Gaia photometric measurements $\left(G, G_{B P}, G_{R P}\right)$, download and compare the isochrones of different ages.
\square Check out the effect of metallicity.
\square How would the extinction/reddening affect a theoretical isochrone?

CMD 1.1

Star Clusters

as
 Tools for Investigation

Infant Star Clusters

Figure 4 Position in the Hertzsprung-Russell diagram of all CTTSs and WTTSs with known $v \sin i$. WTTSs are represented by open circles, and CTTSs by dark circles. In both cases, the circle area is proportional to the stellar $v \sin i$. Approximate pre-main-sequence quasi-static volutionary tracks for various masses are also plotted together with the zero-age main sequence (dashed line)
PMS stars contracting toward the ZAMS

Bertout (1989)

Fraction of PMS stars with IR excess \rightarrow age of a star cluster too young to have an MSTO

Formation of Massive Stars

Not as well known as for low-mass (sun-like) stars
\square Competitive accretion (of cloud cores)?
... low-mass protostars competing with each other, and accrete matter from the parent molecular cloud
\square Coalescence of two or more stars with lower masses?

Massive stars strong influence on the environment via fierce winds and radiation.

But which are formed first, high-mass or low-mass stars?

Triggered Star Formation

Collect-and-Collapse

OB stellar wind (ramp pressure) + radiation pressure on a surrounding molecular cloud
\rightarrow Formation of stars at the cavity boundary

Chen 2010

Radiation-Driven Implosion

OB stellar radiation ionizes the edge of a nearby cloud (brightrimmed cloud) \rightarrow inward shock to induce cores which may not otherwise collapse spontaneously.

Cloud Morphology remnant cloud points to the massive stars Stellar Group Sequence YSOs line up in between, in an age sequence: younger toward the cloud, youngest at the interface (the BRC); no SF inside the cloud (yet)

Lee $+05,07,09$

Rotation

VS

Spectral Type

\square Higher-mass stars faster
\square Much slower after ~F5
\square Slowing down with age
\rightarrow angular momentum evolution diagnosed by star clusters with known ages

Fig. 3. Projected equatorial velocities, averaged over all possible inclinations, as a function of spectral type. On the main sequence (luminosity class V), early-type stars have rotational velocities that reach and even exceed $200 \mathrm{~km} / \mathrm{s}$; these velocities drop to a few km / s for late-type stars, such as the Sun (type G2) (Slettebak [20]; courtesy Gordon \& Breach)

Effect of Rotation
 \rightarrow star cooler and fainter

Ω
 $\Omega_{\text {crit }}$

\square More so for lower-mass stars Rotation effectively lowers the stellar mass.

Rotation law:
angular momentum distribution $j\left(m_{\mathfrak{w}}\right)$ as a function of $m_{w^{w}}$, the mass fraction interior to the cylinder of radius \mathfrak{w} about the rotation axis.

D: solid body rotation
Fig. 1.-Angular momentum per unit mass, as a function of mass fraction interior to a given cylinder about the axis of rotation, for three assumed laws of differential rotation (Cases A, B, and C) and for a
uniformly rotating model (Case D) of $30 \mathfrak{M} \odot \log J=52.73$.
Fig. 2.-Theoretical H-R diagram showing model sequences of increasing angular momentum (solid curves). Numbers on curves give calculated velocities at the equator in $\mathrm{km} \mathrm{sec}^{-1}$. The distribution of angular momentum for each sequence is indicated by the letter $\mathrm{A}, \mathrm{B}, \mathrm{C}$, or D .

Effect of Binarity

\square Most stars in solar neighborhood in binary, triple or multiple systems (Duquennoy \& Mayor 1991)
\square Stars born in groups

- YSOs binary rate comparable to MS population
\rightarrow Binaries unlikely to form by encounters; chances too low

Star Formation $=$ Planet Formation
 $=$ Cluster Formation
 $=$ Binary Formation

Cluster binary rate \Leftrightarrow mass, age, environments?

\square GCs very crowded \rightarrow wide pairs stripped off; close pairs: NS accreting from companion X-ray sources; eventually merged \rightarrow GW
\square Binaries more massive \rightarrow sink to the center

High-energy phenomena
GCs account for 0.1% of MW stars but 10% number of of low-mass X-ray binaries

Volume $V=$ (Area) (length)
$=$ cross section $\sigma \cdot \ell=\sigma v t$
n : number density
In solar neighborhood, $n=1 \mathrm{pc}^{-3}$;

$$
\begin{aligned}
& \sigma=5 \text { au; } v=50 \mathrm{~km} \mathrm{~s}^{-1} \\
& \text { Probability }=10^{-13} \mathrm{yr}^{-1}
\end{aligned}
$$

Only the widest pairs, with separations $10^{3}-10^{4}$ au vulnerable
In star clusters $\Delta v=1-2 \mathrm{~km} \mathrm{~s}^{-1}, n \uparrow$
Encounters frequent
\rightarrow binary formation and dissolution
$\rightarrow \mathcal{E}_{\text {binding }}$ important as energy reservoir in cluster dynamics

Effect of Noncoevality

Generations of stars in each of the 3 massive young (1 to 2 Gyr) star clusters, NGC 1783 (LMC), NGC 1806 (LMC), and NGC 411 (SMC) Li+16, Nat

Distinct PM-selected MS branches in the GC NGC 2808, signifying successive rounds of star formation

In the LMC, young clusters compact; old system small or large

The dynamical sequence of LMC clusters
\dagger Binary black holes driving cluster expansion?
\dagger Latest SF activity; compact systems survived?

Star Clusters --- Lecture 3

CTTSs characterized by infrared excess in the SEDs

... and also UV excess
\rightarrow spectral "veiling"

Figure 3 Observed spectral energy distributions from $3600 \AA$ to $100 \mu \mathrm{~m}$ of the stars whose spectra are shown in Figure 2. The energy distribution of the K7V WTTS TAP 57, shown as a solid line, has been displaced downward by 0.3 dex. The filled symbols are simultaneous (for DN Tau and DF Tau) or averaged (for DR Tau) photometric data (cf. Bertout et al. 1988) supplemented by IRAS data (Rucinski 1985). When available, observed variability is indicated by error bars. When compared with WTTSs such as TAP 57, CTTSs display prominent ultraviolet and infrared excesses. Excess continuum flux and optical emission-line activity are often correlated.

Star Clusters

--- Links between Galaxies and Stars

- Star clusters as stellar birth places
- Open clusters, globular clusters, and others
\square Star clusters as targets of investigation
■ Star clusters as tools in stellar \& galactic studies
■ Latest and outstanding issues

Wen-Ping Chen
Graduate Institute of Astronomy \rightarrow National Central University Taiwan

(Initial) Mass Function --- Origin of Stellar Masses

Birthrate function $B(M, t)=$ the number of stars per unit volume, with masses between M and $M+d M$ that are formed out of ISM during time interval t and $t+d t$.

$$
B(M, t) d M d t=\psi(t) \xi(M) d M d t,
$$

where $\psi(\mathrm{t})$ is the star formation rate (SFR), and $\xi(\mathrm{M})$ is the initial mass function (IMF).
For the Galactic disk, SFR is $5.0 \pm 0.5 M_{\odot} \mathrm{pc}^{-2} \mathrm{Gyr}^{-1}$ integrated over the z direction.

The IMF: the fractional distribution in mass of a newly formed stellar system; often assumed a simple power law

$$
\xi(\mathcal{M}) \propto \mathcal{M}^{-\alpha}=\mathcal{M}^{-(1+\Gamma)}
$$

In general, $\xi(\mathcal{M})$ extends from a lower to an upper cutoff, e.g., from 0.1 to 125 solar masses.

Commonly used IMFs are those of Salpeter (1955), Scalo (1986), and Miller \& Scalo (1979).

- Salpeter ${ }_{(1955)}$ on solar-neighborhood stars

Present-day LF \rightarrow mass-luminosity relation \rightarrow present-day mass function \rightarrow stellar evolution \rightarrow initial mass function $\alpha=2.35$ or $\Gamma=1.35$

- Miller and Scalo extended work below $1 \mathrm{M}_{\odot}{ }^{(1979)}$

$$
\alpha \approx 0 \text { for } \mathrm{M}<1 \mathrm{M}_{\odot}
$$

- Pavel Kroupa (2002)

$$
\begin{aligned}
& \alpha=2.3 \text { for } \mathrm{M}>0.5 \mathrm{M}_{\odot} \\
& \alpha=1.3 \text { for } 0.08 \mathrm{M}_{\odot}<\mathrm{M}^{\circ}<0.5 \mathrm{M}_{\odot} \\
& \alpha=0.3 \text { for } \mathrm{M}<0.08 \mathrm{M}_{\odot}
\end{aligned}
$$

- A universal IMF among stellar systems (SFRs, star clusters, galaxies) (Bastian +10$) \rightarrow$ Many more low-mass stars than higher mass stars \rightarrow Cloud fragmentation? Self-regulated accretion?

Fig. 17. The Initial Mass Function as measured in the Orion Nebula Cluster.

Peaking 0.2-0.3 Msun?

OCs 30-120 Myr

Stellar Initial Mass Function and Dense Core Mass Function

Structure of a (Globular) Cluster

Core radius r_{c}

surface brightness to half

$$
I(r)=\frac{I_{c}}{1+\left(r / r_{c}\right)^{2}}
$$

Half-light/mass radius r_{h} containing half of the light/mass

Tidal (limiting) radius r_{t} density to zero

Fig. 2. Comparison of star counts in M13 with theoretical curve for $\log \left(r_{t} / r_{c}\right)=1.50$. Maximum-exposure 48-in. Schmidt plate.

The King model

The surface brightness profile

(King 196; Michie 1963)

$$
\begin{aligned}
& f(E)= \begin{cases}0 & \left(E>E_{0}\right) \\
K\left[e^{-\beta\left(E-E_{0}\right)}-1\right. & \left(E<E_{0}\right)\end{cases} \\
& E=(1 / 2) v^{2}+\phi(r)
\end{aligned}
$$

$$
r_{c}=\sqrt{\frac{9}{4 \pi G \rho_{0} \beta}}
$$

$$
r_{t} \text { where } \phi=0
$$

K, β, E_{0} all constants; $\phi(r)$: potential ρ_{0} : central density

Table 1-3. Parameters of globular and open clusters

	Globular	Open
Central density ρ_{0}	$8 \times 10^{3} \mathrm{M}_{\odot} \mathrm{pc}^{-3}$	$100 \mathrm{M}_{\odot} \mathrm{pc}^{-3}$
Core radius r_{c}	1.5 pc	1 pc
Median radius r_{h}	10 pc	2 pc
Tidal radius r_{t}	50 pc	10 pc
Central velocity dispersion σ_{0}	$7 \mathrm{~km} \mathrm{~s}^{-1}$	$1 \mathrm{~km} \mathrm{~s}^{-1}$
\quad (line-of-sight)		
Mass-to-light ratio Υ	$2 \Upsilon_{\odot}$	$1 \Upsilon_{\odot}$
Mass M	$6 \times 10^{5} \mathrm{M}_{\odot}$	$250 \mathrm{M}_{\odot}$
Lifetime	$10^{10} \mathrm{yr}$	$2 \times 10^{8} \mathrm{yr}$

NOTES: Values for globular clusters are medians from the compilation of Peterson and King (1975). Values for open clusters are typical values from the literature. The central densities are especially uncertain: individual clusters may have central densities that differ by a factor of 100 from the values quoted.

r_{h} / r_{t}--- "Strength" against tidal disruption

r_{c} / r_{h}--- Status of dynamical "evolution"

Cluster Dynamics

The distribution function (phase-space density) $f(r, v, t)$: number of particles within $d r, d v, d t$. For a system of a single species of particles, each of mass m, the total
 mass in a 6 -d phase volume

$$
\begin{aligned}
& M(t)=m f(r, v, t) d v d r \\
& d M=M(t+d t)-M(t)=m \frac{\partial f}{\partial t} d v d r d t
\end{aligned}
$$

NOT an analogy of an ideal gas system, because of the infiniterange attractive gravitational force
Under the influence of the smooth potential $\phi(x)$, the distribution function (phase-space density) $f(x, v, t)$ obeys the Collisionless Boltzmann equation

$$
\frac{\partial f}{\partial t}+\mathrm{v} \cdot \nabla f-\nabla \phi \cdot \frac{\partial f}{\partial \mathrm{v}}=0
$$

Stellar encounters \rightarrow velocity distribution
Fokker-Planck equation

$$
\frac{\partial f}{\partial t}+\mathrm{V} \cdot \nabla f-\nabla \phi \cdot \frac{\partial f}{\partial \mathrm{v}}=\Gamma[f]
$$

need a treatment of the collision term Γ

Jacobi limit (Binney \& Tremaine 1987) ; almost the tidal radius

$$
r_{t}= \pm d\left[\frac{m_{c}}{M_{G}\left(3+m_{c} / M_{G}\right)}\right]^{1 / 3} \approx\left[\frac{m_{c}}{3 M_{G}(d)}\right]^{1 / 3}
$$

if $m_{c} \ll M_{\mathrm{G}}$ and $r_{t} \ll d$
m_{c} : mass of cluster
d : Galactic orbital radius
$M_{\mathrm{G}}=M_{\mathrm{G}}(d)$: Galactic mass interior to the orbit

Dynamical Evolution

of
 Star Clusters

Gas dynamics, stellar dynamics, stellar evolution (and mass loss), and Galactic environments (e.g., gravitational potential)

Dynamical Evolution of a Star Cluster

- (Initial) Molecular clouds are clumpy and filamentary; so are the youngest star clusters.
- (Internal) Gas dispersal (stellar winds, SN explosions) + Mutual gravitational interaction between members \rightarrow spherical shape (relaxation), with more massive stars concentrating more toward the center (mass segregation). Lowest-mass members are vulnerable to ejection out from the system (stellar evaporation).
- (External) Eventually Galactic perturbations (tidal forces, differential rotation) distort and rip apart the star clusters. Then-members supply the Galactic disk population.
- A recently dissolved system in the solar neighborhood may be recognized as a moving (star) group.

All star formation takes place in GMCs, when local clouds become gravitationally unstable and collapse.

Stars Formed in Groups

Molecular Cloud

Star-Cloud Interplay

Cloud Dispersal

Cluster at Birth

Stellar Dynamics (segregation, evaporation, tidal disruption)

Cluster Evolved

Disk Population

Cluster Dissolved

\square Stellar mass loss \rightarrow shallowing gravitation potential
 \square Two-body relaxation \rightarrow mass segregation \rightarrow core collapse (density cusp) \rightarrow intermediate-mass black holes

Fig. 18.1. Core collapse from a King model with $W_{0}=3, N=1285$. The initial model is shown on the left, and the view on the right shows the same model to the same scale after core collapse. The model has a tidal cutoff.

Dynamical Relaxation of a Stellar System

$$
\begin{aligned}
& \tau_{\text {cross }}=D / v \\
& N_{\text {cross }}=\frac{0.1 N}{\ln N}
\end{aligned}
$$

$$
\tau_{\text {relax }}=\tau_{\mathrm{cross}} \cdot N_{\mathrm{cross}}
$$

Massive stars "sink" to center.

Low-mass stars occupy a larger volume. Lowest-stars are ejected.
Cluster disintegrates.
where
$\tau_{\text {cross }} . .$. the time for a member (star) to move across the system (cluster)
$=$ dynamical time scale
D... diameter of the cluster
$v . .$. velocity of the star
N... number of stars in the cluster
$N_{\text {cross }} \ldots$ number of crossings

When more than half of the mass of a virialized system is lost within $\tau_{\text {cr }} \rightarrow$ the system dissolves (Hills 1980)

For a typical globular cluster, $\tau_{\text {relax }} \approx 10^{8} \sim 10^{9} \mathrm{yr}$

Most GCS have been relaxed.

Present MW GCs gone in 10 Gyr
For a typical open cluster, $\tau_{\text {relax }} \approx 10^{6} \sim 10^{7} \mathrm{yr}$

Young OCs are being relaxed.

Some very young clusters (a few Myr= a few crossing times) display mass segregation.

Lower-mass stars are more vulnerable to be thrown out
\rightarrow Stellar evaporation

$$
\tau_{\text {evaporation }} \approx 96 \tau_{\text {relax }} \text { (Shu 1984) }
$$

OCs are flattened in general, even among the youngest systems (12 Myr) that have no time to relax \leftarrow filaments of parental cloud

As an OC evolves, its core becomes circularized by stellar dynamics, whereas the overall size expands and stellar density drops.

Probabilistic star counting by weighting each star by the number of neighbors

Tidal Distortion of Star Clusters

Eventually tidal force and Galactic differential rotation tear the cluster apart.

Berkeley 17, among the oldest ($\sim 10 \mathrm{Gyr}$) MW open clusters, and located at the outer edge of the disk, shows evidence of elongation ...

Escape of Low-Mass Members

Typically low-mass members outnumber massive ones.

To $g_{P 1} \leq 21.5 \mathrm{mag}$ or $\geq 0.6 M_{\odot}$
relative shortage of lower-mass members in the core

... paucity of more massive members in the tails

Tall B

... mass segregation and stellar evaporation.

Membership of Blanco 1

Young (100 Myr), nearby (230 pc),

seen near the Gal. South Pole

$$
\left(\ell=15^{\circ}, b=-79^{\circ}\right)
$$

Gaia/DR2 data + STARGO (clustering of $\alpha, \delta, \varpi, \mu_{\alpha}, \mu_{\delta}$)

A leading and a trailing tail found on the orbital plane \rightarrow differential rotation shear?

Globular Clusters not perfectly round

Figure 5 . (a) CMD of the NGC 6121 field, with the red dots indicating highly probable cluster members, i.e., stars within $0.5(\theta)$ radius from the cluster center. A
giant branch and an HB can be clearly seen in the CMD. The green solid-line and dashed-line mark respectively the biweight mean and deviation of the red giant branch and an HB can be clearly seen in the CMD. The green solid-line and dashec-line mark respectively the biweight mean and deviation of the red dots in and thin (red) curves represent the 3σ and 2σ isodensity contours, respectively.

Mostly due to tidal force from the

Morphology (Axial ratio) of 116 GCs

Median Value: 0.87 ± 0.07

Fig. 6.- The distribution of the axial ratios of the 95 Galactic globular clusters with reliabile measurements. The dashed line indicates the median value of 0.87 of the sample.

Chen, CW, et al. (2010)

Tidal Tails

The "archetype" of globular cluster tidal tails --- those found by the digital sky survey on the globular cluster Palomar 5.

[^2]
Tidal Tails of Globular Clusters

Figure 35. Same as Figure 19 but for the bulge GC NGC 6366, whose probable member stars selected by the color-magnitude method (see the text) show clumpiness
around the cluster.

As a GC ages, high-mass stars have died, and low-mass stars have escaped, leaving behind binaries, WDs, etc.

Dissolving Star Clusters

Praesepe
(M44, $750 \mathrm{Myr}, 179 \mathrm{pc}$)

2MASS, PS1, PPMXL $\rightarrow 1040$ member candidates

20-40\% binary rate with a preference of similar-mass pairs

- Mass segregation with the lowest mass members ($<0.2 \mathrm{M}_{\odot}$) being stripped
\rightarrow The cluster is being dissolved.

Dissolved Star Clusters

Stars Formed in Groups	Star-Cloud Interplay	Cloud Dispersal	Stellar Dynamics (segregation, evaporation, tidal disruption)	Disk Population
		$\frac{+4}{\frac{1+5}{4+4}}$	$+\frac{1}{+\frac{1}{4}}+$	$\begin{aligned} & +7 \\ & +++ \\ & ++ \end{aligned}$
Molecular Cloud	Star Cluster \& H II Region	Cluster at Birth	Cluster Evolved	Cluster Dissolved

Recently dissolved star clusters recognizable if young and in the solar neighborhood \rightarrow stellar moving groups
Then-members share the same space volume and motion, (and abundance, age, etc.)
So far 9 MGs known within 150 pc , with ages $10-100 \mathrm{Myr}$

Known Moving Groups

β Pic in BPMG Lagrange et al. 2009

HR 8799 in Columba Marois et al. 2010

Known nearby moving groups, adapted from Torres et al. (2008)

Name	\mathbf{D}^{T} $[\mathrm{pc}]$	$\mathbf{A g e}^{\mathrm{M}}$ $[\mathrm{Myr}]$	\mathbf{U}^{T} $\left[\mathrm{kms}^{-1}\right]$	\mathbf{V}^{T} $\left[\mathrm{kms}^{-1}\right]$	\mathbf{W}^{T} $\left[\mathrm{kms}^{-1}\right]$	\mathbf{N}^{T}
β Pictoris (BP)	$40 \pm 18^{\mathrm{TS},}$	$12-22$	-10.1 ± 2.1	-15.9 ± 0.8	-9.2 ± 1.0	$55^{\mathrm{T}, \mathrm{S}}$
AB Doradus (AB Dor)	$51 \pm 29^{\mathrm{T}, \mathrm{S}}$	$50-120$	-6.8 ± 1.3	-27.2 ± 1.2	-13.3 ± 1.6	$97^{\mathrm{T}, \mathrm{S}}$
Tucana/Horologinm (Tuc-Hor)	48 ± 7	$10-40$	-9.9 ± 1.5	-20.9 ± 0.8	-1.4 ± 0.9	44
TW Hydrae (TWH)	$59 \pm 22^{\mathrm{D}}$	$8-20$	-10.5 ± 0.9	-18.0 ± 1.5	-4.9 ± 0.9	31^{D}
Columba (Col)	82 ± 30	$10-40$	-13.2 ± 1.3	-21.8 ± 0.8	-5.9 ± 1.2	41
Carina (Car)	85 ± 35	$10-40$	-10.2 ± 0.4	-23.0 ± 0.8	-4.4 ± 1.5	23
Argus (Arg)	106 ± 51	$30-50$	-22.0 ± 0.3	-14.4 ± 1.3	-5.0 ± 1.3	64
ϵ Chamaeleontis (ϵ Cha)	108 ± 9	$\sim 6^{\mathrm{T}}$	-11.0 ± 1.2	-19.9 ± 1.2	-10.4 ± 1.6	$30^{\mathrm{M} 2}$
Octans (Oct)	141 ± 34	$\sim 20^{\mathrm{T}}$	-14.5 ± 0.9	-3.6 ± 1.6	-11.2 ± 1.4	15

D: Ducourant et al. 2014, M: Malo et al. 2013, M2: S: Schlieder et al. 2012, T: Torres et al. 2008, M2: Murphy et al. 2013

Outstanding Issues of Star Cluster Studies

Substellar Populations

Stars are formed in groups out of dense molecular cloud cores, and planets are formed, at the same time as the stellar birth, in circumstellar disks.

What about brown dwarfs?

Do they form like stars (and evolve like planets, i.e., ever cooling), or do they form like planets?

Free-floating substellar objects (brown dwarfs or planets)?

Sloppy nomenclature

Giant \rightarrow relatively large in size; Dwarf \rightarrow relatively small e.g., yellow dwarf, red dwarf, brown dwarf, white dwarf dwarf planet, dwarf galaxy
$\left.\begin{array}{|c|l}\hline \text { Stars } & \mathcal{M} / \mathrm{M}_{\odot}>0.08 \text {, core H fusion } \\ & \text { Spectral types } 0, \mathrm{~B}, \mathrm{~A}, \mathrm{~F}, \mathrm{G}, \mathrm{K}, \mathrm{M}\end{array}\right]$

Pre-main-sequence evolution of the Sun

Star

Brown dwarf

Planet

Fig. 7.-Evolution of the luminosity (in L_{\odot}) of solar-metallicity M dwarfs and substellar objects vs. time (in yr) after formation. The stars, "brown dwarfs" and "planets" are shown as solid, dashed, and dot-dashed curves, respectively. In this figure, we arbitrarily designate as "brown dwarfs" those objects that burn deuterium, while we designate those that do not as "planets." The masses (in M_{\odot}) label most of the curves, with the lowest three corresponding to the mass of Saturn, half the mass of Jupiter, and the mass of Jupiter.

Young Methane T Dwarfs in Star Clusters

Almost all known BDs in the field

- Substellar brighter when younger

BDs in young star-forming regions
\rightarrow T dwarfs in L1688 in ρ Oph ($130 \mathrm{pc}, 1 \mathrm{Myr}$)

- T dwarf spectra are characterized by methane absorptions
\rightarrow Narrow-band on-off imaging and by cool atmospheres
\rightarrow IR colors

A typical L4 dwarf (black) and the transmission curves of CFHT/WIRCam H, CH4ON, CH4OFF, Gemini Hcon, [Fe II], and Spitzer IRAC bands

On-off $1.6 \mu \mathrm{~m}$ imaging photometry of the "training" data set of known L and Tdwarfs in the field

Brown Dwaris at Birth

Chiang+ 2014

A total of 28 T dwarf candidates found (1) with methane features, (2) with cool atmospheres, (3) not detected by Spitzer MIPS, (4) with consistent PMs.

X x-ray sources
Class 0/I protostars Flat Spectrum Objects \bigcirc X-ray emitting protostar
$850 \mu \mathrm{~m}$ emission (JCMT/SCUBA2), X-ray sources, And YSOs

X-ray Brown Dwarfis at Birth

BDs convective

+ fast rotation
\rightarrow chrom. active
until too cold
\rightarrow charge neutral
\rightarrow no dynamo;
but aurorae
JCMT/SCUBA-2
Transient Survey for prostellar var.
IC348 19+ epochs

X-ray sources (crosses), confirmed (red boxes) and candidate (blue circles) BDs, and smm dust clumps (contours)

Aged Brown Dwaris

Coma Berenices star cluster (Melotte 111)

"Decontamination"

Previously coolest known member: M9. We found an L2 and an L4 BDs

Tang+18

"Tail, Tail, Everywhere;
Find Them Distant, Find Them Near"

Velocities of "tail" members relative to the cluster mean (U, V, W)

Chen, L. et al. (2003)
\square The Galactic OC sample is highly incomplete. - Some 10^{5} expected (Piskunov et al. 2006) vs a few 10^{3} catalogued (Kharchenko et al. 2013, mostly < 2 kpc)
\square Largely because of dust extinction in the solar neighborhood and lacks of systematic search

Lin et al. (2014)

Finding Uncatalogued Clusters

1 deg field; 0.5 deg shift 4 times overlap

1 x1 deg field, each grid of 10 stars; 3 sigma above background; 3 adjacent grids

- Star counting PS1 3π data to identify density enhancements as star cluster candidates
- Matched with known clusters
- Characterization (size, $N_{\text {members }}$ distance, age, spatial structure, etc.)

Stock 8
$d=1731 \mathrm{pc}$ $\log t=7.05 \mathrm{yr}$ $E(B-V)=0.6$

Search Results

- 50 of 109 known star clusters rediscoveried $\checkmark 30$ probably not real star clusters (X) $\checkmark 13$ too large > 10' (nearby, well known) (X)
$\checkmark 2$ embedded clusters (X)
$\checkmark 4$ in H II regions (X)
$\checkmark 10$ detected only in two dithering (3 required)
\rightarrow Detection rate 50/60~83\%
Limiting mass:
$0.25 \mathrm{M}_{\odot}$ at 1 kpc
- Additional 491 candidates identified 0.7 M 。 at 4 kpc
\checkmark Preliminary characterization
\checkmark Detailed follow-up studies underway

The revised open cluster sample toward the Galactic anticenter is complete from current $1-2 \mathrm{kpc}$ up to $\sim 5 \mathrm{kpc}$

Probing Spiral Arms

Star Clusters in LMC

Globular Clusters in the Fornax Dwarf Galaxy

Where are the old stars?

Super Star Clusters

$\checkmark \mathrm{d}=8500 \mathrm{pc}$ $\checkmark \tau=4 \sim 5 \mathrm{Myr}$
\checkmark Many peculiar stars: 6 yellow supergiants, 4 red supergiants, 24 Wolf-Rayet stars, 1 luminous blue variable, 1 supergiant sgB[e] (a recent merger?)
\checkmark Precursor of a globular cluster?
Westerlund 1 (= Ara Cluster) in Milky Way

Open clusters

Globular clusters

X (kpc)

Figure 1
(a) Distribution of young ($<100 \mathrm{Myr}$, filled blue circles) and old ($>3 \mathrm{Gyr}$, filled red squares) open clusters in the Galactic plane, based on the catalog of Dias et al. (2002). The old open clusters are found preferentially toward the Galactic anticenter and above the plane compared to the young open clusters. The young massive clusters (purple squares) are located within the solar circle, which is probably a selection effect caused by the higher star-formation rate (per unit area) toward the Galactic center. (b) Distribution of old globular clusters; data from the Harris (1996) catalog.

Young massive clusters are like

disk population \leftrightarrow Open clusters

Young massive clusters behave like, in mass-radius
 \leftrightarrow Globular clusters

Default mode of cluster formation?

The hot OB supergiants in Wd1 primarily emit blue light - however they appear as red stars in the visible light image on the left, as all the blue light from the stars has been absorbed due to the large interstellar reddening.

Survivor Star Clusters

Extended Globular Clusters

There is a new kind of star clusters in addition to open clusters and globular cluster ...
\square similar to globular clusters in number of members and metallicity
\square but with much larger sizes
\square so not as dense as globular clusters.
For example, in M31:
M31WFS C1, M31WFS C2, and M31WFS C3

Nuclear Star Clusters

5.6 Properties of the Milky Way nuclear star cluster

The NSC at the heart of the Milky Way warrants a special attention, because its proximity ($d=8.1 \pm 0.1 \mathrm{kpc}$, Gravity Collaboration et al. 2019; Do et al. 2019) offers a unique opportunity to study physical processes on scales that are impossible to resolve in external NSCs (at $d=8.1 \mathrm{kpc}, 1^{\prime \prime}=0.04 \mathrm{pc}$). In this section, we, therefore, provide a brief summary of the properties of the Milky Way NSC. For a more comprehensive overview, we refer the reader to the recent reviews by Genzel et al. (2010) and Schödel et al. (2014b).

- Star clusters serve as a good test bed for star formation and evolution theories. Which theory is more favorable? Under what conditions?
- Star clusters serve to probe the Galactic structure and evolutionary history. How did the formation of thick/thin disks proceed?
- Star clusters are born big; youngest star clusters bear the imprint of molecular cloud structure.

Why do massive stars tend to be centrally concentrated?

- Low-mass stars are 'evaporated' as the result of mutual gravitational interactions among members (+ external tidal perturbation) How did a star cluster shape up/down?
- A cluster eventually dissolves. Do they die young?
- Do galactic environments influence the origin of stellar masses? How is the IMF influenced by the environments?

Conclusion

- Nothing of an "old" topic
- Time ripe to study star clusters in quality and in quantity
- Gaining ever more knowledge than before of the long known and studied star clusters, with new answers and new questions---larger vs smaller systems; much massive vs very low-mass members; systems in MW vs beyond.
- Expanding the sample of star clusters, including in nearby galaxies; useful in studies of stellar evolution, and Galactic structure/evolution
$\Sigma \wedge$

1993

1999

2001

B.W. Carney W. E. Harris

Star Clusters

2001

The Gravitational

 Million-Body ProblemA Multidiściplinary Approach to Star Cluster Dynamics

Douglas Heggie and Piet Hut

André Moitinho Joăo Alves Editors

Star Clusters in the Era of Large Surveys

Proceedings of Symposium 5 of JENAM 2010

Lulim Onservatory

Lon: $120^{\circ} 52^{\prime} 25^{\prime \prime} \mathrm{E}$
Lat: $23^{\circ} 28^{\prime} 07^{\prime \prime} \mathrm{N}$
Alt: $2,862 \mathrm{~m}$
in central Taiwan
Sky $21.28 \mathrm{mag} / \mathrm{sq}^{\prime \prime}$
Data: $1,450 \mathrm{hrs} / \mathrm{yr}$
. One-Meter
. (TAOS $50 \mathrm{~cm} \times 4$)
. SLT 40
. LWT40
L35

+ Experiments of meteorology, space and earth sciences

Panoramic Survey Telescope And Rapid Response System (Pan-STARRS) drzamast

PS1 + PS2

Haleakala, HI, USA $\mathrm{D}=1.8 \mathrm{~m}$; 1.4 Gpix
Etendue $=50 \mathrm{~m}^{2} \mathrm{deg}^{2}$ (84 for Subaru/HSC; 319 for LSST)

Zwicky Transient Facility (ZTF) DR1@IPAC

Palomar, CA, USA
3750 sq deg an hour to 20.5 mag $48^{\prime \prime}(1.2 \mathrm{~m})$ sky survey 47 sq deg $60^{\prime \prime}(1.5 \mathrm{~m})$ classification SEDM $200 "(5 \mathrm{~m})$ spectroscopy

Maunakea Observatory

Haleakala

Exoearth Discovery and Exploration Network (EDEN)

EDEN Sites and Telescopes

... habitable exoearths around nearby M dwarfs

Exploring our neighborhood one paradise at a time...

PI: Daniel Apai
(U Arizona)

The active stars

NCU Two－Meter Telescope By 日本西村公司（Nishimura）

－Planned to install＠Lulin，to secure the discoveries of PS1 6 hours lead time；with first－light instruments： （1）a 4－color（rizy）simultaneous imager，（2）a JHKimager
－Hampered by the environment impact study，construction permit，budget cycles ．．．
－To be installed at VRTS in Chile with ShAO（上海天文台）， CAS South America Center for Astronomy（中智中心）and UCN

2010／03

On the short list as one of the potential sites for the ESO ELT

Overall considerations
\checkmark Sky quality
\checkmark Accessibility, water and power supply
\checkmark political stability

[^0]: M35
 $d=860 \mathrm{pc}$ $\tau=150 \mathrm{Myr}$

[^1]: R

[^2]: 10 deg tails from SDSS Odenkirchen+03

