
Compact Objects







More about Degeneracy





Sirius A and B by the HST

Sirius B and A by the Chandra Observatory



electron gas



Particle in a Box

Ψ = 0 at the walls
De Broglie wavelength
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cf. standing wave in a string



Within the box, the Schrödinger equation  
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c.f. classical physics  same probability everywhere in the box





Fermi energy: the highest filled energy level at temperature zero
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Phase of matter Particles 𝑬𝑭 𝑻𝑭 =  𝑬𝑭 𝒌𝑩[ K]

Liquid 3He atoms 4 × 10−4eV 4.9

Metal electrons 2−10 eV 5 × 104

White dwarfs electrons 0.3 MeV 3 × 109

Nuclear matter nucleons 30 MeV 3 × 1011

Neutron stars neutrons 300 MeV 3 × 1012

Fermi energy of degenerate fermion gases
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μe  2 with no H



Considering the problem in terms of momentum 

Pressure and Momentum
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Non-relativistic



In the non-relativistic case

In the extremely relativistic case    v c in the pressure integral





𝑷ideal gas ∝ 𝜌 𝑇/𝜇







and at relatively 
low temperature









In general  partial degeneracy



… need evaluation of each parameter …







Tabulation of 
Fermi integrals



Non-Relativistic, Non-Degenerate (i.e., ideal gas) 

Non-Relativistic, Extremely Degenerate 

Extremely Relativistic, Extremely Degenerate

𝑷ideal gas ∝ 𝜌 𝑇/𝜇

𝑷𝑒,𝑑𝑒𝑔
𝑁𝑅 = 1.00 × 1013

𝜌

𝜇𝑒
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[cgs]

𝑷𝑒,𝑑𝑒𝑔
𝐸𝑅 = 1.24 × 1015
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𝑇𝑐 ∝ 𝜇 𝐺𝑀/𝑅

𝜌𝑐 ∝ 𝑇𝑐
3 / 𝑀2

so for a given 
M, slope =3 

Starting from here ρ ↓↓  T ↓↓



Mmin
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Mmax
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From nonrelativistic to relativistic degeneracy



The more massive of a 
WD, the smaller of its size.

Vol. 1

There is a solution in case of NR.





So a WD with 𝑀 = 0.4 M☉ and 𝑇eff = 104 K

has 𝐿 = 3 × 10−3 L☉



For a WD with 𝑀 = 0.4 M☉, g = 4 × 10
7cm s−2

Gravity

Gravitational Red shift



There is no solution in case of ER.
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 no solution



Mlimit (Fe) = 1.26 M☉

 For degenerate gas, 𝑀WD ↑, 𝑅WD ↓

 For 𝑀WD = 1𝑀⨀, 𝑅WD = 0.02 𝑅⨀

 There is an upper limit to the mass

𝑀limit ≈
ℏ𝑐

𝐺𝑀𝐻
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≈ 2𝑀⨀

Rigorously, 

𝑀limit ≈
5.836

𝜇𝑒
2 𝑀⨀

𝜇𝑒 = 1 for H
= 2 (for He)
= 56/26 = 2.15

Weinberg (1972) 𝑀limit ≈ 1.2 𝑀⨀,   Later value 𝑀limit ≈ 1.44 𝑀⨀







Kalirai 2010







White Dwarf Cooling

WDs are supported by electron 
degeneracy pressure.  With no 
sustaining energy source (such as 
fusion), they continue to cool and fade 
 very faint

 The luminosity of the faintest WDs in a 
star cluster  cooling theory  age 

 The age of the oldest globular cluster 
= lower limit of the age of the universe

Limiting V=30



White Dwarf Cooling







Ideal gas







L Tc

A



 chemical composition and opacity

B

The interior of a WD need not be exceedingly hot.



Energy source: 𝐸thermal
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Envelope

𝑇~106 K, 𝑙 ≈ 1 − 10 km

Envelope mass < 4𝜋 𝑅2𝑙 𝜌b ≈ 2 × 10
−4 M☉, is indeed 

small

Core Temperature

B𝑀 ≈ M☉,  
𝐿
𝐿☉

≈ 10−4 − 10−2  𝑇c≈ 106 K

A  𝜌b≈ 103 g cm−3



𝑀𝑅3 = const, and 𝐿 ∝ 𝑅2 Teff
WD evolutionary tracks  
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Main sequenceWhite dwarf 
sequence

Blue – H atmosphere models 
Red – He atmosphere models 

for a 0.6 M" WD 

Hansen et al (2002)

White dwarf sequence 
of M4



Hansen et al (2002)

The observed luminosity function 
of the white dwarfs in M4 (after 
correction of incompleteness) 
versus
model predictions for different 
ages



• The WD envelope is typically thin, ~1% of the total WD 
radius.

• DA WD: layer of MHe ~10−2 MWD outside the CO core, then 
an outer layer MH~10−4 MWD

• A non-DA WD layer of MHe ~10−2− 10−3 MWD


