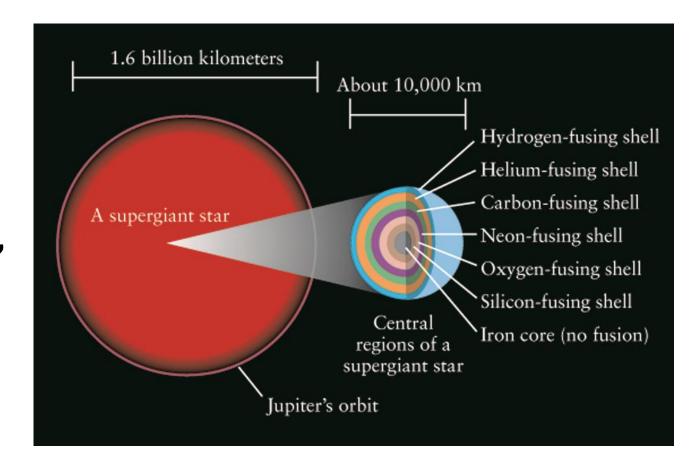

Supernovae


Possible evolutionary paths of a supernova

- 1. Core collapse
- 2. Thermonuclear runaway

Evolution of an Intermediate-mass (8 to 25 ${\rm M}_{\odot}$) or High-mass (>25 ${\rm M}_{\odot}$) Star

- ☐ Core size ~ Earth
- Layers of nuclear reactions (cf an onion)
- Envelope as a supergiant, with the diameter comparable to the Jupiter's orbit

Each subsequent reaction proceeds ever faster; silicon \rightarrow iron

An iron nucleus is most compact between protons and neutrons

- → further fusion does not release energy
- \rightarrow iron core collapses (D \sim 3000 km, collapses in \sim 0.1 s)

Evolutionary Stages of a 25-M _O Star				
Stage	Central temperature (K)	Central density (kg/m³)	Duration of stage	
Hydrogen fusion	4×10^7	5×10^{3}	$7 \times 10^6 \mathrm{yr}$	
Helium fusion	2×10^{8}	7×10^{5}	$5 \times 10^5 \mathrm{yr}$	
Carbon fusion	6×10^{8}	2×10^{8}	600 yr	
Neon fusion	1.2×10^{9}	4×10^{9}	1 yr	
Oxygen fusion	1.5×10^9	$1 imes10^{10}$	6 mo	
Silicon fusion	2.7×10^{9}	3×10^{10}	1 d	
Core collapse	5.4×10^9	3×10^{12}	0.2 s	
Core bounce	2.3×10^{10}	4×10^{17}	milliseconds	
Supernova explosion	about 10^9	varies	10 seconds	

Iron core collapse \rightarrow 5 billion K \rightarrow photodisintegration by energetic gamma rays

The star spends millions of years on the main sequence, synthesizing simple nuclei such as H and He to iron, then takes less than a second to disintegrate back to protons, neutrons and electrons.

Density of the core $\nearrow \nearrow$, reaching 4×10^{17} kg/m³ (cf density of a nucleus) in < 1 s \rightarrow even the electron degenerate pressure cannot support the core $\rightarrow e^- + p^+ \rightarrow n^o + \nu$

Core supported by <u>neutron</u> degenerate pressure **a neutron star**

Core bounces → supernova explosion + supernova remnant

Evolution of a Binary System

- Both stars of a few solar masses
- More massive component → RG → transfers and loses mass
 → a hot WD
- Secondary → RG → fills the Roche lobe → transfers mass to the hot WD via an accreting disk
- Accreted material is compressed and heated, and if $T > 10^7$ K \rightarrow CNO takes place at the base of the accreted layer (even with a thermonuclear runaway if the material is degenerate)
- → A nova explosion
- If accretion onto a C-O WD \rightarrow core mass $> M_{Ch} = 1.4 M_{\odot}$ \rightarrow Catastrophic collapse + C burning \rightarrow a Type Ia supernova

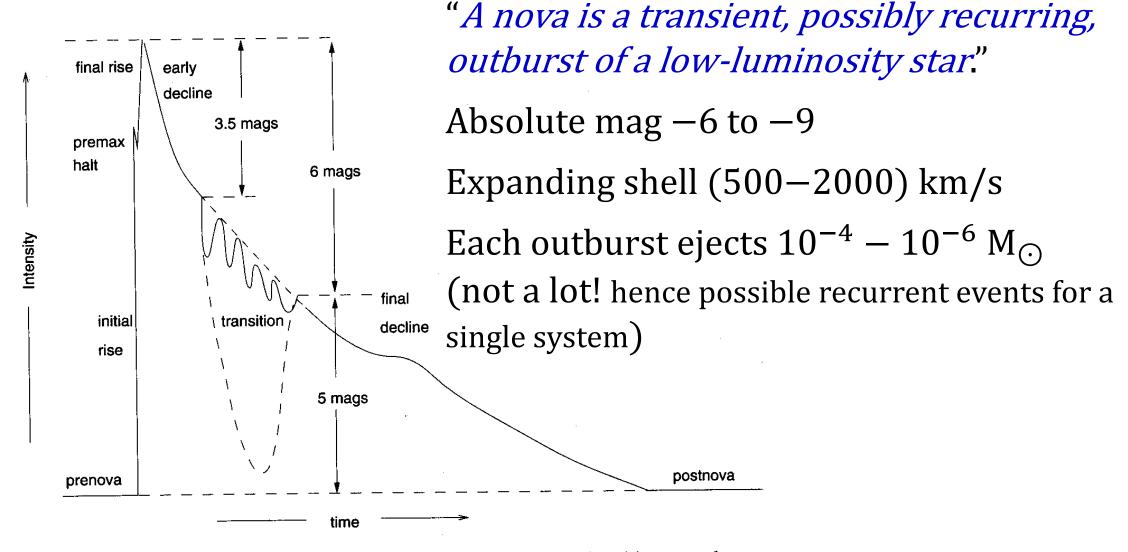
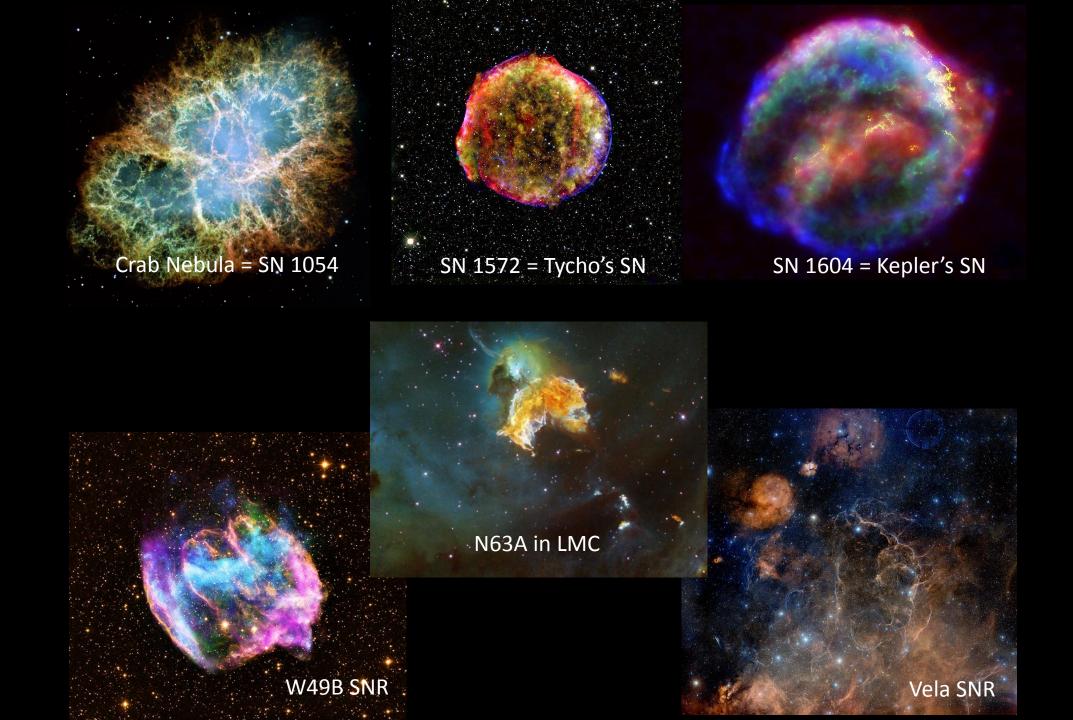


Fig. 7.10. Schematic light curve for a typical nova; the time axis is arbitrary and not to scale.

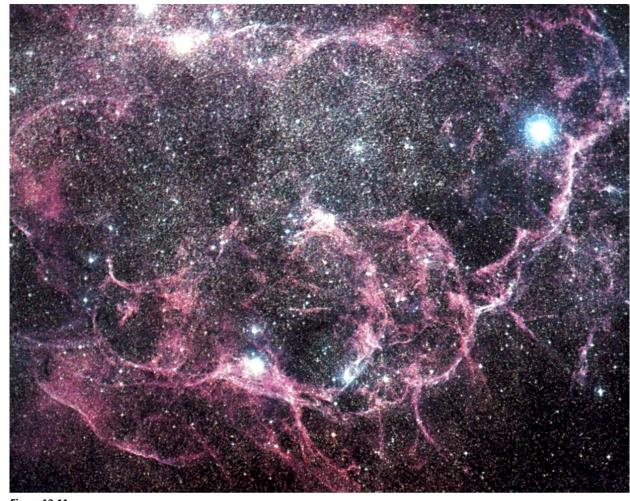
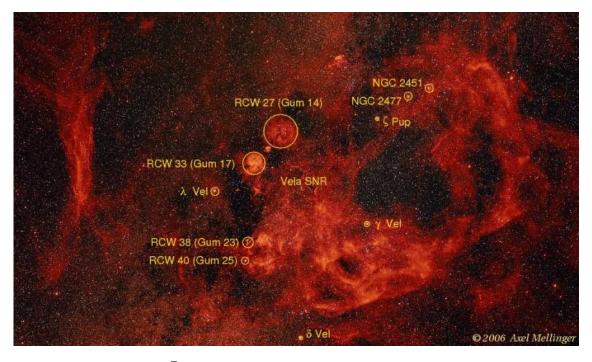

Accreting Binary Systems

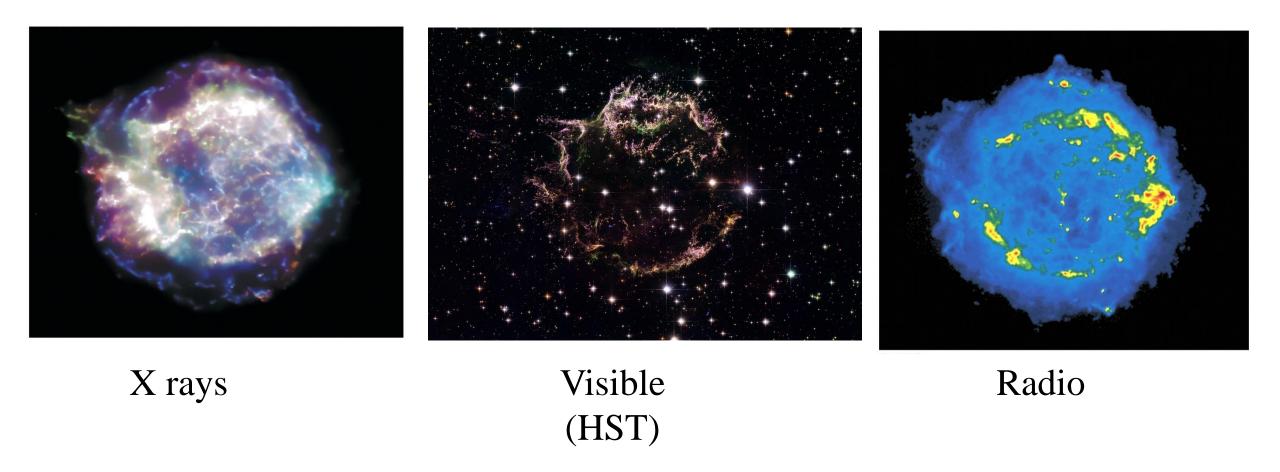
A semi-detached binary system with the primary being a WD: (in increasing L)

- ✓ dwarf nova
- ✓ classical nova
 (these may be
 cataclysmic variables)
- √ type Ia supernova

Table 7.4. Taxonomy of binary systems

Name	Description	Remarks
Algols	Two normal stars (main sequence or subgiants): semidetached binary	Provide checks on stellar evolution, information on mass loss
RS Canum Venaticorum	Chromospherically active binaries	Useful for studies of dynamo-based magnetic activity; exhibits starspot chromospheres, corona, and flares similar to the Sun
W Ursae Majoris	Short period (0.2–0.8 days) Contact binaries	High levels of magnetic activity, important for studying stellar dynamo model
Cataclysmic variables and novas	White dwarfs with cool M-type secondaries; short periods	Exhibits accretion phenomena and accretion disks
X-ray binaries	Neutron star or black hole as the compact component; powerful x-ray sources with $L_x > 10^{35}$ ergs s ⁻¹	Study of structure and evolution of compact remnants; indirect evidence for black holes
ζ Aurigae/ VV Cephi'	Long-period interacting binaries; Late-type supergiant plus a hot companion	Study of supergiant phase, especially atmospheres of supergiants

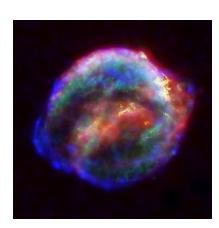




Figure 13-11
Discovering the Universe, Seventh Ed
© 2006 W.H.Freeman and Company

Gum Nebula is the largest SNR in the sky, originated from a supernova explosion perhaps a Myr ago.

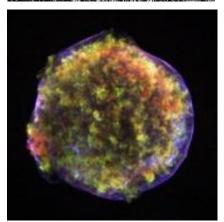
Gum Nebula has a angular extent $> 40 \text{ deg } \rightarrow \text{ linear size more than 2300 ly across } \rightarrow \text{ The closest part from Earth } \sim 300 \text{ ly}$

Cassiopeia A SNR is 3.4 kpc from us. The explosion should have been seen 300 years ago, but was not recorded.



Supernovae in History

 OB association in Scorpius-Centaurus Solar system within 150 ly 2 Myr ago; should have experienced SN explosions


Table 10.1 Historical supernovae

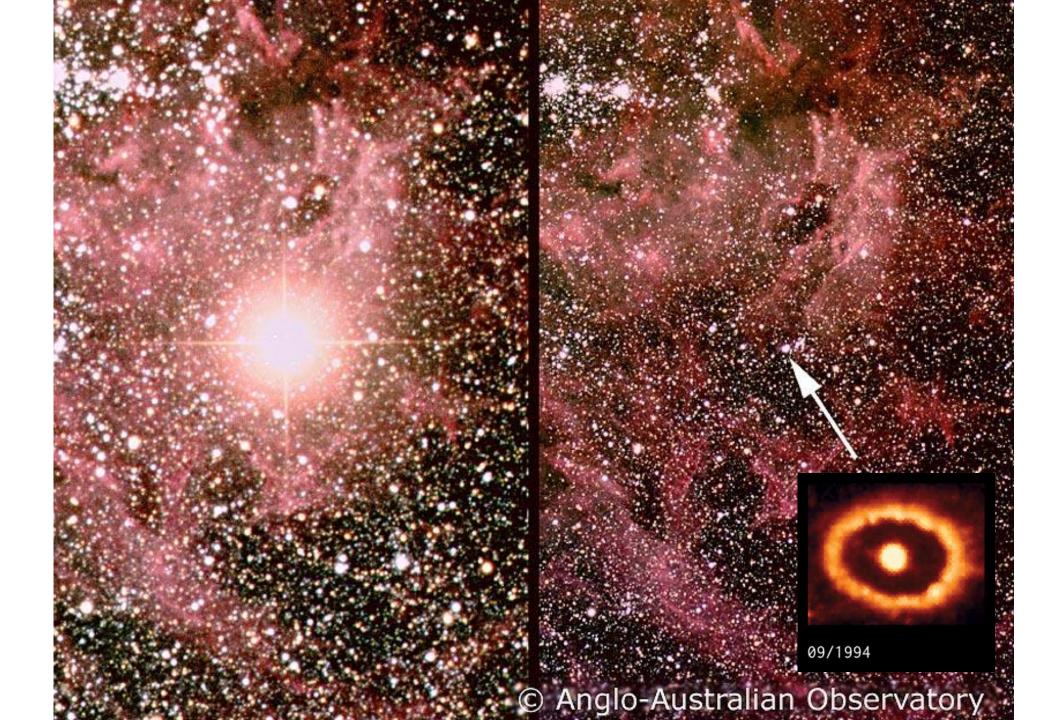
Galaxy: Name	Year	Distance × 3000 ly
Milky Way:		
Lupus	1006	1.4
Crab	1054	2.4
3C 58	1181(?)	2.6
Tycho	1572	2.5 <
Kepler	1604	4.2
Cas A	1658 ± 3	2.8
Andromeda	1885	700
LMC: SN1987A	1987	50

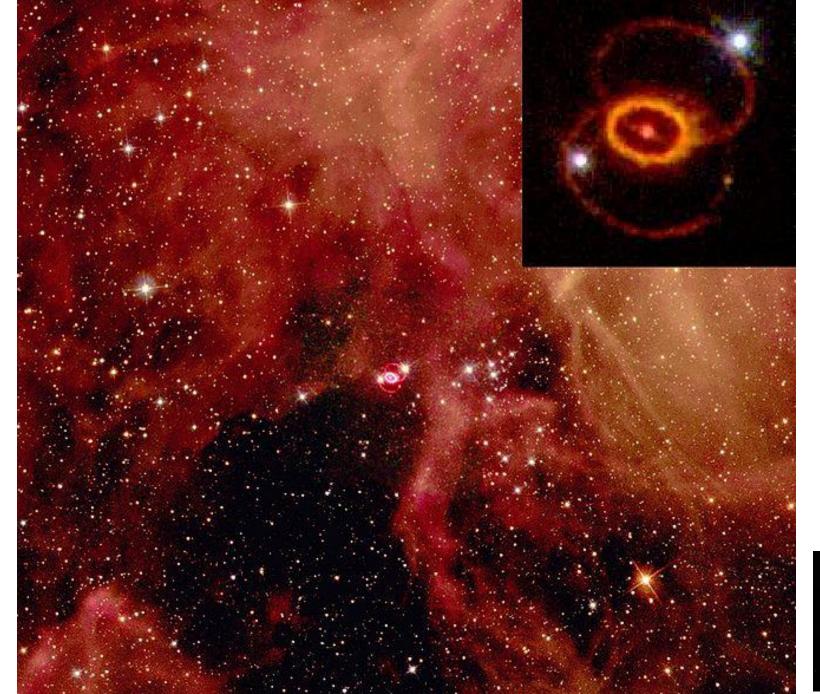
Chandra SN1604

Chandra SN1572

Crab Nebula (in Taurus)

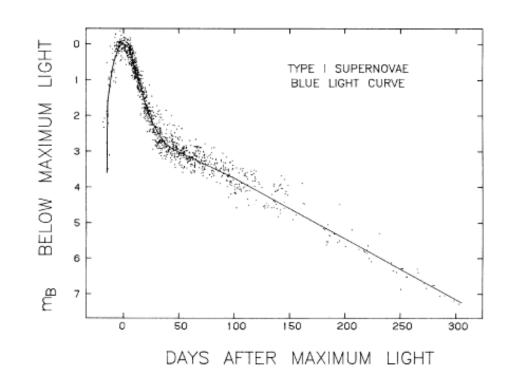
SN clearly recorded in AD1054 by Chinese astronomers
→ "Chinese supernova"




The Expanding Crab Nebula 1973 to 2001

SN 1987A

First observed 24 Feb, 1987 not quite SNI pre SN progenitor observed and sp. classified Sanduleak -69 202 Sp = B 3 I L ~1.1 × 10 Lo; Teff ~ 16,000 K (M~16-22 Mo) Pop I but metal-poor Neutrino events (kamiokande) detected hours before SN visible

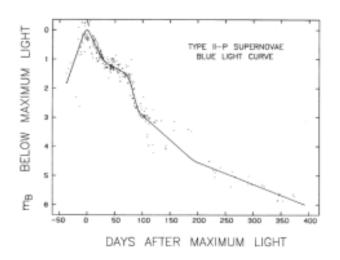


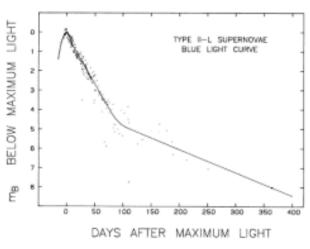
Supernova classification

Divided into two types based on spectra

Type I – with no H lines

- Further classification based also on spectra:
 - ✓ Ia strong Si line
 - ✓ Ib no H or Si line, but have He lines
 - ✓ Ic no Si, He or H lines
- Ia found in all types of galaxies
 - associated with white dwarfs in binary systems




Supernova classification II

Type II – with H lines

Further classification based on light curve

- ✓ II P flat 'plateau' in LC
- ✓ II L linear light curve
- Type II, Ib, Ic found only in spiral arms of spiral galaxies (i.e. regions of recent star formation) → massive stars
 Core collapse supernovae with mass loss in Ib and Ic

Doggett and Branch (1985) *Astron. J.*, **90**, 2303

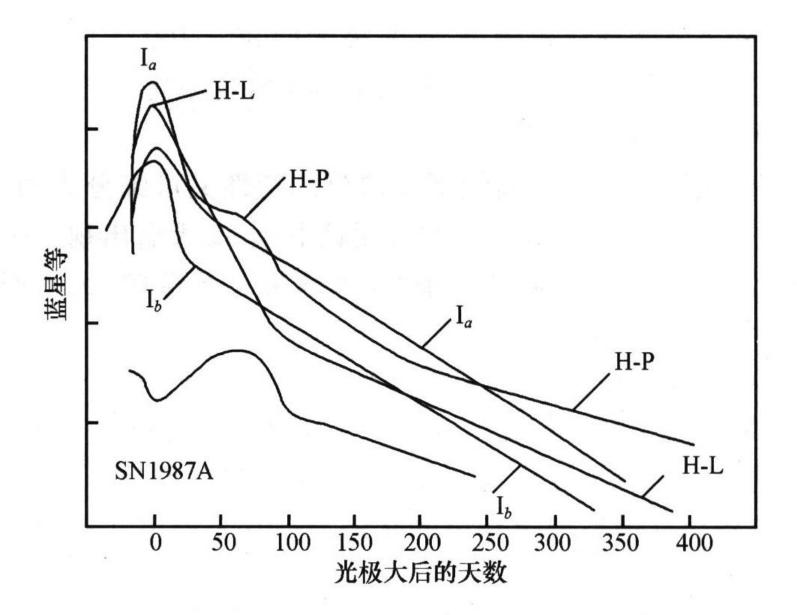
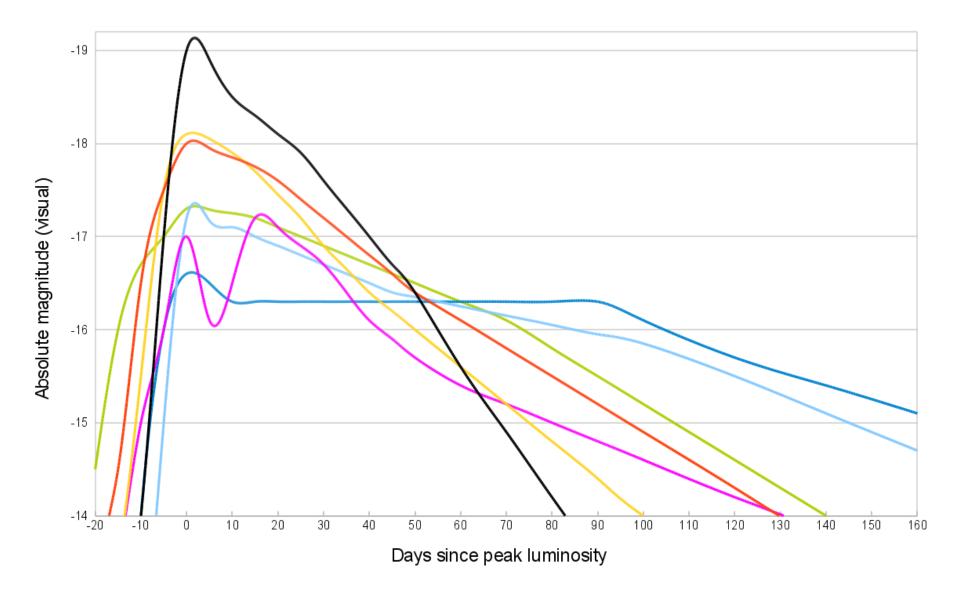
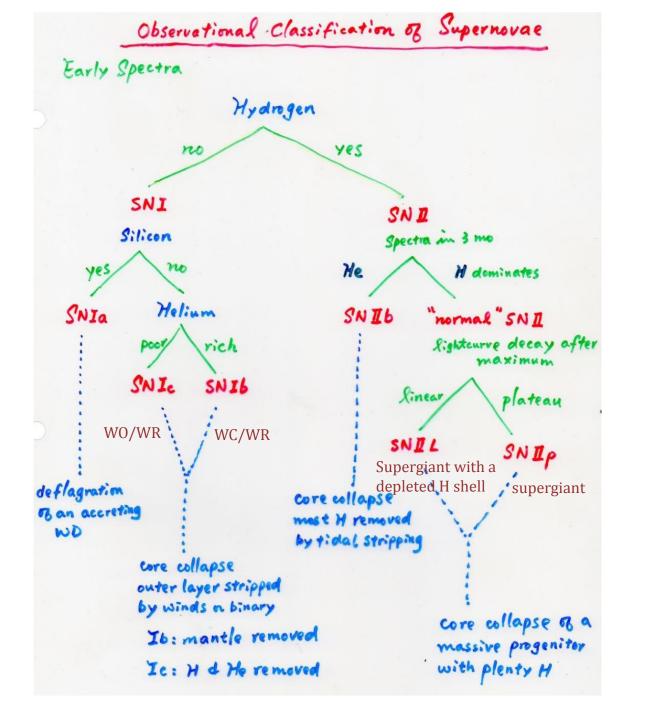




图 10.8 几种类型超新星的光变曲线(Wheeler, Harkness, 1992)

http://upload.wikimedia.org/wikipedia/commons/e/e0/Comparative_supernova_type_light_curves.png

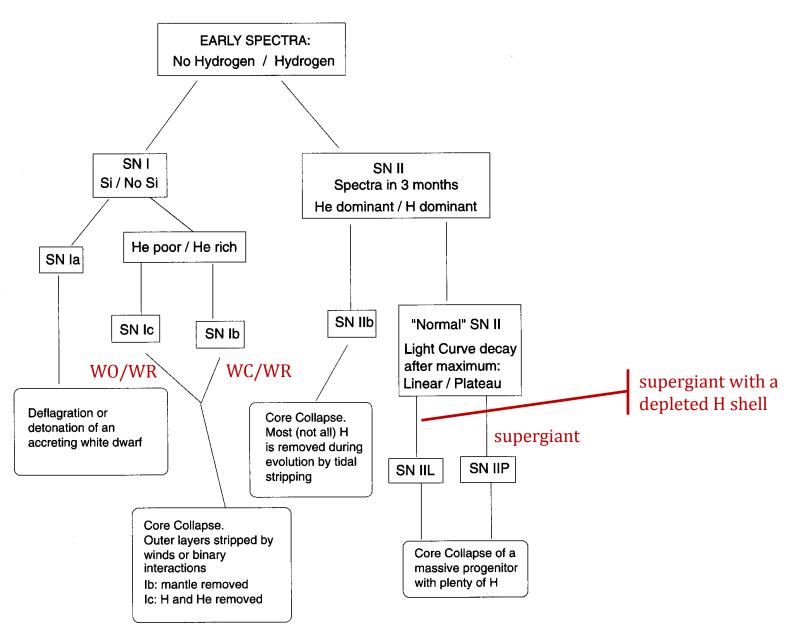


Fig. 7.12. Observational classification of supernovas (SNs).

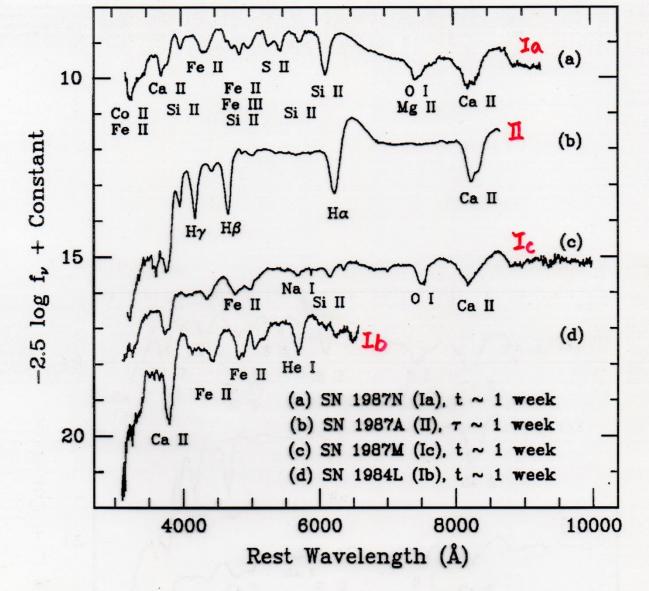


Figure 1 Spectra of SNe, showing early-time distinctions between the four major types and subtypes. The parent galaxies and their redshifts (kilometers per second) are as follows: SN 1987N (NGC 7606; 2171), SN 1987A (LMC; 291), SN 1987M (NGC 2715; 1339), and SN 1984L (NGC 991; 1532). In this review, the variables t and τ represent time after observed B-band maximum and time after core collapse, respectively. The ordinate units are essentially "AB magnitudes" as defined by Oke & Gunn (1983).

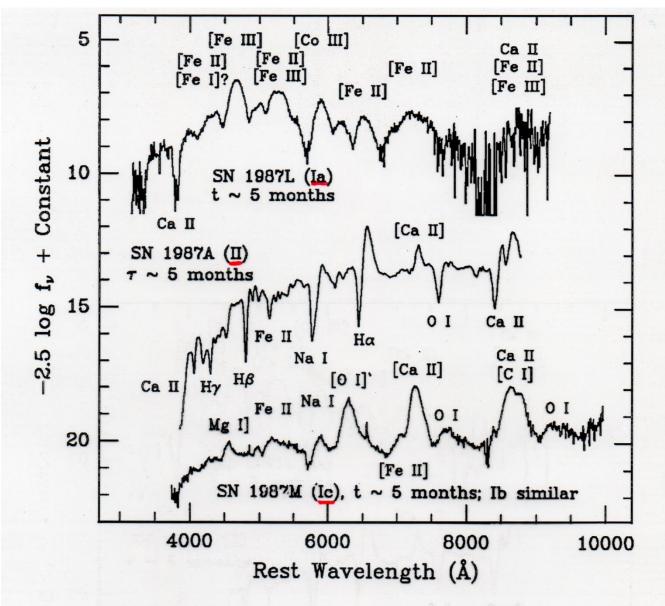


Figure 2 Spectra of SNe, showing late-time distinctions between various types and subtypes. Notation is the same as in Figure 1. The parent galaxy of SN 1987L is NGC 2336 ($cz = 2206 \text{ km s}^{-1}$); others are listed in the caption of Figure 1. At even later phases, SN 1987A was dominated by strong emission lines of H α , [O I], [Ca II], and the Ca II near-IR triplet, with only a weak continuum.

Elements observed m SNI spectra


Subclass ~ maximum		~ 6 months	
SNIA	o, Mg, Si, S, Ca, Fe	Fe, Co	
SNIB	o, ca, Fe	o, ca, Mg	
SNIc	He, Fe, Ca	0 , Mg	

Hansen + Kawaler

- The energy source of the type Ia supernovae comes from nuclear fusion. The explosion produces various radioactive isotopes, e.g., nickel becomes cobalt.
- So far, a few thousands SNe have been detected in external galaxies.
- Applying the statistics, the Milky Way should have occurred one type Ia SN every 36 years, and

one type II SN every 44 years.

- Each century, therefore, we should have seen about 5 supernovae. So, what happened?
- Which star is most likely the next?
 In the solar neighborhood?

Supernovae M > 8 Mo core carbon burning -> 160, 20N, Na, 12 Mg and 24 Mg ... Eventually 54 Fe, Fe, and 56 N; Three critical processes "iron" core Neutrino cooling Solar neutrino flux $= 7 \times 10^{10} / \text{cm}^2/\text{s}$ At this stage a lot of 25 Ex. dung Siburning, a 20 Mg

Ly ~ 3.1 × 10 sugs

Neutrino mass $L_{20M_{\odot}} \sim 4.4 \times 10^{8} \text{ Ms}^{-1}$ < 0.32 eV for the sum of masses of 3 known flavors

(3) Photodisintegration

into a particles and protons

This is an endothermic process; i.e. takes

energy away and lowers pressure support

at the core

56 Fe + 8 \rightarrow 13 He + 4 n 4 He + 8 \rightarrow 2 p + 2 n 3. Neutronization

Possible inverse β decay $p^+ + e^- \rightarrow n^o + \nu$ $n_e \downarrow \Rightarrow P_{deg} \downarrow$ $n_e \downarrow \Rightarrow P_{deg} \downarrow$ $n_e \downarrow \Rightarrow escape \Rightarrow escape \Rightarrow$

=> A rapid collapse of the core

Note exothermic releasing energy

Outer cove/mantle collapses supersonically (free fall) inner core collape va 70,000 kms homologously (Infall speed oc distance to center Subsonically Inner core collapses until le n 8 x 10 8 cm3 This is 3x Paucleus -> nuclear reactions
produce rupulsive force (cannot "squeeze amymore) This sends an outgoing pressure wave through the infalling material

Two possibilities when the shock propagates through the inner core -> photodisintegration (i) If the iron core is small, shock emerges energetically -> an explosion on the outer material prompt hydrodymamic explosion

This can explain the explosion of MS stars with $8{\sim}12~M_{\odot}$, ending with a core < 1.2 M $_{\odot}$. But the progenitor of SN1987A had 20 M $_{\odot}$ \rightarrow need an alternative mechanism to explain more massive SNe

(ii) If the core is massive, inner shock stalls Perit > 1.5 x 10 gam material becomes so deuse that even Vs cannot escape -> formation of a shock nautrine sphere cf protostars when f > Perix Taiff > Tree fall Thus deposits some energy to the inner shock -> explosion

delayed-explosion mechanism

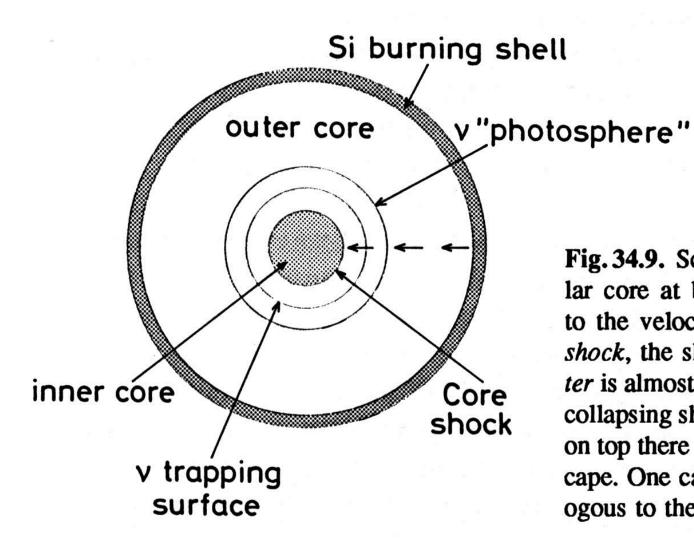


Fig. 34.9. Schematic picture of a collapsing stellar core at bounce. The short arrows correspond to the velocity field. At the sphere labelled core shock, the shock is formed inside which the matter is almost at rest. Above the shock there is a still collapsing shell in which neutrinos are trapped. But on top there is a shell from which neutrinos can escape. One can define a neutrino photosphere analogous to the photosphere in a stellar atmosphere

Total kinetic energy of butgoing shock Ekin ~ 10 mgs (This is only 1% of the energy in energy) -> outer material expands & becomes optically => SN explosion, releasing ~ 10 grgs with Lpeak ~ 10 ergs ~ 109 Lo e.f L Milky Way

Roughly if original mass < 25 Mo; can be supported neutron pressure; may sunive the explosion -> a neutron star

Ib M> 25 Mo -> collapse to a black hole

Neutrino Trapping

Mean free path $\lambda = 1/n\sigma$ Cross Section $\sigma = \sigma_0 E^2$ For neutrinos, $\sigma_0 \sim 2 \times 10^{-44} [\text{cm}^2]$ $E = relative energy in unit <math>\sigma_0 = rest$ mass

In Sead P= 11.34 gom³, A= 208

A neutrino of 1 MeV, or E = 2, 1 ~ 3.8 × 10 am

~ 380 Ry

In a collapsing Stellar core P~4 X 10 4 gom3 Neutrinos have ~ 150 Mev, or E~300 → > = 2.2 am So if R ~ 10 Km, the mean free time, or diffusion time Tats

Supernova Observationo

L peak ~ 10-10 Lo Time before peak (rusing time) ~ 2 wks Shell expansion v ~ 5-10 × 10 kms supernova remnant (SNR) lasting ~ 103 yrs Etotal ~ 10 - 10 ergs = Ephotono + Eneutrinos + Ekinetic usually minor (~1%) predominant cooling core -> a neutron star P~10"8 am3, M~ Mo

- 1932 Chadwick discovered the neutron.
- Landau thought neutron stars might exist.
- 1934 Baade & Zwicky suggested neutron stars as remnants of supernova explosions.
- 1939 Oppenheimer & Volkoff proposed the first model for neutron stars, with estimates of masses and sizes.
- 1967 Hewish & Bell discovered the pulsar.
- Gold & Pacini proposed pulsars as fast spinning, highly magnetized neutron stars.

Mass limit of neutron degenerate stars uncertain because of uncertain EoS at P > Princlean, ranging from 0.7 Mo for non-interacting neutrous (Tolman-Oppenheimer-Volkoff Smit) up to ~ 2.5 Mo

A pulsar

Spin down from periods ~ ms

Some SNRs host no pulsars. - ust enough e, not strong enough B? - we are not in the 'light house beam'? - neutron Star destroyed completely - neutron Star 'Kicked out' some NSs (a pulsars) have space motion ~ 1000 Kms

Annu. Rev. Astron. Astrophys. 1992. 30: 359–89 TYPE Ia SUPERNOVAE AS STANDARD CANDLES

David Branch

Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019

G. A. Tammann

Astronomisches Institut der Universität Basel, Venusstrasse 7, CH-4102 Binningen, Switzerland, and European Southern Observatory, Karl-Schwarzschild-Str. 2, D-8049 Garching/München, Germany

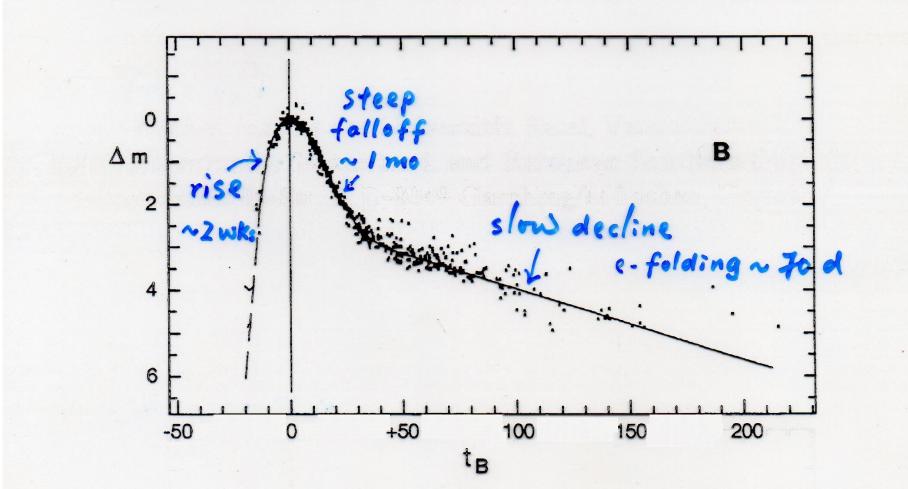


Figure 2 The standard B light curve (adapted from Cadonau 1987), based on observations of 22 SNe Ia.

Many sky survey projects, e.g., Pan-STARRS (PS), Palomar Transient Factory (PTF), Sky Mapper, Large Synoptic Survey Telescope (LSST), to catch SNe early on, for pre-SN characterization

Type I No H in spectra Located in spirals or ellipticals If in spirals, wouldy NOT in arms but some seen near HI regions or arms -> Ib Ia Standard model A wi close to chandrasekhar limit + a mass losing companion -> accretion onto wD -> Rwo 1 -> TT. If heat not carried away

=> ignition of c, o, ...

Thermonuclear explosion

Fate of wil depends on accretion rate and MWD · partial explosion w/ a wid left behind · disrupt completely; no Stellar remnant Population Il progenitor SNIa ~ 80 % of Type II $M_{peak} \sim -17 \text{ mag}$ All SN Ia light curves similar >> Standard candles

Averaged 1 SNI/100 yrs in a spiral

Type II $M_{\text{peak}} \sim -19 \text{ mag}$ With hydrogen lines in spectra Found in spiral arms on Irr. If formed in the same arm timescale < 10 xr => M>10 Mo Standard model End of massive Star evolution gravitational collapse Population I progenitor Fate -> NS, BH

Type II (core collapse) SN progenitors

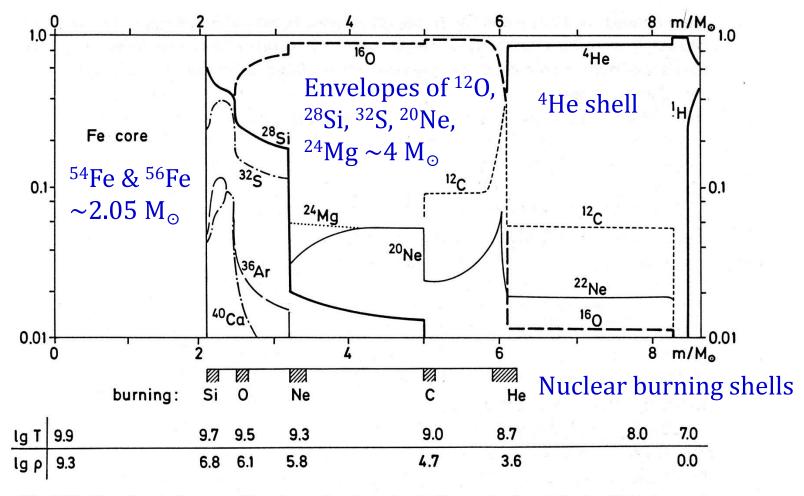


Fig. 34.7. The chemical composition in the interior of a highly evolved model of a $25M_{\odot}$ star of population I. The mass concentrations of a few important elements are plotted against the mass variable m. Below the abscissa the location of shell sources and typical values of temperature (in K) and density (in g cm⁻³) are indicated. (After WOOSLEY, WEAVER, 1986)

THE PHYSICS OF SUPERNOVA EXPLOSIONS¹

S. E. Woosley

Board of Studies in Astronomy and Astrophysics, Lick Observatory, University of California, Santa Cruz, California 95064

Thomas A. Weaver

Special Studies Group, Lawrence Livermore National Laboratory, Livermore, California 94550

¹ The US Government has the right to retain a nonexclusive royalty-free license in and to any copyright covering this paper.

Table 1 Presupernova models and explosions^a

Main sequence mass	Helium core mass	Iron core mass	Explosion energy ^b (10 ⁵⁰ erg)	Residual baryon mass ^b	Neutron star mass ^b	Heavies ejected $(Z \ge 6)$
11	2.4	c	3.0	1.42	1.31	~0
12	3.1	1.31	3.8	1.35	1.26	0.96
15	4.2	1.33	2.0	1.42	1.31	1.24
20	6.2	1.70	_		_	2.53
25	8.5	2.05	4.0	2.44	1.96	4.31
35	14	1.80	· 		_	9.88
50	23	2.45		_	-	17.7
75	36	d	_		BH?	30?
100	45	~2.3 ^d	≥4		BH?	39?

^a All masses given in units of M_{\odot} . ^b All except for 100 M_{\odot} determined by Wilson et al. (1985).

^c Never developed iron core in hydrostatic equilibrium.

^d Pulsational pair instability at oxygen ignition.

210

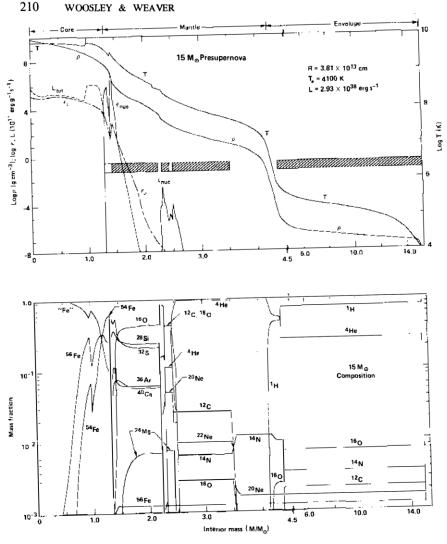


Figure 1 Structure and composition of a 15- M_{\odot} presupernova star at a time when the edge of its iron core begins collapsing at 1000 km s⁻¹. Neutrino emission from electron capture (ϵ_{v}) dominates photodisintegration in the total energy losses (L_{tot}) throughout most of the iron core. Central temperature here is 7.62×10^9 K and density is 9.95×10^9 g cm⁻³. Spikes in the nuclear-energy generation rate (ε_{nuc}) show the location of active burning shells, while cross-hatched, blank, and open bars indicate regions that are convective, semiconvective, and radiative respectively. The species "Fe" includes all isotopes from $48 \lesssim A \lesssim 65$ having a neutron excess greater than 56 Fe. Note a scale break at 4.5 M_{\odot} . Figure adapted from Woosley & Weaver (1985).

- Core collapse in free-fall, $\tau_{\rm ff} \approx (G\overline{\rho}\,)^{-1/2} \approx 1 \, {\rm ms}$, if $\rho = 10^{10} \, {\rm g \, cm}^{-3}$
- ◆ Central density and pressure ↑↑ and becomes subsonic; outer material remains free-fall and supersonic.
- ◆ Transition zone = constant speed, force free, relativistic electron degenerate pressure balances gravy
 → Chandrasekhar limit
- ♦ Inside M_{ch} , $\rho \approx 2.3 \times 10^{14}$ g cm⁻³ (nuclear), strong force; material incompressible; neutron degeneracy Outside M_{ch} \rightarrow supersonic accretion
- → Shock wave and bounce

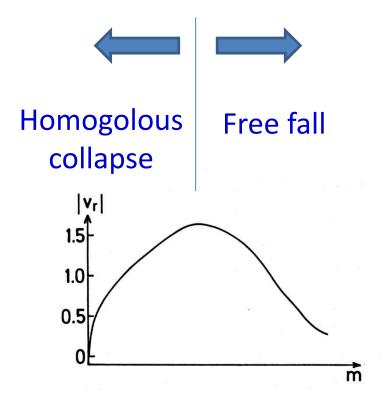
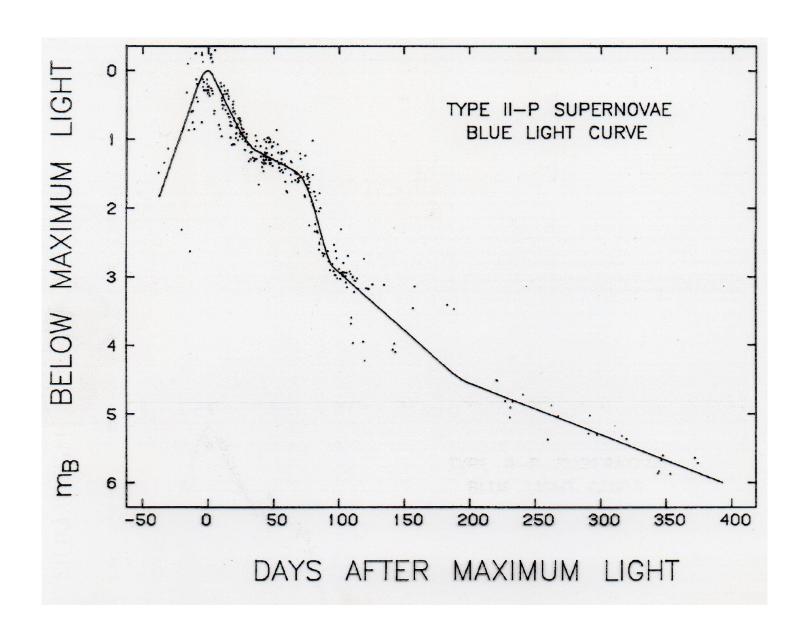
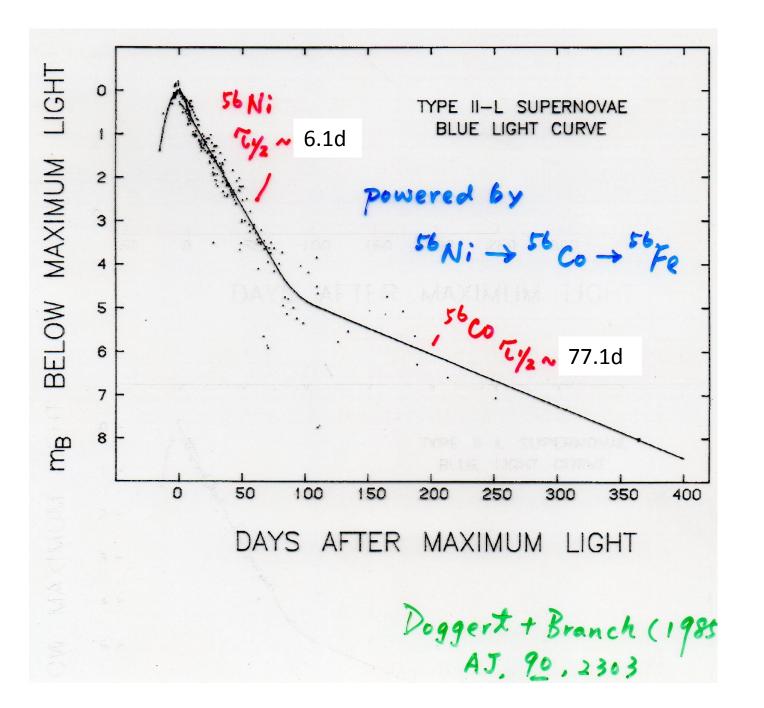
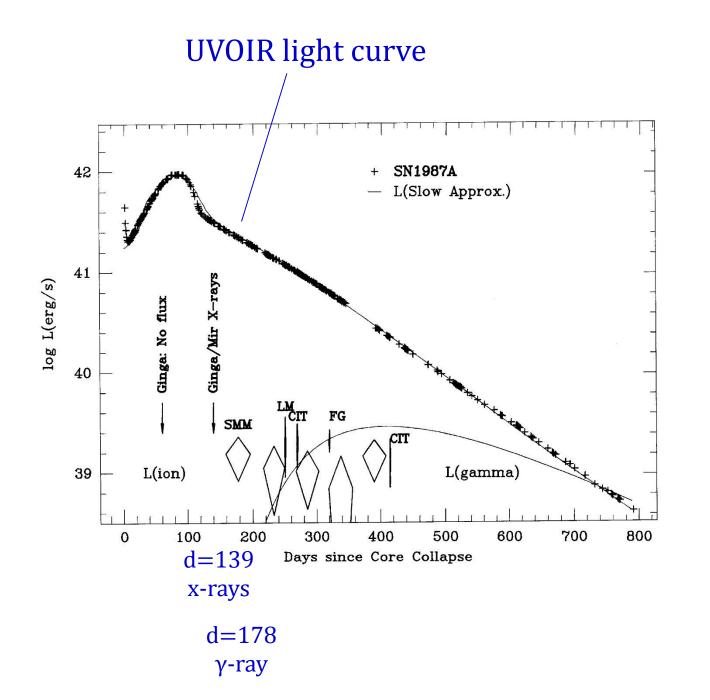


Fig. 34.8. Schematic picture of the velocity distribution in a collapsing stellar core originally of $1.4\,M_{\odot}$ after numerical calculations (VAN RIPER, 1978). Note the two regimes: on the left $|v_r|$ (in units of 10^9 cm s⁻¹) increases in the outward direction. It corresponds to a (roughly) homologously collapsing part, while on the right $|v_r|$ decreases with m. This corresponds to the free-fall regime


Energy released in a core collapse


R: RWD (0.01 RO) -> RNS (10 Km)


 $\Delta E_{grav} \sim \frac{G M_0^2}{R_{NS}} \sim 3 \times 10^{53} \text{ ergs}$

10% used up by nuclear processes
rest to radiation and ejecting material

(luminosity & neutrinos)

Evidence of synthesis of heavy elements in 1987A

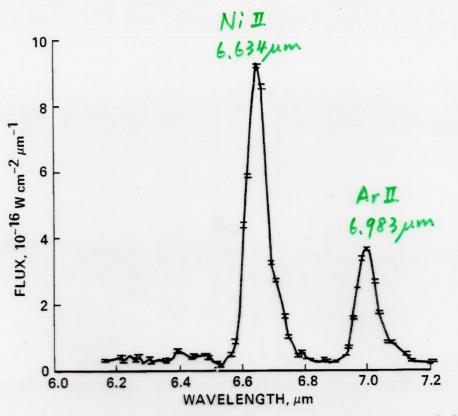
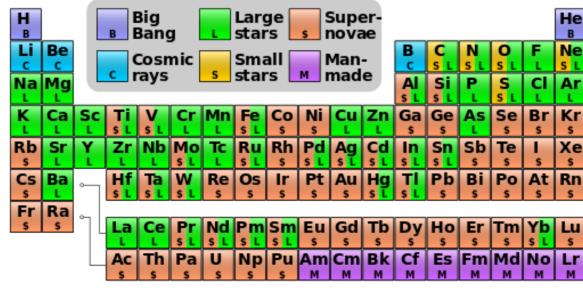


Fig. 1.—Spectrum of SN 1987A. The 1 σ error bars are typically $\pm 5 \times 10^{-18} \, \mathrm{W \, cm^{-2} \, \mu m^{-1}}$. The flux calibration star was α Bootis.

in 1988 April


Witteborn + 1989 ApJL, 338, L9

- ◆ During a type II SN explosion, the neutron star reaches $T \approx 10^{11} \sim 10^{12}$ K, but cools down quickly by neutrinos, to $T \approx 10^9$ K in a day, 10^8 K in 100 years.
- ♦ This is cold, $kT \approx 10 \text{ keV}$ cf. Fermi energy ($\rho \approx 10^{14} \text{ g cm}^{-3}$), $\varepsilon_F \approx 1000 \text{ MeV}$, so $T_{\text{neutron star}} \rightarrow 0$, and all electrons, protons, and neutrons are at the lowest energy states.
- ♦ Neutron beta decay process, $n \to p + e^- + \overline{\nu_e}$, does not take place, because the resultant electron and neutrino are not energetic enough (energy difference between n and p)
- But inverse beta decay $p + e^- \rightarrow n + \nu_e$ OK
- → All neutrons

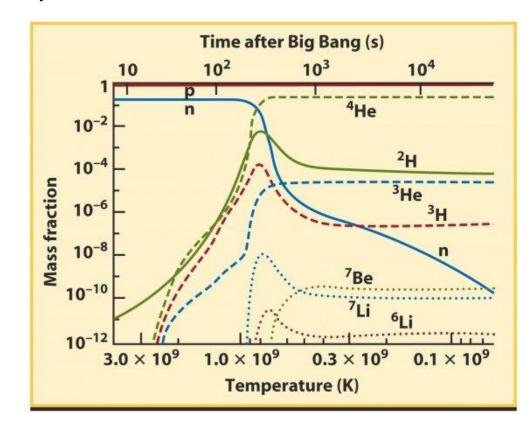
- So far thousands of SNe have been detected in external galaxies.
- In the Milky Way, a type Ia SN is expected every 36 years, and a type II SN is expected every 44 years. Then each century should see about 5 SNe.

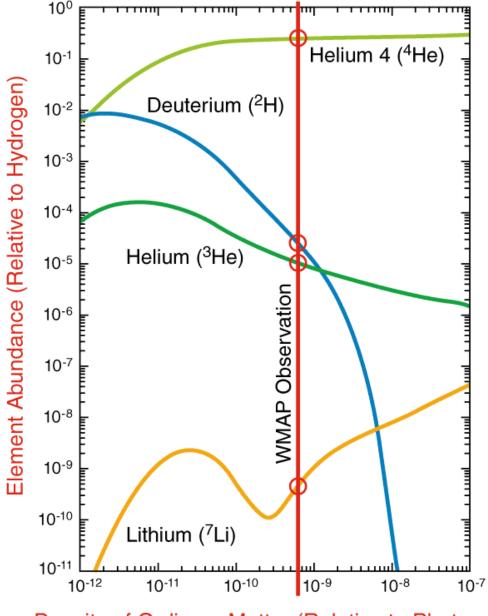
Notable Historical supernovae in the Milky Way					
SN 1006	Lupus	Ia	-7.5 mag, brightest in history		
SN 1054	Taurus	II	Chinese SN; Crab Nebula as the SNR		
SN 1572	Cassiopeia	Ia	Tycho's Nova		
SN 1604	Ophiuchus	Ia	Kepler's Star		
SN 1680	Cassiopeia	IIb	Not observed, Cas A as the SNR		

Solar System Abundances

-			
•			

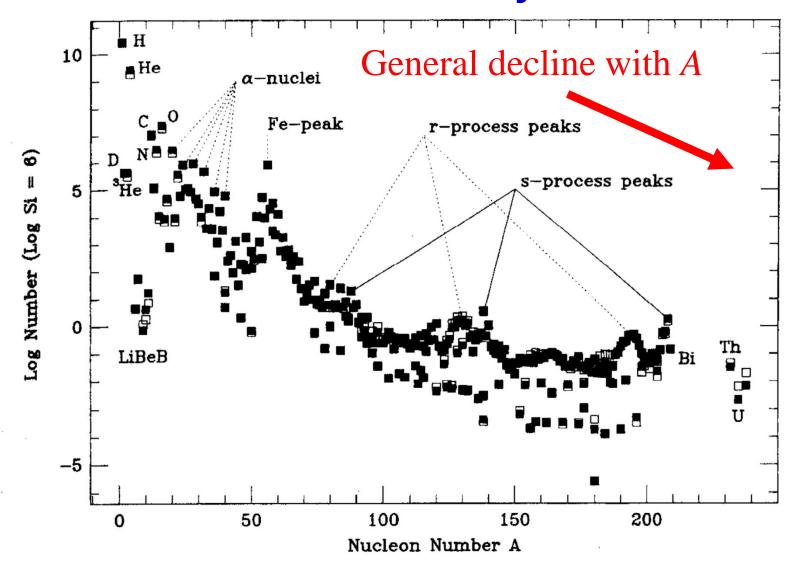
The	25	Most	Abund	ant	Nuc	P
1110	4.	TATOOL	AUMIN	uant	1140	


Rank	Z	Symbol	A	Nucleon Fraction	Source (process)
1	1	Н	1	7.057e-01	Big Bang
2	2	He	4	2.752e-01	Big Bang, CNO, pp
3	8	O	16	9.592e-03	Helium
4	6	C	12	3.032e-03	Helium
5	10	Ne	20	1.548e-03	Carbon
6	26	Fe	56	1.169e-03	e-process
7	7	N	14	1.105e-03	CNO
8	14	Si	28	6.530e-04	Oxygen
9	12	Mg	24	5.130e-04	Carbon
10	16	S	32	3.958e-04	Oxygen
11	10	Ne	22	2.076e-04	Helium
12	12	Mg	26	7.892e-05	Carbon
13	18	Ar	36	7.740e-05	Silicon, Oxygen
14	26	Fe	54	7.158e-05	e-process, Silicon
15	12	Mg	25	6.893e-05	Carbon
16	20	Ca	40	5.990e-05	Silicon, Oxygen
17	13	Al	27	5.798e-05	Carbon
18	28	Ni .	58	4.915e-05	Silicon, e-process
19	6	C	13	3.683e-05	CNO
20	2	He	3	3.453e-05	Big Bang, pp
21	14	Si	29	3.448e-05	Carbon, Neon
22	11	Na	23	3.339e-05	Carbon
23	26	Fe	57	2.840e-05	e-process
24	14	Si	30	2.345e-05	Carbon, Neon
25	1	H	2	2.317e-05	Big Bang Arne


https://en.wikipedia.org/wiki/R-process#/media/File:Nucleosynthesis periodic table.svg

Prediction:

- \checkmark [4 He/H] $\approx 0.25 \rightarrow$ obs OK
- ✓ [D/H], [⁴He/H], , [³He/H], [Li/H] density dependent → obs all same densities


WMAP (CMB) obs \rightarrow consistent result

Density of Ordinary Matter (Relative to Photons)

Solar System Abundances

Z ↑, Coulomb barrier
 ↑ ↑ for charged
 particle reactions
 → elements produced
 by neutron capture

Cosmic abundance and stellar/galaxy evolution (Burbidge, E. M., Burbidge, G. R., Fowler, W. A., & Hoyle, F. (1957)

Big Bang → H:He=10:1

Stellar Interior

- 10⁷ K → p-p, CNO (fusing proton, in a proton rich or neutron poor gas) (p process)
- 10⁸ K \rightarrow triple-alpha to C \rightarrow continue to fuse α particles \rightarrow mass number multiples of 4 by fusing (α process)
- $4 \times 10^9 \text{ K} \rightarrow \text{nuclear equilibrium} \rightarrow \text{V, Cr, Mn and elements of the iron group (e process)}$

Explosive events

Neutron capture rapidly (compared to the competing β decays) \rightarrow neutron-rich isotopes (r process) e, g., the radioactive elements 235 U, 238 U, at the expense of the iron group

Neutron capture slowly (compared to the competing β decays) \rightarrow neutron-rich isotopes (s process)

Valleys at A=5 to 15 (LiBeB) and $A \sim 45$ (Sc=scandium)

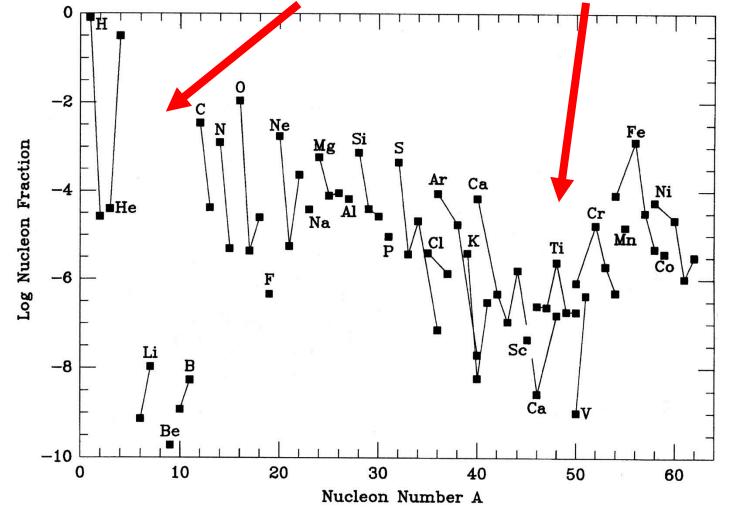


Fig. 2.2. Abundance (A = 1, 64)

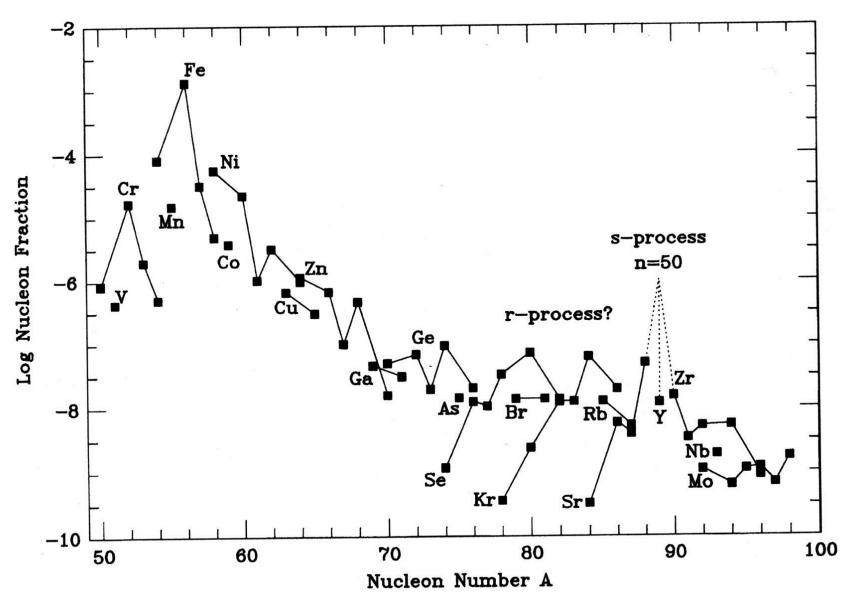


Fig. 2.3. Abundance (A = 50, 100)

- Other than H and He, the rest ('metals') is rare
 - ∴ penetration prob. between positively charged nuclei has an exponential dependence (Z_1Z_2) e.g., $O + O \rightarrow 64$ times stronger than in H + H
- lacktriangle Even A nuclei are favored; especially for even-even elements, i.e., even Z and even N.
- \bullet $Z=N \rightarrow \alpha$ particle nuclei e.g., ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg, ²⁸Si, ³²S, ³⁶Al, ⁴⁰Ca
- ◆ First odd-*A* element is ²⁵Mg; placed the 15th
- ◆ Among the top, only ¹⁴N is not even-even.

- ◆ Nuclei, like atoms, have a shell structure; "magic numbers" of protons are particularly tightly bound, e.g., ⁴He (Z=N=2), ¹⁶O (Z=N=8)
- ♦ ⁵⁶Fe not even-even; most tightly bound is ⁵⁶Ni. SN I and II light curves provide evidence that Ni → Co → Fe for A=56 → Abundance peaks at ⁵⁶Fe
- \bullet For A > 60, via neutron capture
 - ✓ r-process: rapid relative to beta-decay
 - ✓ **s-process:** slow nuclei already tightly bound → small cross section for neutron capture (slow compare to beta decays)

(Burbidge, Burbidge, Fowler, & Hoyle; see Clayton)

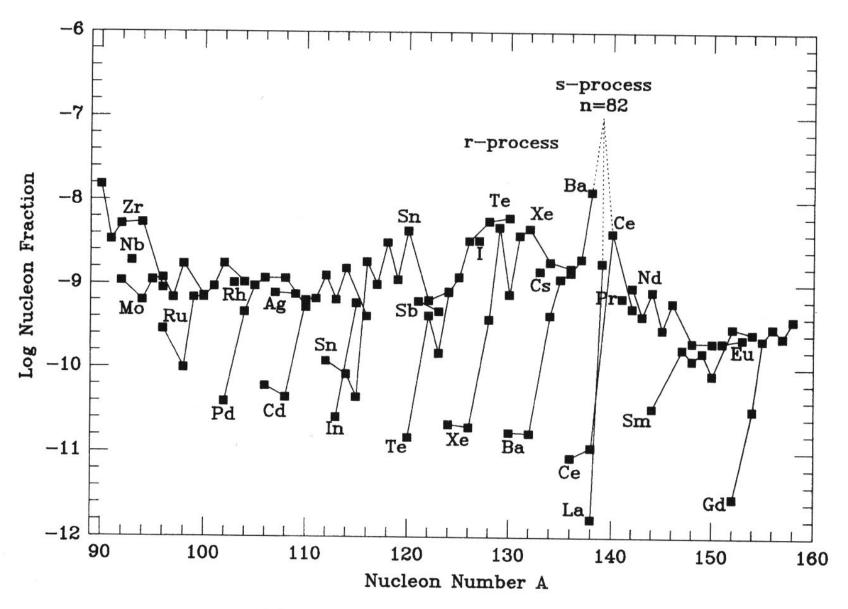


Fig. 2.4. Abundance (A = 90, 160)

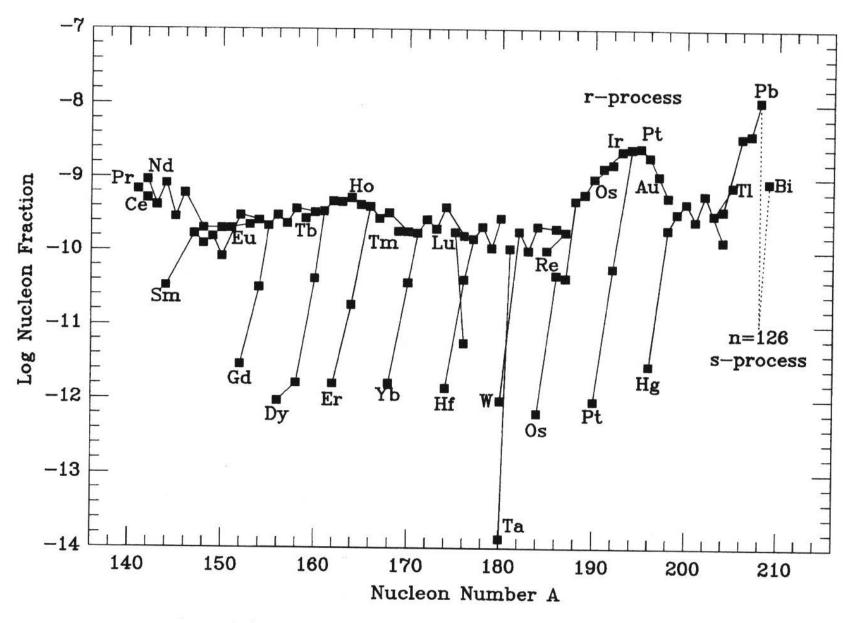


Fig. 2.5. Abundance (A = 140, 210)

Stellar Evolutionary Path

Star = (1 .. 8)
$$\mathcal{M}_{\odot}$$
 | Mass loss \uparrow | white dwarf (0.6 .. 1.4) \mathcal{M}_{\odot} | Less mass \downarrow | Core > 1.4 \mathcal{M}_{\odot} | No remnant?

Black Holes predicted by General Relativity

Spacetime near a mass is warped

Total solar eclipse

1.7 (Sun)

A full tratment of a BH regimed GR. But for an electrically neutral, non-rotating BH, classical derivations give the pame results as with the relativisitic approach.

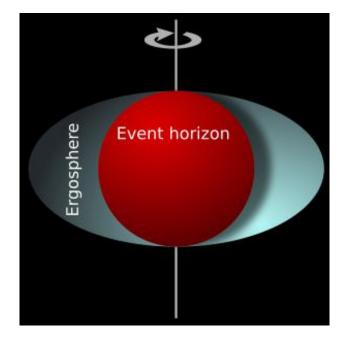
$$v_{escape} = \sqrt{\frac{2GM}{R}} = c$$

.. Too much mass in a volume

Scharesschild radius

$$R_{s} = \frac{24M}{c^{2}} \simeq 3 \frac{M}{M_{\odot}} [km]$$

.. MT. PBH 12


BH (M=10⁸ sun), <u>average</u> density ~ water

Surface of Rs = Event Horizon for uncharged, non-rotating BHs

Schwarzchild black hole

	Nonrotating $(J=0)$	Rotating $(J > 0)$
Uncharged $(Q=0)$	Schwarzschild	<u>Kerr</u>
Charged $(Q \neq 0)$	Reissner-Nordström	<u>Kerr-Newman</u>

General BH metric, with M, J and Q = Kerr-Newman metric.

The two physical relevant surfaces of a Kerr black hole.

Table 1.4
Compact Objects in the Solar Neighborhood^a

Object	Mass Range of Parent Star (M_{\odot})	Integrated Galactic Birth Rate (yr ⁻¹)	Number Density (pc ⁻³)	$rac{ ho}{ ho_T}$	⟨ <i>d</i> ⟩ (pc)
White dwarfs	1-4	0.16	1.5×10^{-2} 2.0×10^{-3} 8.0×10^{-4}	0.070	2.5
Neutron stars	4-10	0.021		0.020	4.9
Black holes	> 10	0.0085		0.22	6.7

^aThese values are obtained from Eqs. (1.3.17)–(1.3.21).

Note: Nearest known white dwarf: Sirius B, 2.7 pc. Nearest known neutron star: PSR 1929 + 10, 50 pc. Nearest known black hole candidate: Cygnus X-1, ~2 kpc.

Size of the Universe
13.7 billion yrs

Robservable ~ $137 \times 10^8 \times 10^{13} \text{ km}$ ~ $1.4 \times 10^{23} \text{ km}$

Mobs ~ 10" Mo/gal · 10" gal. (+ dark matter

+ dark energy)

~ 10 Mo

(Rs ~ 3 M [km]

Robs ~ Rs

The whole Universe is a BH!

Quark Stars / Strange Stars

hyperthetical type of Stars composed of

quark matter or Strange matter

Region for Strongs Oxed Str

up, down, strange, charm,
top, bottom

spin 1/2

when a neutron Star is further compressed

neutrons -> break down to up and down

quarks -> break down

Strange quark

dark matter candidates?

These highly mathematical & speculative

Some recent observations, e.g. in some SNR

-> existence of quark stars?

A neutron star w/ an extremely strong B

(10" teslas n 10 games)

Earth/sun ~ 1 G

Ap/Bp ~ 103 G

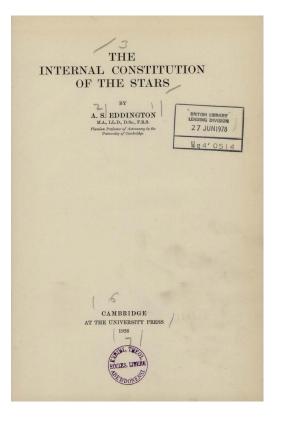
WDs ~ 106 G

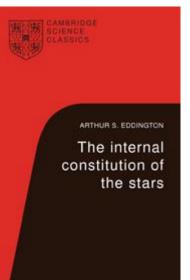
NSs ~ 1012 G

collapse -> energy sources

i) Egrav ~ 0.2 Mc² ~ 10 ergs

ii) Ent ~ ½ IΩ² ~ 10 ergs I45 Ω4


B links the fact spinning core to the outlying envelopes


magnetic breaking

D ~ 20 km; spin: several times/s

Time spans short, \$ 10 yr B decays

DIFFUSE MATTER IN SPACE

To recall Kelvin's classic phrase, there are two clouds obscuring the theory of the structure and mechanism of the stars. One is the persistent discrepancy in absolute amount between the astronomical opacity and the results of calculations based either on theoretical or experimental physics. The other is the failure of our efforts to reduce the behaviour of subatomic energy to anything approaching a consistent scheme. Whether these clouds will be dissipated without a fundamental revision of some of the beliefs and conclusions which we have here regarded as securely established, cannot be foreseen. The history of scientific progress teaches us to keep an open mind. I do not think we need feel greatly concerned as to whether these rude attempts to explore the interior of a star have brought us to anything like the final truth. We have learned something of the varied interests involved. We have seen how closely the manifestations of the greatest bodies in the universe are linked to those of the smallest. The partial results already obtained encourage us to think that we are not far from the right track. Especially do we realise that the transcendently high temperature in the interior of a star is not an obstacle to investigation but rather tends to smooth away difficulties. At terrestrial temperatures matter has complex properties which are likely to prove most difficult to unravel; but it is reasonable to hope that in a not too distant future we shall be competent to understand so simple a thing as a star.

https://archive.org/details/TheInternalConstitutionOfTheStars