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the Main Sequence
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Table 7-4A Time ¢ in Years Measured from the Initial Model for Each Mass. The last
point for each mass represents the main sequence.* [From I. Iben, Jr., 1965 (321).]
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Table 7-4B -The Logarithm of the Time in Seconds, log ¢,
Measured From the Initial Models for Masses 1 Mo and
15 Mo. [From data of I. Iben, Jr., 1965 (321).]
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Fig.7-3A4 Evolutionary Tracks of Pre-Main-Sequence Stars in the Hertzsprung-
Russell Diagram. The mass, in units of the solar mass, is given at the left of each
track. The small numbers correspond to the points in Table 7-4A, which give the - \
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ABSTRACT

The manner in which nuclear reactions replace gravitational contraction as the major source of stellar
luminosity is investigated for model stars of population I composition in the massrange 0.5 < M/M¢p <
15 0. By following in detail the depletion of C!2 from high initial values down to values corresponding to
equilibrium with N4 in the C-N cycle, the approach to the main sequence in the Hertzsprung-Russell
diagram and the time to reach the main sequence, for stars with M > 1.25 M @, are found to differ sig-
nificantly from data reported previously.
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Fig. 7-5A The Time Vanauon of Some Properties of a Pre-Main-Sequence
Star of Mass 1 Mo. The abscissa is log #, where ¢ is the time in seconds measured
from the initial model of the series for this mass. The upper and lower limits of
each ordinate are given. The ordinates are: Mzc/M, the fraction of the total mass
contained in a radiative core; log (R/Ro), where R/Ro is the total radius relative
to that of the Sun (Ro = 6.96 x 10'° cm); log (pc/p), where p. is the central
density and p is the mean density; 10g Terr, Where T is the effective temperature
in degrees Kelvin; and log (L/Lo), where L/Le is the luminosity relative to that
of the Sun (Lo = 3.86 x 10% erg sec™?). [After I. Iben, Jr., 1965 (321).]

Fig. 7-5B The Time Variation of Some Properties of a Pre-Main-Sequence Star
of Mass 1 Mo. The abscissa is log ¢, where # is the time in seconds measured from
the initial model of the series for this mass. The upper and lower limits of the scale
for each curve are given. The ordinates are Mgc/M, the fraction of the mass con-
tained in a convective core; log p., where p, is the central density in gm cm~3;
log T,, where T. is the central temperature in degrees Kelvin; and L‘(Ll the net
fraction of the luminosi Lhwwwm(but not
necessarily the fraction of the emitted radiation that is due to gravitational contrac-
tion—see text). The value of L,/L becomes negative near log ¢ = 15.0: zero for this
ordinate is on the horizontal axis. [Adapted from I. Iben, Jr., 1965 (321).]

Fig. 7-5C A Model of Mass 1 Mo During the Pre-Main-Sequence Phase at

! Time log ¢ = 14.941. The time is measured in seconds from the initial model of

the series for this mass. The abscissa is the fractional mass M,/M. The upper
and lower limits of each ordinate are given. Each upper limit is the maximum
value in the model. The ordinates are r, the radius in units of the solar radius
(Ro = 6.96 x 10*° cm); P, the pressure in dyne cm~2; p, the density in gm cm~3;
T, the temperature in degrees Kelvin; and L,, the net luminosity in units of the solar
luminosity (Lo = 3.86 x 10% erg sec*). [Adapted from I. Iben, Jr., 1965 (321).]
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Fig. 7-3B Evolutionary Tracks of Pre-Main-Sequence Stars of Low Mass in the
Hertzsprung—Russell Diagram. The masses, and the ages at two points on each
track, are indicated. The heavy curve (MS) is the hydrogen-burning main
sequence. The convective parameter is assumed to have the value //H = 1.0.
[Adapted from A. S. Grossman and H. C. Graboske, Jr., 1971 (400).]



Rotation > star cooler and fainter o I
6.0 T — , : 0.75|
E:osp \C‘A i
5.6 - = 8
0.25 \? -
>2 B ° 0.25 0!5 é{s 1.0

m
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uniformly rotating model (Case D) of 30 Mp, log J = 52.73.
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Gordon & Breach)
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Fig. 17.22. The fastest rotation rates are shown by the xs. The theoretical break-
up velocities (top curve) approach the observed relation most closely in the B-star

range. (Data from Slettebak (1966).)



Rotation vs Spectral Type

v’ Massive stars are fast rotators.

v" Rotation declines in the F —
type (convection? disk?) £ oo
v' Low-mass stars spin down
quickly early on (disk-star
coupling of B field), and then |
experience weak-breakingon  «|
the MS due to magnetic

breaking and winds o w0 ™ w0 w

Fig. 17.16. The average rotation rates are shown for spectral intervals as a function
of spectral type. (Data are from Uesugi and Fukuda (1982), Soderblom (1983),
and Gray (1982b, 1984b).)
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Fig. 7-6 The ‘lime Variation ot Some Froperties Orf ‘a rre-viain-dpequence
Star of Mass 15 Mo. The abscissa is log ¢, where ¢ is the time in seconds measured
P M S from the initial model of the series for this mass. The upper and lower limits
of each ordinate are given. The ordinates are M¢c/M, the fraction of the total
mass contained in a convective core; log p., where p. is the central density in

gm cm~3;log T., where 7. is the central temperature in degrees Kelvin; log (L/Lo),
1 5 M where L/Lo is the luminosity relative to the solar luminosity (Lo = 3.86 x 10%°
@ ergsec™!); and L,/L, the net fraction of the luminosity that is generated by /
gravitational contraction (but not necessarily the fraction of the emitted radiation é? rav J é nuce

that is due to gravitational contraction—see text). [Adapted from I. Iben, Jr.,
1965 (321).]
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Evolution on the Main Sequence
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Table 7-7  Evolutionary Times. The times, expressed in years, refer
the points in Fig. 7-25.* [Adapted from I. Iben, Jr., 1967 (327).]
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* A number in parentheses is the power of 10 by which an entry is to be multiplied.

Fig. 7-25 Evolutionary Tracks in the Hertzsprung-Russell Diagram. The mass
of each star is given at the left of the track. The composition is X = 0.708,
Y = 0.272,and Z = 0.020 for all masses except 30 Mo, for which the composition
is X = 0.70, Y = 0.27, Z = 0.03. Dashed portions of the curves are estimates.
The letters along the tracks for 1 Mo and § Mo have the following significance :
H. = hydrogen-burning near the center; G = gravitational contraction of the
entire star; Hys = hydrogen-burning in a thick shell; Hs = hydrogen-burning
in a thin shell; He = helium-burning near the center plus hydrogen-burning in a
thin shell. The times required to reach the encircled points are given in Table 7-7.

‘I'he dotted lines indicate the boundaries of the main sequence. The line (lower left)
shows the slope of a path along which the radius remains constant. The tta‘ok
for 15 Mp does not turn back as do the other tracks because the semi-convective
zone was treated as fully convective [see R. Stothers and C.-W, Chin, 1968 (377)].
[Adapted from I. Iben, Jr., 1967 (327). The track for 30 Mo is given by R. Stothers,
1966 (333).]

As a star evolves off the MS
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Fig. 7-104 A Model of Mass 1 Mo during the Main-Sequence Phase at'Time
t = 4.26990 x 10° Years. Radius r, density p, temperature T, net luminosity L,,
and hydrogen abundance X are shown as functions of fractional mass M,/M.
The lower limit of the ordinate is zero for all variables. The upper limits, given .m
the figure, are the total radius R (units of Ro = 6.96 x 10*° cm), centra.ll de:nsxty
pe (gmcm~3), central temperature Tc in degrees Kelvin, total luminosity L
(units of Lo = 3.86 x 10% ergsec™?), and initial hydrogen abundance X =
0.708. The central pressure (not shown) is 2.5186 x 10*7 dyne cm~2. The time
¢ is measured from the initial model calculated for the pre-main-sequence phase
(see Section 2). [Adapted from I. Iben, Jr., 1967 (326).]
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Fig. 7-10B A Model of Mass 1 Mo during the Main-Sequence Phase at Time
t = 9.20150 x 10° Years. Radius r, pressure P, temperature 7, net luminosity
L,, and hydrogen abundance X are shown as functions of fractional mass M,/ M.
The lower limit of the ordinate is zero for all variables. The upper limits, given
in the figure, are 1.2681 Ro (with Rp = 6.96 x 10*° cm; however, the total
radius is 1.3526 Rp), central pressure P, (dyne cm~2), central temperature 7,
in degrees Kelvin, total luminosity L (units of Lo = 3.86 x 10%3 ergsec™?),
and initial hydrogen abundance X = 0.708. The central density (not shown)
is 1026.0 gm cm~2. The time ¢ is measured from the initial model calculated
for the pre-main-sequence phase (see Section 2). [Adapted from I. Iben, Jr.,
1967 (326).]
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Mario Schenberg THE ASTROPHYSICAL ]OURNAL

(1914 Brazil - 1980) AN INTERNATIONAL REVIEW OF SPECTROSCOPY AND
ASTRONOMICAL PHYSICS

VOLUME 96 SEPTEMBER 1942 NUMBER 2

ON THE EVOLUTION OF THE MAIN-SEQUENCE STARS

Subrahmanyan Chandrasekhar : M. SCHONBERG! AND S. CHANDRASEKHAR
(1910 India - 1995 USA) ABSTRACT

The evolution of the stars on the main sequence consequent to the gradual burning of the hydrogen in
the central regions is examined. It is shown that, as a result of the decrease in the hydrogen content in
these regions, the convective core (normally present in a star) eventually gives place to an isothermal
core. It is further shown that there is an W to the fraction of the total mass of
hydrogen which can thus be exhausted. Some further remarks on what is to be expected beyond this
point are also made.

The Schonberg-Chandrasekhar limit e 0.37( £ )2 ~ 1015 T mr.-+y>
--- the maximum mass of a fusion-less M e

stellar core that can support against Take ioni 2ed %{:,;‘gnv 5 pure He aw corg ucpsu
gravitational collapse M~ 8~9% M U ~ 2 ug

Beech 1958
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Fig. 7-264 A Model of Mass LMo Shortly after Leaving the Main Sequence, at Fig. 7-26B A Model of Mass LMo during the Subgiant Stagg at ¢ = 10.8747 x

.t = 10.305 ? Years. Radius r, pressure P, temperature 7, net luminosity
L,, and hydrogen abundance X are shown as functions of fractional mass M}z\/!
The lower limit of the ordinate is zero for all variables. The upper limits ‘givern ir;
the figure, are 2.1334 R (with Re = 6.96 x 10%° cm; however, the total’ radius is
2.2179 Ro), central pressure P, (dyne cm~2), central temperature T. (°K), total
luminosity L (units of Lo = 3.86 x 10% erg sec™ 1), and initial hydrogen ,abun-
dance Xd=f 0.708}.] The central density (not shown) is 15,214 gm cm~2. The time is
measured from the initial model calculated for the —main-

Section 2). [Adapted from I. Iben, Jr., 1967 (326).]pre e
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10° Years, Radius r, ratio P,/P of gas pressure computed from the perfect gas law
to the actual pressure with degeneracy included, temperature 7, net luminosity
L,; and hydrogen abundance X are shown as functions of fractional mass M,/M
in the range 0 to 0.38. The distribution of L, is a step function rising from zero to
maximum scale with the initial rise in X. The lower limit of the ordinate is zero for
all variables. The upper limits, given in the figure, are 1 Re (with Re = 6.96 x
10° cm; however, the total radius is 6.1784 Re), unity for the ratio of pressures,
central density p, (gm cm~?), central temperature 7. (°K), total luminosity L
(units of Lo = 3.86 x 10°® erg sec™1), and hydrogen abundance X = 0.693.
The central pressure (not shown) is 6552.2 dyne cm~2. The time is measured from
the initial model calculated for the pre-main-sequence phase (see Section 2).
[Adapted from I. Iben, Jr., 1967 (326).]
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Fig. 7-11A A Model Solar Interior. Density relative to the f:ent}*al dens_ity
plpe, temperature relative to central temperature 7/T,, net luminosity r.e]atwe
to total luminosity L,/Le, and hydrogen abundance X are shown as functions of
fractional mass M,/M. The chemical composition is X = 0.730, Y= 0.%45, and
Z = 0.025. The age is 4.5 _x_10° years. [After S. Torres-Peimbert, E. Simpson,

and R. K. Ulrich, 1969 (329).] }
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Fig. 7-11B The Evolution of the Sun during 7 Billion Years. Total Iuminosity L
and central values of pressure P,, temperature T, density p., and hydrogen abun-
dance X. are shown as functions of time ¢, which is measured from the initial
(homogeneous) state for which the composition is X = 0.730, Y = 0.245, and
Z = 0.025. The power of ten by which each value must be multiplied is indicated in
parentheses. The values of P, p., and L are expressed in cgs units, and T, is

expressed in degrees Kelvin. [After S. Torres-Peimbert, E. Simpson, and R. K.
Ulrich, 1969 (329).]
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The present structure of the Sun. The physical parameters are indicated in the figure.

The temperature T, is in million K. From Maeder (2009).
Lequeux 2013
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Figure 8.4 The extent of convective zones (shaded areas) in main-sequence star models as

a function of the stellar mass [adapted from R. Kippenhahn & A. Weigert (1990), Stellar
Structure and Evolution, Springer-Verlag].




Subdwarfs: The Pop II Main Sequence

€ Luminosity class VI

€ 1.5 to 2 mag fainter than a Pop
MS stars o the same spectral type

€ Low metallicity = low opacity 2
(UV excess) > low radiation
pressure, so smaller, hotter for the
same stellar mass
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Fig. 17.1. Relation of subdwarfs to the main-sequence in
the Hertzsprung-Russell diagram.
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