Post-main Sequence Evolution
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Evolution of the Sun in the HRD
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Evolution in the HR-diagram of a 5 M, model (Z = 0.015,Y = 0.275) just prior to and during core helium

burning — first approximation

Iben (2013)
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luminosity class 0; excessive mass loss
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For single stars, more massive
stars evolve off the MS sooner.
Accordingly the MS 1s “peeled
off” from the top down. For an
old star cluster, only the bottom
MS remains.
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Mass Loss during Stellar Evolution

Stars lose mass at every evolutionary stage.

Pre-main sequence: protostellar (bipolar) outflows

YSO jets, (star/disk) winds
1

Main sequence: solar wind M = 107 M yr~
For Tys = 10° yr > 7155s s = 107* Mg (negligible)

Some stars, e.g., WR stars M =10""> Mqo yr‘1

Post-main sequence: RT— g |, and Py,g T= M 1




Stellar wind

. Disk wind

EUV, FUV, x*my mared disk

Star &
magnetosphere f »

Bound Unbound
Atmosphere

Fig. 7.6. Schematic representation of an irradiated flared disk. Below the radius
R, where matter remains bound by the gravity of the central star an optically thin
atmosphere develops. Above this radius flared matter may escape and form some
kind of slow wind. Adapted from Hollenbach et al. [403].

Schulz
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* For a stationary, isotropic wind, the mass loss rate
M =4nr?p(r) % = 4qur-p(r)v(r)  v():velocitylaw
 v(r) T,atr - o, v, = v(r - o) terminal velocity
Often v(r) = vy + (Voo — vp) (1 — %)ﬁ, where
vo = V(R,) at photosphere
e <1,v—>v,gradually B =>1,v - v, slowly

* For hot stars, f = 0.8. Cool stars experience slower
acceleration, so have larger (.



M = 4nr? p(r) v(r) mass conservation

1dP GM_dv_dvdr dv

— 7 — momentum conservation

pdr 12 dt drdt dr

T =

Massive stars = radiation pressure
-> outer atmosphere expands supersonically
-> winds driven by spectral-line opacity in UV.
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Fig. 8.8. The evolutionary paths in the Hertzsprung—Russell . 14 1

diagram of Population I stars having 1.0 Mg and 1.1 Mg, — —

fI'OI%‘l central hydrogen burning (A) to the helium flash (E), Sun now M ~ 2 X 1 O M O] yr

without taking mass losses into account. After A. V. Sweigart . * — — —
and P. G. Gross (1978). The ejection of a mass of 0.1 M, dur- COO] Superglant M ~ 1 O 7t0 1 O 5 M '0) yr 1
ing the helium flash was assumed. The further evolution of

the star of 1.0 M was calculated taking the mass loss ac-

cording to (7.105) into account, after D. Schonberner (1979).

F — G: the asymptotic giant branch; only one of the thermal

pulses (helium flashes) which occur after [ is drawn in, at J.

The mass loss becomes important at H and leads to a final

mass of 0.6 M, which is reached at K

Unsold 15
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Lamers and Cassinelli, /ntroduction to Stellar Winds, Cambridge, 1999 17



P Cygni stars
 Higher mass-loss rate, > 107> M, yr—}!
 Lower terminal velocity, v, < 104> km s~*

 Higher wind density, ny > 10 cm™> at 2 R,

than normal stars (Lamers 1986).



Stellar Pulsation
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Stellar Variability

O Time to transmit a perturbation of pressure changes
across the star

2R P,
biv ~ == where v, = /7=
; p

v = Cp/Cy, = 5/3 for monatomic gas.

O Virial theorem, 2K + Q =0, .. v =

2R 1
tvi) ~ (g p— . - .
I \/GM/R VT, cf. free-fall time




Approximate Relation between Stellar Density, Pulsation
and Minimum Rotational Period

Star
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White Dwarf

RR Lyrae star
Cepheid Variable
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t (Crab Nebula) ~ 33 ms = cannot be a white dwarf
+¢* Rotational Variation --- sub-seconds .. weeks

* Orbital (Eclipsing Binaries) --- hours .. days
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Classical
instability 1
strip

Figure 4.9. Examples of various types of pulsating variable stars plotted as small circles on the
Hertzsprung—Russell diagram. The dark line to the right is the main sequence with evolutionary
tracks branching off to the right for different stellar masses. The ultimate evolutionary track
of a star that ends its life as a compact star of 0.63 M, is shown. It moves leftward through
the planetary nebulae nuclei variables (PNNV) and then downward as a cooling white dwarf,
passing through regions of pulsational instability sequentially classified as DOV, DBV, and DAV
(DAV = Dwarf + type/temperature A + Variable}. Other types of intrinsic variables are shown:
B Cephei stars, Mira (M), Semiregular (Sr), luminous blue (LBV), Wolf-Rayet (WR), slowly
pulsating B stars (SPB), and subdwarf B stars (sdBV). The classical instability strip is shown as
two parallel lines encompassing Cepheid, RR Lyrae, and & Scuti variables; if extended, it intersects
the pulsating DAV stars. The thin lines represent loci of constant radius. [Provided by A. Gautschy;
see Gautschy H. Saio, ARAA 33, 77 (1995)]

Bradt “Astrophycs Processes”
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Convection = chemical mixing

Much more efficient than the slow change of chemical
composition produced by nuclear reaction.

0X;
am_o

In a convection region,

Fig.8.1. The abundances X; are smeared
out owing to rapid mixing inside a con-
vection zone extending from m; to my.
At these borders X; can be discontinuous

Kippenhahn & Weigert
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Schematic view of an AGB star
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Electron Degeneracy



Fermi-Dirac distribution for non-interacting,
indistinguishable particles obeying Pauli exclusion principle;
applicable to half-integer spin in TE. Examples of fermions
include the electron, proton, neutrons, and nuclei with odd mass
numbers, e.g., 3He (2 e, 2 p*, 1 nY)

Bose-Einstein distribution for particles not limited to single
occupancy of the same energy state. i.e., that do not obey Pauli
exclusion principle; with integer values of spin. Example bosons
include *He, the Higgs boson, gauge boson, graviton, meson.



A Fermi gas is called degenerate if the temperature is low

in comparison with the Fermi temperature/energy.

¢
3

1.0

0.9

0.8
0.7

o ] srac dl‘st_ 0.6 = 1
FQYMO )' f(E) = f(E)—e(—E_m—l-

0.4

0.3

0.2
0.1

fon"*' M8 kT o84 ) L= B 03 3% &5 &

€ — L, in units of 7

f( ( kT = 0) = é F éﬁéxre 6.3 Plot of the Fermi-Dirac distribution function f(g) versus ¢ — y in units of
& / the temperature 7. The value of f(e) gives the fraction of orbitals at a given energy
which are occupied when the system is in thermal equilibrium. When the system is
,F . ene rg y heated from absolute zero, fermions are transferred from the shaded region at ¢/u < 1
erm! to the shaded region at &/ > 1. For conduction electrons in a metal, u might
correspond to 50 000 K.
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Chemical Potential ()

* Temperature governs the flow of energy between
two systems.

* Chemical potential governs the flow of particles;
from higher chemical potential to the lower.




Bose-Einstein

: \\
1 S ‘ \
\\Em-Dlrac \ Classical limit
T — b
0 I
-2 -1 0 1 2
€ — i in units of 7

S®)

{ .
4ure 6.6 Comparison of Bose-Einstein and Fermi-Dirac

distribution functions. The classical regime is attained for

(e =) > 7, where the two distributions become nearly identical.

We shall see in Chapter 7 that in the degenerate regime at low
M oxwel |- Bu [tzmenn temperature the chemical potential u for a FD distribution is
. positive, and changes to negative at high temperature.
dist.
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80} i i
(5]
v A mg~Fermi level ¢, for -8 -g
= 60 16 electrons; in the =
© ground state the -
L lowest eight levels —7 3
%” (16 orbitals) are §
,ﬁ 40 - occupied 6 o
—15
20
. -14
— “3 3
-2
0 — 1
(a) (b)
“ Figure 7.1 (a) The energies of the orbitals n = 1, 2, ..., 10 for an electron

confined to a line of length L. Each level corresponds to two orbitals, one for
spin up and one for spin down. (b) The ground state of a system of 16 electrons.

Orbitals above the shaded region are vacant in the ground state.
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The helium flash occurs for M.y = 1 M

[t M < 0.5 M - core never hot enough

[t M = 2.25 M — core too hot, He ignited before a
degenerate core develops

= Only M' = 0.5 — 2.25 M, stars experience the He flash.



After the helium flash
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Core He burning is much shorter than the MS phase
of core H burning, because He is short in abundance,
not as efficient in energy supply (1/10 per mass), and
the stellar luminosity is higher.
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Figure 6.3. RGB, AGB, and HB in H-R diagram. j
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The red clump = HB (core He burning) of metal-rich stars
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Distance to M31 With the HST and Hipparcos Red Clump Stars (1998 )

Ix. Z. Stanek & P. M. Garnavich
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Fig. 1.7. The color apparent magnitude diagram for 47 Tucanae. The new | (B"V)

measurements go down to stars as faint as 23rd magnitude, though for the faint'stars the
scatter becomes large. The main sequence and the giant and subgiant branches are
surprlsmgly sharp, showing that there are yery few or no binaries in this globular tluster.
The red stub of the horizontal brangh is seen at V ~ 14 and B — V ~ 0.8. The asymptotic
giant branch (see Chapter 14) is seen above the horizontal branch. From Hesser et al.

(1987).

Fig. 1.8. The color absolute magnitude diagram for the globular cluster M92 (cluster 92
in the Messier catalog of nebulous objects). The new observations for M92, like those
for 47 Tuc, go to very faint magnitudes. For M92 the main sequence is now clearly
recogizable. In addition the subgiant, red giant and horizontal branches are clearly
seen. Also seen is the so-called asymptotic branch, for (B — V), ~ 0.6 above the
horizontal branch. The thin lines shown are the theoretical isochrones, i.e. the location
where stars are expected to be seen at a given time. From Hesser e al. (1987).
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Origins of DA and non-DA uncertain: (1) exact
phase when the last thermal pulse takes place
after the AGB phase, or (2) convective mixing,
radiative levitation, or diffusion.
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Mass distribution of DA white dwarfs in the First Data Release
of the Sloan Digital Sky Survey

J. Madej', M. Nalezyty', and L. G. Althaus’

I Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw, Poland
2 Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Av. del Canal Olimpic s/n, 08860, Castelldefels, Spain

Received 4 March 2004 / Accepted 23 March 2004

Abstract. We investigate the sample of 1175 new nonmagnetic DA white dwarfs with the effective temperatures Teg >
12000 K, which were extracted from the Data Release 1 of the Sloan Digital Sky Survey. We determined masses, radii, and
bolometric luminosities of stars in the sample. The above parameters were derived from the effective temperatures 7.y and
surface gravities logg published in the DR1, and the new theoretical M — R relations for carbon-core and oxygen-core white
dwarfs. Mass distribution of white dwarfs in this sample exhibits the peak at M = 0.562 M, (carbon-core stars), and the tail
towards higher masses. Both the shape of the mass distribution function and the empirical mass-radius relation are practically
identical for white dwarfs with either pure carbon or pure oxygen cores.
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M <0.7Mgp

< 0.16 M- no RGB
< 0.5 M@ 2 Tyms > Tyniverse
< 0.5~0.7 M@ =2 no core He burning

Very low-mass stars are completely convective
- more H to burn = 1, lengthened



A1 M@ main sequence star
* Ty ~10%0 yrs

* Tpeg ~ 107 yrs

* Tyg ~ 108 yrs

* Theg ~ 2 X 107 yrs

* Tpo~5 X 10*yrs

A remnant ofa 0.6 WD



M <25 Mg

Mass loss rate low

M =20 —25Mg
O type star = red supergiant = supernova

M <20

O type star = red supergiant > Cepheid
- red supergiant = supernova



M=25—60MQ

Mass loss not sufficient to remove the entire envelope
M =40 —60Mg

O type star = blue super giant - yellow supergiant
-> red supergiant

-> blue supergiant 2 WN -2 supernova

M =25 —40Mg

O type star = blue super giant = yellow supergiant
- red supergiant

-> supernova



M >60Mg

Mass loss fierce ~ 10~ Mg yr~3, rid of almost

entire envelope during the LBV stage, left with a
WR star, evolving toward a SN.

O type star = Of star = blue super giant

-> luminous blue variable = WN star
- WC star = supernova



A&A 564, A30 (2014) The evolution of massive stars and their spectra

l. A non-rotating 60 M, star from the zero-age main sequence
to the pre-supernova stage*-**

Jose H. Groh', Georges Meynet', Sylvia Ekstrom', and Cyril Georgy?

I Geneva Observatory, Geneva University, Chemin des Maillettes 51, 1290 Sauverny, Switzerland
e-mail: jose.groh@unige.ch
2 Astrophysics group, EPSAM, Keele University, Lennard-Jones Labs, Keele, STS 5BG, UK

ABSTRACT

For the first time, the interior and spectroscopic evolution of a massive star is analyzed from the zero-age main sequence (ZAMS) to the
pre-supernova (SN) stage. For this purpose, we combined stellar evolution models using the Geneva code and stellar atmospheric/wind
models using CMFGEN. With our approach, we were able to produce observables, such as a synthetic high-resolution spectrum and
photometry. thereby aiding the comparison between evolution models and observed data. Here we analyze the evolution of a non-
rotating 60 M, star and its spectrum throughout its lifetime. Interestingly, the star has a supergiant appearance (luminosity class 1) even
at the ZAMS. We find the following evolutionary sequence of spectral types: O3 I (at the ZAMS), O4 1 (middle of the H-core burning
phase), B supergiant (BSG), B hypergiant (BHG), hot luminous blue variable (LBV; end of H-core burning), cool LBV (H-shell
burning through the beginning of the He-core burning phase), rapid evolution through late WN and early WN, early WC (middle
of He-core burning), and WO (end of He-core burning until core collapse). We find the following spectroscopic phase lifetimes:
3.22 x 10° yr for the O-type, 0.34 x 10° yr (BSG), 0.79 x 10° yr (BHG), 2.35x 10° yr (LBV), 1.05 x 10° yr (WN), 2.57 x 10° yr (WC),
and 3.80 x 10* yr (WO). Compared to previous studies, we find a much longer (shorter) duration for the early WN (late WN) phase,
as well as a long-lived LBV phase. We show that LBVs arise naturally in single-star evolution models at the end of the MS when the
mass-loss rate increases as a consequence of crossing the bistability limit. We discuss the evolution of the spectra, magnitudes, colors,
and ionizing flux across the star’s lifetime, and the way they are related to the evolution of the interior. We find that the absolute
magnitude of the star typically changes by ~6 mag in optical filters across the evolution, with the star becoming significantly fainter
in optical filters at the end of the evolution, when it becomes a WO just a few 10* years before the SN explosion. We also discuss the
origin of the different spectroscopic phases (i.e., O-type, LBV, WR) and how they are related to evolutionary phases (H-core burning,

H-shell burning, He-core burning). Read the first 4 paragraphs of this papers
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Fig. 3. Projected equatorial velocities, averaged over all possible inclinations, as a
function of spectral type. On the main sequence (luminosity class V), early-type stars
have rotational velocities that reach and even exceed 200 km/s; these velocities drop

to a few km/s for late-type stars, such as the Sun (type (G2) (Slettebak [20]; courtesy
Gordon & Breach)

Fig. 2.2 Panel A The blue curve is the median equatorial velocity (4/m) (v sin i) for each spectral
type from Glebocki and Gnacinski (2005). The green curve shows the equatorial velocity of the
Kepler targets, v(s.t.), derived from the measured rotation periods and the KIC radii. The black
points show measurements by Reiners and Mohanty (2012). In this sample 201 stars have an upper
vsini limit of 4km/s (due to instrumental limitations), these stars are represented by the solid
bar. Panel B The rotation periods Pry of the stars in our sample, averaged within each spectral
type. Panel C The same as panel B, but for comparison we show the median of the rotation periods
measured by McQuillan et al. (2013) (black points with errorbars), for the stars overlapping with
our sample. Similarly, the red curve shows the median of the rotation periods found by Debosscher
et al. (2011). Shaded areas and error bars span the upper and lower 34th percentile values from
the median. Reproduced with permission from Astronomy & Astrophysics, © ESO




Rotation = star cooler and fainter
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F16. 1.—Angular momentum per unit mass, as a function of mass fraction interior to a given cylinder
abgut the axis of rotation, for three assumed laws of differential rotation (Cases A, B, and C) and for a
uniformly rotating model (Case D) of 30 M, log J = 52.73.

D: solid body rotation

Rotation law:

angular momentum distribution
j(my,) as a function of, m,,, the mass
fraction interior to the cylinder of
radius w about the rotation axis.

F16. 2.—Theoretical H-R diagram showing model sequences of increasing angular momentum (solid
curves). Numbers on curves give calculated velocities at the equator in km sec™. The distribution of

angular momentum for each sequence is indicated by the letter A, B, C, or D.

Bodenheimer (1971) Ap], 167, 153



1. Introduction

Massive stars are essential constituents of stellar populations
and galaxies in the near and far Universe. They are among the
most important sources of ionizing photons, energy, and some
chemical species, which are ejected into the interstellar medium
through powerful stellar winds and during their extraordinary
deaths as supernovae (SN) and long gamma-ray bursts (GRB).
For these reasons, massive stars are often depicted as cosmic en-
gines, because they are directly or indirectly related to most of
the major areas of astrophysical research.

Despite their importance, our current understanding of mas-
sive stars is still limited. This inconvenient shortcoming can
be explained by many reasons on which we elaborate below.
First, the physics of star formation mean that massive stars
are rare (Salpeter 1955). Moreover, their lifetime is short, of
a few to tens of millions of years (e.g., Ekstrom et al. 2012;
Langer 2012). These factors make it challenging to construct

evolutionary sequences and relate different classes of massive
stars. This is in sharp contrast to what can be done for low-mass
stars.

Second, one can also argue that the evolution of massive
stars 1s extremely sensitive to the effects of some physical pro-
cesses, such as mass loss and rotation (Maeder & Meynet 2000;
Heger et al. 2000), that have relatively less impact on the evo-
lution of low-mass stars. However, the current implementation
of rotation in one-dimensional codes relies on parametrized for-
mulas, and the choice of the diffusion coefficients has a key im-
pact on the evolution (Meynet et al. 2013). Likewise, mass-loss
recipes arising from first principles are only available for main
sequence (MS) objects (Vink et al. 2000, 2001) and a restricted
range of Wolf-Rayet (WR) star parameters (Grifener & Hamann
2008). Third, binarity seems to affect the evolution of massive
stars, given that a large portion of them are in binary systems
that will interact during the evolution (Sana et al. 2012).

Fourth, our understanding of different classes of stars is of-
ten built by comparing evolutionary models and observations.
However, mass loss may affect the spectra, magnitudes, and
colors of massive stars, thus making the comparison between
evolutionary models and observations a challenge. In addition
to luminosity, effective temperature, and surface gravity, the
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observables of massive stars can be strongly influenced by a ra-
diatively driven stellar wind that is characteristic of these stars.
The effects of mass loss on the observables depend on the initial
mass and metallicity, since they are in general more noticeable
in MS stars with large initial masses, during the post-MS phase,
and at high metallicities. When the wind density is significant,
the mass-loss rate, wind clumping, wind terminal velocity, and
velocity law have a strong impact on the spectral morphology.
This makes the analysis of a fraction of massive stars a diffi-
cult task, and obtaining their fundamental parameters, such as
luminosity and effective temperature, is subject to the uncertain-
ties that comes from our limited understanding of mass loss and
clumping. Furthermore, the definition of effective temperature of
massive stars with dense winds is problematic and, while refer-
ring to an optical depth surface, it does not relate to a hydrostatic
surface. This is caused by the atmosphere becoming extended,
with the extension being larger the stronger the wind is. Stellar
evolution models are able to predict the stellar parameters only
up to the stellar hydrostatic surface, which is not directly reached
by the observations of massive stars when a dense stellar wind
is present. Since current evolutionary models do not thoroughly
simulate the physical mechanisms happening at the atmosphere
and wind, model predictions of the evolution of massive stars are
difficult to be directly compared to observed quantities, such as
a spectrum or a photometric measurement.
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Fig. 4. Evolution of the ultraviolet a) (fop) and optical spectra b) (bottom) of a non-rotating 60 M, star. The evolution proceeds from top to bottom,
with labels indicating the evolutionary phase, spectral type, scale factor when appropriate, age, and model stage according to Table 1. Note that

certain spectra have been scaled for the sake of displaying the full range of UV and optical emission lines. -
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Initial Mass Function

The birthrate function B(M, t) is the number of stars per unit
volume, with masses between M and M + dM that are formed
out of ISM during time interval tand ¢+ dkt.

B(M,t) dM dt =y(t) E(M) dM dLt,
where Y (t) is the star formation rate (SFR),
and (M) is the initial mass function (IMF).

For the Galactic disk, SFRis 5.0 + 0.5 Mg pc~ 4 Gyr~1
integrated over the zdirection.

IMF: many more low-mass stars than higher mass stars
as a result of cloud fragmentation?



The IMF specifies the fractional distribution in mass of a newly
formed stellar system. It is often assumed to have a simple
powerlaw E(M) =cM—*=cM~ 1+

In general, £ (M) extends from a lower to an upper cutoff, e.g.,
from 0.1 to 125 solar masses. Commonly used IMFs are those

of Salpeter (1955), Scalo (1986), and Miller and Scalo (1979).
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, http://webast.ast.obs-mip.fr/hyperz/hyperz_manuall/node7.html



http://webast.ast.obs-mip.fr/hyperz/hyperz_manual1/node7.html

* Edwin Salpeter (1955) on solar-neighborhood stars (4pj, 121, 161)
Present-day LF = mass-luminosity relation = present-day
mass function =2 stellar evolution =2 initial mass function

oa=2.350rI'=1.35

* Glenn E. Miller and John M. Scalo extended work below 1 M
(1979,ApJS, 41,513) a=~0 forM <1Mg,
* Pavel Kroupa (2002, sci, 295, 82)
a=23forM> 0.5 M,
a=13for0.08 My <M < 0.5 M
a=03forM< 0.08 M,

* A universal IMF among stellar systems (SFRs, star clusters,
galaxies) (Bastian etal. 2010, ARAA).  But why?
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THE LUMINOSITY FUNCTION AND STELLAR EVOLUTION
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ABSTRACT

The evolutionary significance of the observed luminosity function for main-sequence stars in the solar
neighborhood is discussed. The hypothesis is made that stars move off the main sequence after burning
about 10 per cent of their hydrogen mass and that stars have been created at a uniform rate in the solar
neighborhood for the last five billion years.

Using this hypothesis and the observed luminosity function, the rate of star creation as a function of
stellar mass is calculated. The total number and mass of stars which have moved off the main sequence

is found to be comparable with the total number of white dwarfs and with the total mass of all fainter
main-sequence stars, respectively.
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The Stellar Initial Mags Function: Fipure 1
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Figure 1. Initial mass function for field stars in the solar neighborhood taken from a variety of recent
studies. These results have been normalized at 1 M(). For both the MS79 and Scalo 86 IMFs we have
adopted 15 Gyr as the age of the Milky Way. Current work suggests that the upper end of the IMF (> 5MQ©)
is best represented by a power-law similar to Salpeter (1955) while the low mass end (< 1M(Q©) is flatter
(Kroupa, Tout, and Gilmore 1993). The shape of the IMF from 1-5 M is highly uncertain.

From Meyer et al. (2000) Protostars & Planets IV



Orion Nebula Cluster
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http://www.astro.caltech.edu/~jmc/papers/onc/gif/figure1.gif
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FiG. 12. HR diagram for the Orion Nebula Cluster. Triangles indicate lower limits in luminosity. Filled circles/triangles indicate proper motion cluster
members plus all sources which have been identified as being externally ionized; open circles/triangles indicate that no proper motion information is available;
crosses indicate proper motion nonmembers. Typical errors are <0.02 in log T, for late-type (K-M) stars but increase towards earlier spectral types, and
=0.2 in log(L, /Lg) at all spectral types. Two luminosities are plotted for all stars later than M7, with the asterisk indicating the luminosity calculated
assuming the star has the V—17 color and bolometric correction of an M7 star; see text. Superimposed are the zero-age main sequence and the pre-main
sequence evolutionary tracks of D’ Antona & Mazzitelli (1994, model 1); over the mass range from 0.1 My, to 2.5 Mg ; Swenson er al. (1994, model F) from
3 Mg 105 Mg: and Ezer & Cameron (1967) from 10 Mg to 50 M. The apparent trend of increasing stellar age with mass suggests errors in the zero
point of the pre-main-sequence evolutionary tracks, i.e., the al mass-radius relationship with which the calculations begin.
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FIG. 13. Low-mass end of the HR diagram for the Orion Nebula Cluster. All lines and symbols are the same as in Fig. 12, with the pre-main sequence
evolutionary calculations of D’Antona & Mazzitelli now shown down to 0.02 My . The hydrogen-burning mass limit of 0.08 My is emphasized. The
temperature-spectral-type relationship over the range from K3-M9 is denoted. Note the locations of stars M6.5 and later relative to the tracks. These are
probably young brown dwarfs. For a magnitude-limited sample restricted to /< 17.5 mag, our data begin to become incomplete at ages older than 1 Myr and
masses less than 0.1 M, assuming a typical extinction of A, =2 mag.
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Fiducial lognorm MF: Mc=0.25, ¢=0.52 (Pleiades, Moroux et al. 2003)
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Fig. 9. The IMF determined in a number of young (< 10 Myr) clusters and star forming
regions (offset for clarity). The solid lines show the log-normal model that best fits the
Pleiades (see Fig. 8). The MFs may be generally consistent with that of the Pleiades but
the MF of Upper Sco is quite different. Figure constructed by Bouvier & Moraux.

Jeffries 2012

96



Stellar Initial Mass Function and Dense Core Mass Function

Pre—stellar mass spectrum (o Oph)
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Formation of Massive Stars

O Competitive accretion (of cloud cores)

... low-mass protostars competing with each other, and accrete
matter from the parent molecular cloud

] Coalescence of two or more stars with lower masses
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