Supernovae

Possible evolutionary paths

- Core collapse
- Thermonuclear runaway

Evolution of an Intermediate-mass (8 to $25 \mathrm{M}_{\odot}$) or High-mass ($>\mathbf{2 5} \mathrm{M}_{\odot}$) Star

\square Core size ~ Earth
\square Layers of nuclear reactions (cf an onion)

- Envelope as a supergiant, with the diameter comparable to the Jupiter's orbit

Each subsequent reaction proceeds ever faster; silicon \rightarrow iron
An iron nucleus most compact between protons and neutrons
\rightarrow further fusion does not release energy
\rightarrow iron core collapses ($\mathrm{D} \sim 3000 \mathrm{~km}$, collapses in 0.1 s)

	Evolutionary Stages of a $25-\mathrm{M}_{\odot}$ Star		
Stage	Central temperature (\mathbf{K})	Central density $\left(\mathbf{k g} / \mathbf{m}^{3}\right)$	Duration of stage
Hydrogen fusion	4×10^{7}	5×10^{3}	7×10^{5}
Helium fusion	2×10^{8}	2×10^{8}	4×10^{9}
Carbon fusion	6×10^{8}	1×10^{10}	$5 \times 10^{5} \mathrm{yr}$
Neon fusion	1.2×10^{9}	3×10^{10}	600 yr
Oxygen fusion	1.5×10^{9}	3×10^{12}	1 yr
Silicon fusion	2.7×10^{9}	4×10^{17}	6 mo
Core collapse	5.4×10^{9}	varies	1 d
Core bounce	2.3×10^{10}	0.2 s	
Supernova explosion	about 10^{9}	milliseconds	

Iron core collapse $\rightarrow 5$ billion $\mathrm{K} \rightarrow$ photodisintegration by energetic gamma rays
The star spends millions of years on the main sequence, synthesizing simple nuclei such as H and He to iron, then takes less than a second to disintegrate back to protons, neutrons and electrons.
Density of the core $\nearrow ス$, reaching $4 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3}$ (cf density of a nucleus) in $<1 \mathrm{~s} \rightarrow$ even the electron degenerate pressure cannot support the core $\rightarrow e^{-}+p^{+} \rightarrow n^{o}+v$
Core supported by neutron degenerate pressure \rightarrow neutron star

Core bounces $\boldsymbol{\rightarrow}$ supernova explosion + supernova remnant

Evolution of A Binary System

- Both stars of a few solar masses
- More massive component \rightarrow RG \rightarrow transfers and loses mass \rightarrow a hot WD
- Secondary \rightarrow RG \rightarrow fills the Roche lobe \rightarrow transfers mass to the hot WD via an accreting disk
- Accreted material compressed and heated, and if $T>10^{7} \mathrm{~K}$ \rightarrow CNO takes place at the base of the accreted layer (even with a thermonuclear runaway if the material is degenerate
\rightarrow A nova explosion
If accretion onto a C-O WD \rightarrow core mass $>\mathrm{M}_{\mathrm{Ch}}=1.4 \mathrm{M}_{\odot}$
\rightarrow Catastrophic collapse + C burning \rightarrow a Type Ia supernova

Fig. 7.10. Schematic light curve for a typical nova; the time axis is arbitrary and not to scale.

Accreting Binary Systems

Table 7.4. Taxonomy of binary systems

A semi-detached binary system with the primary being a WD: (in increasing L) \checkmark dwarf nova classical nova type Ia supernova

Name	Description	Remarks
Algols	Two normal stars (main sequence or subgiants): semidetached binary	Provide checks on stellar evolution, information on mass loss
RS Canum Venaticorum	Chromospherically active binaries	Useful for studies of dynamo-based magnetic activity; exhibits starspot chromospheres, corona, and flares similar to the Sun
W Ursae Majoris	Short period (0.2-0.8 days) Contact binaries	High levels of magnetic activity, important for studying stellar dynamo model
Cataclysmic variables and novas	White dwarfs with cool M-type secondaries; short periods	Exhibits accretion phenomena and accretion disks
X-ray binaries	Neutron star or black hole as the compact component; powerful x-ray sources with $L_{x}>10^{35} \mathrm{ergs} \mathrm{s}^{-1}$	Study of structure and evolution of compact remnants; indirect evidence for black holes
ζ Aurigae/ VV Cephi	Long-period interacting binaries; Late-type supergiant plus a hot companion	Study of supergiant phase, especially atmospheres of supergiants

Gum Nebula is the largest SNR in the sky, originated from a supernova explosion perhaps a Myr ago.

Gum Nebula has a angular extent >40 deg \rightarrow linear size more than 2300 ly across \rightarrow The closest part from Earth ~ 300 ly

Cassiopeia A SNR is 3.4 kpc from us. The explosion should have been seen 300 years ago, but was not recorded.

X rays

Visible (HST)

Radio

Supernovae in History

- OB association in Scorpius-Centaurus Solar system within 150 ly 2 Myr ago; should have experienced SN explosions

Table $\mathbf{1 0 . 1}$ Historical supernovae

Galaxy: Name	Year	Distance $\times 3000 l y$
Milky Way:		
Lupus	1006	1.4
Crab	1054	2.4
3C 58	$1181(?)$	2.6
Tycho	1572	2.5
Kepler	1604	4.2
Cas A	1658 ± 3	2.8
Andromeda	1885	700
LMC: SN1987A	1987	50

Chandra SN1572

Crab Nebula（in Taurus）

The Expanding Crab Nebula 1973 to 2001

SN clearly recorded in AD1054 by Chinese astronomers \rightarrow＂Chinese supernova＂

西元1054年ち月（宋仁宗至和元年五月）金牛座超新星爆炸，據記載最明亮時相當於太白 （金）星的光芒，長達 23天在白天可見，直到 1056年四月（㷊嘉祜え年三月）肉眼才看不見。天閣客星

SN 1987A
First observed $24 \mathrm{Feb}, 1987$
not quite SNII
preSA progenitor observed and sp. classified
Sanduleak-69202

$$
\begin{aligned}
& S_{P}=B 3 I \\
& L \sim 1.1 \times 10^{5} L_{\odot} ; T_{\text {eff }} \sim 16,000 \mathrm{~K} \\
& \left(M \sim 16.22 \mathrm{M}_{\odot}\right)
\end{aligned}
$$

Pop I but metal-poor
Neutrino events (Kamiokande) detected hours before $S N$ visible

Supernova classification

Divided into two types based on spectra Type I - with no H lines

- Further classification based also on spectra:
\checkmark Ia - strong Si line
\checkmark Ib - no H or Si line, but have He lines
\checkmark Ic - no Si, He or H lines

- Ia found in all types of galaxies
\rightarrow associated with white dwarfs in binary systems

Supernova classification II

Type II - with H lines
Further classification based on light curve
\checkmark II P - flat 'plateau' in LC
\checkmark II L - linear light curve

- Type II, Ib, Ic found only in spiral arms of spiral galaxies (i.e. regions of recent star formation) \rightarrow massive stars
Core collapse supernovae with mass loss in Ib and Ic

Doggett and Branch (1985)
Astron. J., 90, 2303

图 10.8 几种类型超新星的光变曲线（Wheeler，Harkness，1992）
—Type la — Type Ib — Type Ic —Type Ilb — Type II-L —Type II-P — Type IIn

http://upload.wikimedia.org/wikipedia/commons/e/e0/Comparative_supernova_type_light_curves.png

Observational classification of Supernovae

Padmanabhan II

Fig. 7.12. Observational classification of supernovas (SNs).

Figure 1 Spectra of SNe, showing early-time distinctions between the four major types and subtypes. The parent galaxies and their redshifts (kilometers per second) are as follows: SN 1987N (NGC 7606; 2171), SN 1987A (LMC; 291), SN 1987M (NGC 2715; 1339), and SN 1984L (NGC 991; 1532). In this review, the variables t and τ represent time after observed B-band maximum and time after core collapse, respectively. The ordinate units are essentially "AB magnitudes" as defined by Oke \& Gunn (1983).

Figure 2 Spectra of SNe , showing late-time distinctions between various types and subtypes. Notation is the same as in Figure 1. The parent galaxy of SN 1987L is NGC 2336 ($c z=2206 \mathrm{~km}$ s^{-1}); others are listed in the caption of Figure 1. At even later phases, SN 1987A was dominated by strong emission lines of $\mathrm{H} \alpha,[\mathrm{O} \mathrm{I}]$, [Ca II], and the Ca II near-IR triplet, with only a weak continuum.

- The energy source of the type Ia supernovae comes from nuclear fusion. The explosion produces various radioactive isotopes , e.g., nickel becomes cobalt.
- So far, a few thousands SNe have been detected in external galaxies.
- Applying the statistics, the Milky Way should have occurred one type Ia SN every 36 years, and one type II SN every 44 years.
- Each century, therefore, we should have seen about 5 supernovae. So, what happened?
- Which is most likely the next? In the solar neighborhood?

Supernovae
$M>8 M_{0}$ core carbon burning

$$
\rightarrow{ }_{8}^{16} 0,{ }_{10}^{20} \mathrm{~N},{ }_{11}^{23} \mathrm{Na},{ }_{12}^{23} \mathrm{Mg} \text { and }{ }_{12}^{24} \mathrm{Mg} \cdots
$$

Eventually ${ }_{26}^{54} \mathrm{Fe},{ }_{26}^{56} \mathrm{Fe}$, and ${ }_{28}^{56} \mathrm{~N}$ i
Three critical processes "iron" core
(1) Neutrino cooling

At this stage, a lot of L_{s}
Solar neutrino flux

$$
=7 \times 10^{10} / \mathrm{cm}^{2} / \mathrm{s}
$$

Ex. dining Si burning, a $20 M_{0}$

$$
\begin{aligned}
& L_{20 m_{0}} \sim 4.4 \times 10^{38} \mathrm{ogg}^{-1} \\
& L_{D} \sim 3.1 \times 10^{45} \mathrm{ug}_{5}^{-1}
\end{aligned}
$$

Neutrino mass

$$
<0.32 \mathrm{eV} \text { for the sum of }
$$ masses of 3 known flavors

(2) Photodisintegration

Energetic photons disintegrate iron nuclei
into α particles and protons
This is an endöthermic process; is. takes energy away and lowers pressure support at the core

$$
\begin{aligned}
& { }^{56} \mathrm{Fe}+\gamma \rightarrow 13^{4} \mathrm{He}+4 n \\
& { }^{4} \mathrm{He}+\gamma \rightarrow 2 p^{+}+2 n
\end{aligned}
$$

3. Neutronization
possible inverse β decay

$$
\begin{gathered}
p^{+}+e^{\bullet} \rightarrow n^{\bullet}+x \\
b \\
n_{e}{ }^{\bullet} \Rightarrow \mathbb{P}_{\text {deg }} \downarrow \\
\text { 2 escape } \Rightarrow \text { cooling }
\end{gathered}
$$

\Rightarrow A rapid collapse of the core
放养

Note exothermic releasing energy

Outer core/mantle collapses supersonically (free fall) inner core collape vi $70,000 \mathrm{~km}^{-1}$ homologrusly (infall speed \propto subsonically distance po center)

Inner core collapses until $\int_{c} \sim 8 \times 10^{14} \mathrm{~g} \mathrm{~cm}^{-3}$
This is $3 \times$ nucleus \rightarrow nuclear reactions produce rupulsive fore (cannot "squeeze "anymore)
This sends an outgoing pressure wave through the infalling material

Two possibilities
When the shock propagates through the inner core \rightarrow photodisintegration
(i) If the iron core is small, shock emerges energetically
\rightarrow an explosion on the outer material
prompt hydrodynamic explosion

This can explain the explosion of MS stars with 8~12 M_{\odot}, ending with a core $<1.2 \mathrm{M}_{\odot}$. But the progenitor of SN1987A had $20 \mathrm{M}_{\odot}$ \rightarrow need an alternative mechanism to explain more massive ONe
(ii) If the core is massive, inner shock stalls

accretion shock cf protostars
material becomes so dense that even ν s cannot escape \rightarrow formation of a noutrime sphere of photosphere of a
when $\rho>$ feria $\tau_{\text {diff }}^{\nu}>\tau_{\text {free fall }}$
This deposits some energy to the inner shack

$$
\longrightarrow \text { explosion }
$$

delayed-explosion mechanism

Fig. 34.9. Schematic picture of a collapsing stellar core at bounce. The short arrows correspond to the velocity field. At the sphere labelled core shock, the shock is formed inside which the mat$t e r$ is almost at rest. Above the shock there is a still collapsing shell in which neutrinos are trapped. But on top there is a shell from which neutrinos can escape. One can define a neutrino photosphere analogous to the photosphere in a stellar atmosphere

Total kinetic energy of tEnt going shock

$$
\text { Erin } \sim 10^{51} \mathrm{mggs}
$$

(This is only 1% of the energy in energy) neutrinos
\rightarrow Buter material expands el becomes epically. thin

$$
\Rightarrow S N \text { explosion, releasing } \sim 10^{149} \text { ergs }
$$

in photons

$$
\text { with } L_{\text {peak } ~} \text { } 10^{43} \log _{s}^{-1} \sim 10^{9} \text { Lo }
$$

c.f $L_{\text {milky way }}$

Roughly if original mass $<25 \mathrm{H}_{0}$; can be supported neutron pressure; may survive the explosion \rightarrow a neutron star If $M>25 M_{0} \rightarrow$ collapse to a black hole

Neutrino Trapping
Mean free path $\lambda=1 / n \sigma$
cross section $\sigma=\sigma_{0} \varepsilon^{2}$
For neutrinos, $\sigma_{0} \sim 2 \times 10^{-44}\left[\mathrm{~cm}^{2}\right]$
$\varepsilon=$ relative energy in unit of a^{-}rest mass

In lead $\rho=11.34 \mathrm{gan}^{-3}, A=208$
A neutrino of 1 MeV , or $\varepsilon=2, \lambda \sim 3.8 \times 10^{20} \mathrm{am}$ $\sim 380 \mathrm{ly}$

In a collapsing stellar core

$$
\rho \sim 4 \times 10^{14} \mathrm{gam}^{-3}
$$

Neutrinos have $\sim 150 \mathrm{MeV}$, or $\varepsilon \sim 300$

$$
\rightarrow \lambda=2.2 \mathrm{~cm}
$$

So if $R \sim 10 \mathrm{~km}$, the mean free time, or diffusion time $\tau \sim 5 \mathrm{~s}$

Supernova Observations
$L_{\text {peak }} \sim 10^{9}-10^{10} \quad L_{0}$
Tine before peak (ruing time) ~ 2 wks
Shell expameion v~5.10 $\sim 10^{3} \mathrm{~km}_{s}^{-1}$
supernova remnant (SNR)
lasting ~ $10^{3} \mathrm{yrs}$
$E_{\text {total }} \sim 10^{51}-10^{53}$ ergs $=E_{\text {photons }}+E_{\text {neutrinos }}+E_{\text {kinetic }}$
wally minor ($\sim 1 \%$) predominant
cooling core \rightarrow a neutron star

$$
\rho \sim 10^{14} \mathrm{~g} \operatorname{cis}^{-3}, M \sim M_{0}
$$

- 1932 Chadwick discovered the neutron.
- Landau thought neutron stars might exist.
- 1934 Baade \& Zwicky suggested neutron stars as remnants of supernova explosions.
- 1939 Oppenheimer \& Volkoff proposed the first model for neutron stars, with estimates of masses and sizes.
- 1967 Hewish \& Bell discovered the pulsar.
- Gold \& Pacini proposed pulsars as fast spinning, highly magnetized neutron stars.

Mass limit of neutron degenerate stans uncertain because of uncertain $z_{0} S$ at $\rho>\rho_{\text {nuclear, }}$, ranging from 0.7 M (for nonionteracting neutrons
(Tolman-Oppenheimer. Vo(koff hint)
up to ~ 2.5 M 。

$$
\text { A pulsar }\left\{\begin{array}{l}
R \sim 10 \mathrm{~km} \\
B \sim 10^{13} G \\
\text { spin down from periods } \sim \mathrm{ms}
\end{array}\right.
$$

Some SARs host no pulsars.

- not enough e^{-}, not strong enough \vec{B} ?
- We are not in the 'light house beam'?
- neutron Star destroyed completely
- neutron Star 'Kicked ont'
some NSs (a pulsars) have space motion ~ $1000 \mathrm{kms}^{-1}$

Annu. Rev. Astron. Astrophys. 1992. 30:359-89 TYPE Ia SUPERNOVAE AS STANDARD CANDLES

David Branch

Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019

G. A. Tammann

Astronomisches Institut der Universität Basel, Venusstrasse 7, CH-4102 Binningen, Switzerland, and European Southern Observatory, Karl-Schwarzschild-Str. 2, D-8049 Garching/München, Germany

Figure 2 The standard B light curve (adapted from Cadonau 1987), based on observations of 22 SNe Ia.
Many sky survey projects, e.g., Pan-STARRS (PS), Palomar Transient Factory (PTF), Sky Mapper, Large Synoptic Survey Telescope (LSST), to catch SNe early on, for pre-SN characterization

Type I
No Hin spectra
Located in spirals or ellipticals
If in spirals, nonally NOT in arms
but some seen near HI regions or arms $\rightarrow I_{b}$
Ia Standard mode 6
A wD close to chandrasekhar limit
f a mass losing companion
\rightarrow accretion onto $\omega D \rightarrow R_{\text {wo }} \downarrow$
$\rightarrow T \uparrow$. If heat not carried away

$$
\Rightarrow \text { ignition of } c, 0, \ldots
$$

thermonuclear explosion

Fate of WID depends on accretion rate and M WD

- partial explosion w/ a wd lost behind
- disrupt completely; no stellar remnant
- NS?

Population II progenitor
SN Ia $\sim 80 \%$ of Type II

$$
\mathrm{M}_{\mathrm{peak}} \sim-17 \mathrm{mag}
$$

Ale SN Ia lighteurves similar

$$
\rightarrow \text { standard candles }
$$

Averaged 1 SN I/100 yrs in a spiral

Type II $\quad M_{\text {peak }} \sim-19$ mag
With hydrogen hues in spectra
Found in spiral arms os Er.
If formed in the some arm
timescale $<10^{7} \mathrm{yr} \Rightarrow M>10 \mathrm{M}$
Standard model
End of maxine star evolution gravitational collapse
Population I progenitor

$$
\text { Fate } \rightarrow \text { NS,BH }
$$

Type II (core collapse) SN progenitors

Fig.34.7. The chemical composition in the interior of a highly evolved model of a $25 M_{0}$ star of population I. The mass concentrations of a few important elements are plotted against the mass variable m. Below the abscissa the location of shell sources and typical values of temperature (in K) and density (in $\mathrm{g} \mathrm{cm}^{-3}$) are indicated. (After WOOSLEY, WEAVER, 1986)

THE PHYSICS OF SUPERNOVA EXPLOSIONS ${ }^{1}$

S. E. Woosley

Board of Studies in Astronomy and Astrophysics, Lick Observatory, University of California, Santa Cruz, California 95064

Thomas A. Weaver

Special Studies Group, Lawrence Livermore National Laboratory, Livermore, California 94550

[^0]Table 1 Presupernova models and explosions ${ }^{\text {a }}$

Main sequence mass	Helium core mass	Iron core mass	Explosion energy ${ }^{\text {b }}$ ($10^{50} \mathrm{erg}$)	Residual baryon mass ${ }^{\text {b }}$	Neutron star mass ${ }^{\text {b }}$	Heavies ejected ($Z \geq 6$)
11	2.4	- ${ }^{\text {c }}$	3.0	1.42	1.31	~ 0
12	3.1	1.31	3.8	1.35	1.26	0.96
15	4.2	1.33	2.0	1.42	1.31	1.24
20	6.2	1.70	-		-	2.53
25	8.5	2.05	4.0	2.44	1.96	4.31
35	14	1.80	-		-	9.88
50	23	2.45	--	-	.	17.7
75	36	- ${ }^{\text {d }}$	-	-	BH?	30 ?
100	45	$\sim 2.3{ }^{\text {d }}$	$\geqslant 4$	-	BH?	39?

${ }^{\text {a }}$ All masses given in units of M_{\odot}.
${ }^{\mathrm{b}}$ All except for $100 M_{\odot}$ determined by Wilson et al. (1985).
${ }^{\text {c }}$ Never developed iron core in hydrostatic equilibrium.
${ }^{d}$ Pulsational pair instability at oxygen ignition.

Figure 1 Structure and composition of a $15-M_{\odot}$ presupernova star at a time when the edge of its iron core begins collapsing at $1000 \mathrm{~km} \mathrm{~s}^{-1}$. Neutrino emission from electron capture $\left(\varepsilon_{v}\right)$ dominates photodisintegration in the total energy losses $\left(L_{10}\right)$ throughout most of the iron core. Central temperature here is $7.62 \times 10^{9} \mathrm{~K}$ and density is $9.95 \times 10^{9} \mathrm{~g} \mathrm{~cm}^{-3}$. Spikes in the nuclear-energy generation rate ($\varepsilon_{\text {nuc }}$) show the location of active burning shells, while解 and ress reater than ${ }^{56} \mathrm{Fe}$. Ne a scale break at 45 M . Figure adapted fro neutron excess greater then ${ }^{56} \mathrm{Fe}$. Note a scale break at $4.5 M_{\mathrm{P}}$. Figure adapted from Woosley \& Weaver (1985).

- Core collapse in free-fall, $\tau_{\mathrm{ff}} \approx(G \bar{\rho})^{-1 / 2} \approx 1 \mathrm{~ms}$, if $\rho=10^{10} \mathrm{~g} \mathrm{~cm}^{-3}$
- Central density and pressure $\uparrow \uparrow$ and becomes subsonic; outer material remains free-fall and supersonic.
- Transition zone = constant speed, force free, relativistic electron degenerate pressure balances gravy \rightarrow Chandrasekhar limit
- Inside $\mathbf{M}_{\mathrm{ch}}, \rho \approx 2.3 \times 10^{14} \mathrm{~g} \mathrm{~cm}^{-3}$ (nuclear), strong force; material incompressible; neutron degeneracy Outside $\mathrm{M}_{\mathrm{ch}} \rightarrow$ supersonic accretion
\rightarrow Shock wave and bounce

Fig. 34.8. Schematic picture of the velocity distribution in a collapsing stellar core originally of $1.4 M_{\odot}$ after numerical calculations (VAN RIPER, 1978). Note the two regimes: on the left $\left|v_{\mathrm{r}}\right|$ (in units of $10^{9} \mathrm{~cm} \mathrm{~s}^{-1}$) increases in the outward direction. It corresponds to a (roughly) homologously collapsing part, while on the right $\left|v_{\mathrm{r}}\right|$ decreases with m . This corresponds to the free-fall regime

Energy released in a core collapse

$$
\begin{aligned}
& R: R_{\text {WD }}\left(0.01 R_{0}\right) \rightarrow R_{\text {NS }}(10 \mathrm{~km}) \\
& \triangle E_{\text {grav }} \sim \frac{G_{0} M_{0}^{2}}{R_{\text {NS }}} \sim 3 \times 10^{53} \mathrm{ergs}
\end{aligned}
$$

10% used up by nuclear processes
rest to radiation and ejecting material (luminosity \& neutrinos)

$$
\begin{gathered}
\text { Doggert }+ \text { Branch (1985 } \\
\text { AJ. } 90.2303
\end{gathered}
$$

UVOIR light curve

Evidence of synthesis of heavy elements

$$
\text { in } 1987 \mathrm{~A}
$$

Fig. 1.-Spectrum of SN 1987A. The 1σ error bars are typically $\pm 5 \times 10^{-18} \mathrm{~W} \mathrm{~cm}^{-2} \mu \mathrm{~m}^{-1}$. The flux calibration star was α Bootis.

$$
\begin{array}{ll}
\text { By Kuiper Airborne Observatory } & \text { Witteborn }+1989 \\
\text { in } 1988 \text { April } & \text { ApJL, } 338,19
\end{array}
$$

\bullet During a type II SN explosion, the neutron star reaches $T \approx 10^{11} \sim 10^{12} \mathrm{~K}$, but cools down quickly by neutrinos, to $T \approx 10^{9} \mathrm{~K}$ in a day, $10^{8} \mathrm{~K}$ in 100 years.

- This is cold, $k T \approx 10 \mathrm{keV}$ cf. Fermi energy ($\rho \approx 10^{14} \mathrm{~g} \mathrm{~cm}^{-3}$), $\varepsilon_{F} \approx 1000 \mathrm{MeV}$, so $T_{\text {neutron star }} \rightarrow 0$, and all electrons, protons, and neutrons are at the lowest energy states.
- Neutron beta decay process, $n \rightarrow p+e^{-}+\overline{v_{e}}$, does not take place, because the resultant electron and neutrino are not energetic enough (energy difference between n and p)
- But inverse beta decay $p+e^{-} \rightarrow n+v_{e} \mathrm{OK}$
\rightarrow All neutrons
- So far thousands of SNe have been detected in external galaxies.
- In the Milky Way, a type Ia SN is expected every 36 years, and a type II SN is expected every 44 years. Then each century should see about 5 SNe.

Notable Historical supernovae in the Milky Way

SN 1006	Lupus	Ia	-7.5 mag, brightest in history
SN 1054	Taurus	II	Chinese SN; Crab Nebula as the SNR
SN 1572	Cassiopeia	Ia	Tycho's Nova
SN 1604	Ophiuchus	Ia	Kepler's Star
SN 1680	Cassiopeia	IIb	Not observed, Cas A as the SNR

The 25 Most Abundant Nuclei

Solar System Abundances

Rank	Z	Symbol	A	Nucleon Fraction	Source (process)
1	1	H	1	$7.057 \mathrm{e}-01$	Big Bang
2	2	He	4	$2.752 \mathrm{e}-01$	Big Bang, CNO, pp
3	8	O	16	$9.592 \mathrm{e}-03$	Helium
4	6	C	12	$3.032 \mathrm{e}-03$	Helium
5	10	Ne	20	$1.548 \mathrm{e}-03$	Carbon
6	26	Fe	56	$1.169 \mathrm{e}-03$	e-process
7	7	N	14	$1.105 \mathrm{e}-03$	CNO
8	14	Si	28	$6.530 \mathrm{e}-04$	Oxygen
9	12	Mg	24	$5.130 \mathrm{e}-04$	Carbon
10	16	S	32	$3.958 \mathrm{e}-04$	Oxygen
11	10	Ne	22	$2.076 \mathrm{e}-04$	Helium
12	12	Mg	26	$7.892 \mathrm{e}-05$	Carbon
13	18	Ar	36	$7.740 \mathrm{e}-05$	Silicon, Oxygen
14	26	Fe	54	$7.158 \mathrm{e}-05$	e-process, Silicon
15	12	Mg	25	$6.893 \mathrm{e}-05$	Carbon
16	20	Ca	40	$5.990 \mathrm{e}-05$	Silicon, Oxygen
17	13	Al	27	$5.798 \mathrm{e}-05$	Carbon
18	28	Ni	58	$4.915 \mathrm{e}-05$	Silicon, e-process
19	6	C	13	$3.683 \mathrm{e}-05$	CNO
20	2	He	3	$3.453 \mathrm{e}-05$	Big Bang, pp
21	14	Si	29	$3.448 \mathrm{e}-05$	Carbon, Neon
22	11	Na	23	$3.339 \mathrm{e}-05$	Carbon
23	26	Fe	57	$2.840 \mathrm{e}-05$	e-process
24	14	Si	30	$2.345 \mathrm{e}-05$	Carbon, Neon
25	1	H	2	$2.317 \mathrm{e}-05$	Big Bang

Arnett

Prediction:

$\checkmark\left[{ }^{4} \mathrm{He} / \mathrm{H}\right] \approx 0.25 \rightarrow$ obs OK
$\checkmark[\mathrm{D} / \mathrm{H}],\left[{ }^{4} \mathrm{He} / \mathrm{H}\right]$, , $\left.{ }^{3} \mathrm{He} / \mathrm{H}\right],[\mathrm{Li} / \mathrm{H}]$ density dependent \rightarrow obs all same densities

WMAP (CMB) obs \rightarrow consistent result

Solar System Abundances

Z \uparrow, Coulomb barrier $\uparrow \uparrow$ for charged particle reactions \rightarrow elements produced by neutron capture

Cosmic abundance and stellar/galaxy evolution (Burbidge, E. M., Burbidge, G. R., Fowler, W. A., \& Hoyle, F. (1957)

Big Bang $\rightarrow \mathrm{H}: \mathrm{He}=10: 1$

Stellar Interior

$10^{7} \mathrm{~K} \rightarrow \mathrm{p}-\mathrm{p}$, CNO (fusing proton, in a proton rich or neutron poor gas) (p process)
$10^{8} \mathrm{~K} \rightarrow$ triple-alpha to $\mathrm{C} \rightarrow$ continue to fuse α particles \rightarrow mass number multiples of 4 by fusing (α process)
$4 \times 10^{9} \mathrm{~K} \rightarrow$ nuclear equilibrium $\rightarrow \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}$ and elements of the iron group (e process)

Explosive events

Neutron capture rapidly (compared to the competing β decays) \rightarrow neutron-rich isotopes (r process) e, g., the radioactive elements ${ }^{235} \mathrm{U},{ }^{238} \mathrm{U}$, at the expense of the iron group

Neutron capture slowly (compared to the competing β decays) \rightarrow neutron-rich isotopes (s process)

Valleys at $A=5$ to $15(\mathrm{LiBeB})$ and $A \sim 45(\mathrm{Sc=scandium})$

Fig. 2.2. Abundance $(A=1,64)$

Fig. 2.3. Abundance $(A=50,100)$

- Other than H and He , the rest ('metals') is rare
\because penetration prob. between positively charged nuclei has an exponential dependence $\left(Z_{1} Z_{2}\right)$
e.g., $\mathrm{O}+\mathrm{O} \rightarrow 64$ times stronger than in $\mathrm{H}+\mathrm{H}$
- Even A nuclei are favored; especially for even-even elements, i.e., even Z and even N.
$\bullet Z=N \rightarrow \alpha$ particle nuclei e.g., ${ }^{12} \mathrm{C},{ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne},{ }^{24} \mathrm{Mg},{ }^{28} \mathrm{Si},{ }^{32} \mathrm{~S},{ }^{36} \mathrm{Al},{ }^{40} \mathrm{Ca}$
\bullet First odd- A element is ${ }^{25} \mathrm{Mg}$; placed the $15^{\text {th }}$
\bullet Among the top, only ${ }^{14} \mathrm{~N}$ is not even-even.
- Nuclei, like atoms, have a shell structure;
"magic numbers" of protons are particularly tightly
bound, e.g., ${ }^{4} \mathrm{He}(\mathrm{Z}=\mathrm{N}=2),{ }^{16} \mathrm{O}(\mathrm{Z}=\mathrm{N}=8)$
- ${ }^{56} \mathrm{Fe}$ not even-even; most tightly bound is ${ }^{56} \mathrm{Ni}$.

SN I and II light curves provide evidence that $\mathrm{Ni} \rightarrow \mathrm{Co} \rightarrow \mathrm{Fe}$ for $A=56 \rightarrow$ Abundance peaks at ${ }^{56} \mathrm{Fe}$

- For $\mathrm{A}>60$, via neutron capture
\checkmark r-process: rapid relative to beta-decay
\checkmark s-process: slow nuclei already tightly bound \rightarrow small cross section for neutron capture (slow compare to beta decays)
(Burbidge, Burbidge, Fowler, \& Hoyle; see Clayton)

Fig. 2.4. Abundance ($A=90,160$)

Fig. 2.5. Abundance ($A=140,210$)

Stellar Evolutionary Path

Star > (8 .. 10) $\mathcal{M}_{\odot} \underset{\substack{\text { 20 to 30\% } \\ \text { mass loss }}}{\text { Core collapse }}<\begin{gathered}\text { Core }<1.8 \mathcal{M}_{\odot}, \text { neutron star + SNR } \\ \text { Core }>1.8 \mathcal{M}_{\odot} \text {, black hole (?); a collapsar } \\ \leftrightarrow \text { gamma-ray bursts }\end{gathered}$

Black Holes predicted by General Relativity Spacetime near a mass is warped Total solar eclipse

$$
\therefore 7(\sin n)
$$

A full treatment of a $B H$ required $G R$. But for an electrically neutral, non-rotating BH, classical derivations give the pane results as with the relativisitic approad.

Schareschild radius

$$
R_{s}=\frac{2 G M}{c^{2}} \simeq 3 \frac{M}{M_{0}}[\mathrm{~km}]
$$

$$
\therefore M \uparrow, P_{B H} \downarrow \downarrow
$$

CH ($\mathrm{M}=10^{8}$ sun), average density ~ water
Surface of $R_{s}=$ Event Horizon for
uncharged, non-rotating BH_{s}
Schwarzchild black hole

Nonrotating $(J=0)$ Rotating $(J>0)$

Uncharged $(Q=0) \quad$ Schwarzschild Kerr
 Charged $(Q \neq 0) \quad \underline{\text { Reissner-Nordström Kerr-Newman }}$

General BH metric, with M, Jand $Q=$ Kerr-Newman metric.

The two physical relevant surfaces of a Kerr black hole.

Table 1.4
Compact Objects in the Solar Neighborhood ${ }^{a}$

	Mass Range of Parent Star $\left(M_{\odot}\right)$	Integrated Galactic Birth Rate $\left(\mathrm{yr}^{-1}\right)$	Number Density $\left(\mathrm{pc}^{-3}\right)$	$\frac{\rho}{\rho_{T}}$	$\langle d\rangle$ (pc)
Object	$1-4$	0.16	1.5×10^{-2}	0.070	2.5
White dwarfs	$4-10$	0.021	2.0×10^{-3}	0.020	4.9
Neutron stars	>10	0.0085	8.0×10^{-4}	0.22	6.7
Black holes					

${ }^{a}$ These values are obtained from Eqs. (1.3.17)-(1.3.21).
Note: Nearest known white dwarf: Sirius B, 2.7 pc. Nearest known neutron star: PSR $1929+10$, 50 pc . Nearest known black hole candidate: Cygnus X-1, $\sim 2 \mathrm{kpc}$.

Size of the Universe
13.7 billion yrs

$$
\left.\begin{array}{rl}
R_{\text {observable }} & \sim 137 \times 10^{8} \times 10^{13} \mathrm{~km} \\
& \sim 1.4 \times 10^{23} \mathrm{~km} \\
M_{\text {obs }} \sim 10^{\prime \prime} \mathrm{Mo} / \mathrm{gal} \cdot 10^{12} \mathrm{gal} .\left(\begin{array}{c}
\text { t dark } \\
\text { matter }
\end{array}\right. \\
+ \text { dark energy })
\end{array}\right)
$$

The whole Universe is a $B H$,

Quark Stars / Strange Stars hyperthetical type of stars composed of quark matter on Strange matter currently 6 "flavors" of quarks up, down, strange, charm, kop, bottom $\operatorname{spin} 1 / 2$
When a neutron stay is further compressed
neutrons \rightarrow break down to up and down quarks \rightarrow break down strange quark
dark matter candidates?

These highly mathematical a speculative
Some recent observations, e.g. in some SHe
\rightarrow existeme of quark stars?

Magnetars
A neutron star w/ an extremely strong $\frac{D}{B}$ (10^{11} teslas a 10^{15} games)

$$
\begin{aligned}
& \text { Earth/sun } \sim 1 \mathrm{G} \\
& \mathrm{Ap}_{\mathrm{P}} / \mathrm{BP} \sim 10^{3} \mathrm{G} \\
& \text { WIS } \sim 10^{6} \mathrm{G} \\
& \mathrm{NS}_{S} \sim 10^{12} \mathrm{G}
\end{aligned}
$$

collapse \rightarrow energy sources

$$
\begin{aligned}
& \text { (i) Égrav } \sim 0.2 M_{c}^{2} \sim 10^{53.8} \mathrm{ergs} \\
& \text { (ii) } E_{\text {ret }} \sim \frac{1}{2} I \Omega^{2} \sim 10^{52.7} \mathrm{ergs} I_{45} \Omega_{4}^{2}
\end{aligned}
$$

\vec{B} links the fast spinning core to the outlying envelopes magnetic breaking
D~20 km; spin: several times /s
Time spans short, $\lesssim 10^{4} \mathrm{yr}$ \vec{B} decays

To recall Kelvin's classic phrase, there are two clouds obscuring the theory of the structure and mechanism of the stars. One is the persistent discrepancy in absolute amount between the astronomical opacity and the results of calculations based either on theoretical or experimental physics. The other is the failure of our efforts to reduce the behaviour of subatomic energy to anything approaching a consistent scheme. Whether these clouds will be dissipated without a fundamental revision of some of the beliefs and conclusions which we have here regarded as securely established, cannot be foreseen. The history of scientific progress teaches us to keep an open mind. I do not think we need feel greatly concerned as to whether these rude attempts to explore the interior of a star have brought us to anything like the final truth. We have learned something of the varied interests involved. We have seen how closely the manifestations of the greatest bodies in the universe are linked to those of the smallest. The partial results already obtained encourage us to think that we are not far from the right track. Especially do we realise that the transcendently high temperature in the interior of a star is not an obstacle to investigation but rather tends to smooth away difficulties. At terrestrial temperatures matter has complex properties which are likely to prove most difficult to unravel; but it is reasonable to hope that in a not too distant future we shall be competent to understand so simple a thing as a star.

[^0]: ${ }^{1}$ The US Government has the right to retain a nonexclusive royalty-free license in and to any copyright covering this paper.

