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AbstJract. The existence of a maximum isothermal core mass  fraction (qm~), the Schoenberg-Chandrasekhar  
limit, is one of the 'classic' results from the theory of stellar structure. This limit can be demonstrated through 
a simplified composite polytrope model in which an isothermal core is surrounded by an n = 1 polytrope 
envelope. While this model underestimates qmax by ~ 25 % in the homogeneous case, it is accurate to within 
5 % in the more realistic inhomogeneous situation. 

1. Introduction 

With the exhaustion of hydrogen in its central regions a star evolves a three part 

structure: a helium rich core, a thin hydrogen burning shell source, and an outer envelope 

which has retained the original, zero-age, chemical composition. That the central helium 

rich core may become isothermal was first suggested by Gamow (1938). This can be 

demonstrated through the simplified argument: since dL/dr ~ e(r) and in the core e = 0 

and L(r  = 0) = 0 it follows that L(r <_ rc) = 0 as well, where r c is the core radius. 
Furthermore, if we consider the temperature gradient dT/dr,,~L(r) then 

T(r < re) = constant = T~. That is the core is isothermal with temperature T c. Detailed 
numerical calculations have shown, however, that this approximate situation only 

occurs in a restricted mass range. During the hydrogen shell-burning phase calculations 
show that the helium core not only increases in mass, but begins to contract. If  the core 

is isothermal contraction requires that the density increases in order to provide the 

pressure support for the overlying layers. Two mass-dependent factors, however, come 

into play (Cox and Giuli, 1968). For M < 1.5 M o the isothennal core eventually be- 

comes degenerate, with the degeneracy contributing to the pressure support. For 

M > 6.0 M o the core at hydrogen exhaustion is sufficiently large that with contraction 
there is a significant release of  gravitational energy which results in rapid core heating 
and isothermality is in fact never achieved. Only in the mass range 1.5 < M/M o < 6.0 

then is it expected that an isothermal, non-degenerate, helium-rich core will develop. 
Having attained this situation, however, it transpires that a critical core mass fraction 

qmax = Mc . . . .  /11/1. exists, where Mc . . . .  is the maximum core mass and M ,  is the total 
stellar mass. In this manner as soon as q > qmax the core can no longer support the 
weight of overlying layers and, in consequence, it is forced to rapidly contract. This 
contraction leads to core heating and the establishment of a non-zero temperature 
gradient. Once T c reaches 1-2 x 108 K central helium burning will begin. At this point 
the star will be at the tip of its red giant branch in the H R  diagram. It is this maximum 
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central core mass M c . . . .  commonly referred to as the Schoenberg-Chandrasekhar 
limit, that we consider in the remainder of this article. 

2. First Investigations 

The first specific investigation of stellar models with isothermal cores was undertaken 

by Henrich and Chandrasekhar (1941). In this analysis only homogeneous models were 

considered, that is the core and the envelope were assumed to have the same chemical 

composition. Specifically, two configurations were investigated: (i) isothermal core plus 

radiative, n = 3 polytrope, envelope, and (ii)isothermal core with a radiative point 
source envelope in which Kramers opacity law was taken to operate. In both cases they 

discovered that an upper limit to the total mass that could be contained in the isothermal 

core existed. For remodels of type (i) they found qmax ~ 0.38, while for models of 
type (ii) they found a slightly lower value of qmax -~ 0.35. In a subsequent analysis, 

Schoenberg and Chandrasekhar (1942) considered the more realistic chemically 

inhomogeneous configurations. These models, similar in construction to those of type (i) 

in Henrich and Chandrasekhar, had core and envelope compositions appropriate to that 

of a hydrogen exhausted core and a hydrogen rich envelope. In terms of the mean 

molecular weights this can be expressed /~c -~ 2.0#e, where the c and e subscripts 

correspond to the core and envelope, respectively. With these conditions they found that 

the maximum core mass fraction was qmax ~ 0.101. This result demonstrated that the 

upper limit to the core mass fraction was a decreasing function of #c/#e. 
That a critical isothermal core mass fraction should exist can be demonstrated 

through an application of the virial theorem. Generalizing the earlier results of McCrea 

(1957), Stein (1966) showed that there is a maximum pressure Pmax that a non- 

degenerate isothermal core in hydrostatic equilibrium can support at its surface. If  the 

core is to support the weight of the overlying envelope then the inequality Pmax > Penv 

must hold, where Penv is the pressure at the base of the envelope. This condition can 

be cast in the form (Stein, 1966; Cox and Giuli, 1968) 

q . . . .  = , (1) 
\ # r  

where A is constant. Henrich and Chandrasekhar's 1941 results, corresponding to 

#c = #e, imply that A - 0.37. The constant A was calculated by Stein (1966) for the 

linear stellar model (in which it is assumed that p(r) = &(1 - r /R .  )). He found in this 
case that A = 0.30. In a more complex calculation, where the influence of core rotation 
was included in the virial equation, Maeder (1971) found, as a consistency check, that 
at rest A = 0.38. Below we try to recreate these results, particularly the derivation of the 

constant A, by appealing to a simplified composite polytropic model. 

3. The Polytropic Model 

To a first approximation the structure of a star in the mass range 1.5 < M / M  o < 6.0 
following core hydrogen exhaustion can be described as an isothermal core surrounded 
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by a radiative envelope of different chemical composition. Such a configuration can be 

thought of as an n = oe core, n = 3 envelope, composite polytrope with a mean molecu- 

lar weight jump at the core-envelope boundary. Since the boundary conditions at the 
base of the envelope are not those appropriate to the standard, and tabulated, solution 
for the n = 3 polytrope, it is necessary to numerically integrate the Lane-Emden 
equation for each new position of the core-envelope interface ~ --- r and for each new 
core-envelope composition difference #c/#e. Since we wish to consider many values of 
~i and #c/~e. it would be an advantageous time saving if the envelope calculations could 
be reduced to a simple form. In an earlier communciation (Beech, 1988), we outlined 
the properties of the n = 3 core, n = 1 envelope composite polytrope. We once again 
adopt the n = 1 envelope approximation here. This allows us to calculate the envelope 
structure in a straightforward analytic fashion. Apart from the numerical simplification 
it affords there are no compelling physical arguments for the adoption of the n = 1 
polytrope envelope. The approximation does, however, describe the important feature 

of attaching a finite mass, non-infinite-radius, envelope to an isothermal core. 
In the isothermal core the pressure term at equilibrium is given by 

e = + D ,  (2) 

where k c = RTc/l~ ~ and D = aT4/3 .  If this is combined with the equations of hydrostatic 
equilibrium, the isothermal analogue to the Lane-Emden equation results 

(Chandrasekhar, 1939) such that 

1 _d (4 2 d~)  _ e_4, = 0" 
~2 d ~ \  

(3) 

with the boundary conditions 

dO 
~O=0, - 0  at ~ = 0 ,  (4) 

d~ 

Equation (3) combined with boundary conditions (4) can be integrated numerically, and 
in our analysis we use the extensive tabulations of Horedt (1986). 

With the envelope approximated as an n = 1 polytrope the equilibrium model is 
described by the Lane-Emden equation 

d( ;) 
q2 dr/ ~]2 + q~=0,  (5) 

which has the general solution 

sin (r/- B) 
q~(~) = A , ( 6 )  

where A and B are constants to be determined by the core-envelope boundary condi- 
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tions. If q~(t/~), qS' (t/`.), and q; are specified at the base of the envelope, then 

A = qb(t/~)t/, cosec(t/,. - B) (7) 

and 

{0 1} B = t / , -  c o t - '  '(t/`.) + ; (8)  

the 'surface' of the envelope is characterized by ~b(t/~) = 0, which from Equation (6) 
implies that 

t/, = B + ~. (9) 

4. The Core-Envelope Boundary 

At the boundary between the core and envelope continuity of pressure (temperature), 
mass and radius are required to hold. Hence, with standard notation (cf. Chandrasekhar, 
1939), if the core boundary is described by ~ = ~e then, 

kcpc e -  ~'~') + D = kep2(o2(t/i) (pressure terms), (10) 

f k )3/2 ( k ) 3 / 2  

{ ko ~ 1/a ~ ke ~ 1/2 
41rG) p~- u2 ~i = (2r rG)  t/i (radial terms). (12) 

Since there is a jump in mean molecular weight across the core-envelope boundary and 
pressure and temperature are necessarily continuous there we require, in consequence, 
the continuity of p/#. In this way, 

Pc e -  or  _ Pe ~(rh ) (p/# terms). (13) 

~/c #e 

Equations (10)-(13) offer four equations in the five unknowns ke, Pe, r r (th), and 
q~. To continue we choose the normalization, 

q~(oi) = 1 .  (14) 

Simple algebra then determines relations for the remaining terms: namely, 

1 (kc~'/2 ,/2: 
t / '  = , , c  

Pe = P~ 

(15) 

(16) 
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L(kc'} 1/2 e~  (d l~)  (17) 

and 

D eO(r I e o(r  ke= k c ( # c ) 2 1 +  (18) 
\#J P-f~ J Pc 

Equations (6)-(9) combined with (15)-(18)give a complete description of the envelope, 
total mass, and configurational radius. Of interest to the investigation at hand is the 
description of the core mass fraction q. This can be expresed as 

q(~i) = Mc = ( kc ] 3/2 (#C)eO(r (~2d~/J/d~)r 
M~, \2keJ I0c3/2 ~e e ( -- r/2 dq~/d r/),7 " 

(19) 

In order to completely determine a model we choose to specify &, Tc, #c, #e, and ~i 
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The variation of core mass fraction q with core-envelope position ~ Each curve is labelled by the 
choice of &/kte. 
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5. Model Results 

On the basis of  detai led numerical  calculat ions (see, e.g., Cox and Giuli,  1968) it is 

expected that  the central  densi ty and temperature  of  the isothermal  core will vary 

between ~ 103 < Pc(g c m - 3 )  ~< few x 104 and ~ 107 < Tc < 108. F o r  a given Pc, Tc 

combinat ion  and choice of  # J / l  e Equat ion (19) can be evaluated at various core- 

envelope posi t ions ~ = ~,.. Hored t  (1986) has given an extensive tabula t ion of  

Equat ion (3) which we use to describe the isothermal  core and core-envelope boundary  

condi t ions (15)-(18).  With  Pc = 103g c m - 3  and T c = 2 x 107K the variat ion of  core 

mass  fraction with ~,. is shown in Figure 1 for various #c/#e combinat ions .  In Figure 2 

the variat ion of  the core mass  fraction with the total  model  mass  is shown when 

#c/#e = 2 and for various Pc, Te combinat ions .  F r o m  these two figures several propert ies  

of  the composi te  polyt rope  model  become apparent :  for a given/zc/#~ there is a well- 

defined maximum core mass  fraction qmax and that  (as Figure 2 il lustrates) this maxi- 

mum is quite insensitive to the choice of  central  boundary  condi t ions Pc and T~. Using  
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Fig. 2. The variation of core mass fraction q with total configurational mass M,  in solar units. Each curve 
corresponds to a choice of ~d#e = 2 and are labelled i = 1,2 .... ,8 where the central density and tempera- 

ture are given by Pc = (2i) x 103 g em -3 and T c = i x 107 K. 
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Figure 1 we can determine qmax for each #c/#e combination (see Table I). With 
Equation (1) as a guide a least-squares fit to qmax and (#e/#c) 2 from Table I gives 

("el 2 qmax = 0.23 + 0.05, 
\]~c / 

(20) 

with a goodness of fit coefficient r = 0.9955. A comparison between several evaluations 
of the constant in Equation (1) and the polytropic model result given in (20) is presented 
in Figure 3. The composite polytrope model appears to underestimate qmax by 25 ~ for 
the homogeneous model (#c = #e), but is accurate to within 5 ~o for the more realistic, 
inhomogeneous, model where #c = 2#e. For all the apparent crudeness of the polytropic 
approximation used in the envelope the composite model gives surprisingly accurate 
results. 
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Fig. 3. A comparison between the various evaluations of Equation ( l)  and the composite polytrope results 
given in Equation (20). Key: Ma - Maeder (1971). S - C  - Schoenberg and Chandrasekhar  (1947). St. - Stein 

(1966). 20 - Equation (20). Ta - results given in Table I. 
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TABLE I 

q~axvaluesasderived from Figurel 

~/~. (~c/~e) 2 qmax 

1.0 1.000 0.273 
1.2 0.694 0.215 
1.4 0.510 0.173 
1.6 0.391 0.141 
1.8 0.309 0.117 
2.0 0.250 0.099 

6. Discussion 

Between core hydrogen exhaustion and the onset of core helium burning, a star under- 
goes dramatic internal reorganization and evolves to a completely new position in the 

H R  diagram; the Main-Sequence dwarf becomes a cool red giant. It is clear that the 

Schoenberg-Chandrasekhar limit and/or the formation of an isothermal core are not 

the crucial mechanisms that turn a dwarf star into a giant (Eggleton and Faulkner, 1981). 

Rather, it is the development of a mean molecular weight gradient, increased central 

mass concentration and the change over from core to shell burning that are the important 
factors, It is unlikely that such structure can be successfully modelled as a single 

polytrope and the situation would seemingly suggest that at least a triple polytropic 

composite model is required. However, as Eggleton and Faulkner (1981), Yahil and Van 

den Horn (1985), and Beech (1986) have found, the tendency towards acquiring large 

radii can be demonstrated via the single polytrope approximation. The properties of red 
giant stars may possibly be describable through the so-called M-solutions to single 

polytropes (Chandrasekhar, 1939; Beech, 1986; Hjellming and Webbink, 1987), but 

to-date such models have not been fully developed. The model presented here is useful 

for describing the final and early post-Main-Sequence evolution of stars in the mass 
range 1.5 < M / M  o < 6.0, and it also illustrated the existence of a maximum isothermal 

core mass fraction. Work in hand, however, is beginning to explore the properties of 
multiple polytropes beyond the simplified model presented here. To this end a mean 

molecular weight gradient between the core and envelope is explicitly included in the 

model. Preliminary results suggest that the evolution of the upper Main-Sequence stars 

can be well modelled in this way. 
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