Molecular Clouds and Star Formation

Stars are formed in molecular cloud cores, whereas planets are formed, contemporaneously, in young circumstellardisks.
http://www.astro.ncu.edu.tw/~wchen/Courses/Stars/Lada1995summerschool.pdf

A THEORY OF THE INTERSTELLAR MEDIUM: THREE COMPONENTS REGULATED BY SUPERNOVA EXPLOSIONS IN AN INHOMOGENEOUS SUBSTRATE
 Christopher F. McKee
 Departments of Physics and Astronomy, University of California, Berkeley
 and
 Jeremiah P. Ostriker
 Princeton University Observatory
 Received 1977 February 3; accepted 1977 May 2
 ABSTRACT

Supernova explosions in a cloudy interstellar medium produce a three-component medium in which a large fraction of the volume is filled with hot, tenuous gas. In the disk of the galaxy the evolution of supernova remnants is altered by evaporation of cool clouds embedded in the hot medium. Radiative losses are enhanced by the resulting increase in density and by radiation from the conductive interfaces between clouds and hot gas. Mass balance (cloud evaporation rate $=$ dense shell formation rate) and energy balance (supernova shock input $=$ radiation loss) determine the density and temperature of the hot medium with $(n, T)=\left(10^{-2.5}, 10^{5.7}\right)$ being representative values. Very small clouds will be rapidly evaporated or swept up. The outer edges of "standard" clouds ionized by the diffuse UV and soft X-ray backgrounds provide the warm ($\sim 10^{4} \mathrm{~K}$) ionized and neutral components. A self-consistent model of the interstellar medium developed herein accounts for the observed pressure of interstellar clouds, the galactic soft X-ray background, the O vi absorption line observations, the ionization and heating of much of the interstellar medium, and the motions of the clouds. In the halo of the galaxy, where the clouds are relatively unimportant, we estimate $(n, T)=\left(10^{-3.3}, 10^{6.0}\right)$ below one pressure scale height. Energy input from halo supernovae is probably adequate to drive a galactic wind.

Interstellar Medium (ISM)

- Gas, dust + radiation, magnetic fields, cosmic rays (i.e., charged particles)
- Very sparse ---
[star-star distance] / [stellar diameter] ~ $1 \mathrm{pc} / 10^{11} \mathrm{~cm} \sim 3 \times 10^{7}: 1$ or $\sim 1: 10^{22}$ in terms of volume (space)
- Mass: 99% mass in gas, 1% in dust $\sim 15 \%$ of total MW visible matter
- Of the gas, $90 \%, \mathrm{H} ; 10 \% \mathrm{He}$
- Hydrogen: mainly H I (atomic), H II (ionized), and H_{2} (molecular)
- Studies of ISM ---
- Beginning of evolution of baryonic matter "recombination"
- Stars form out of ISM
- Important ingredient of a galaxy

Material Constituents of the ISM

Component	$\mathbf{T}(\mathbf{K})$	$\mathbf{n}\left(\mathbf{c m}^{-3}\right)$	Properties
Hot, intercloud and coronal gas	10^{6}	10^{-4}	
Warm intercloud gas	10^{4}	0.1	
Diffuse cloud (H I)	10^{2}	0.1	Mostly H I; $\mathrm{n}_{\mathrm{e}} / \mathrm{n}_{0}=10^{-4}$
H II regions	10^{4}	>10	
Dark Molecular Clouds	10	$>10^{3}$	Mostly H_{2} mol. and dust
Supernova Remnants	$10^{4} \sim 10^{7}$	>1	
Planetary Nebulae			

Energy Density in the Local ISM

Component	$\mathbf{u}\left(\mathrm{eV} / \mathbf{c m}^{-3}\right)$	Properties
Cosmic microwave background	0.265	
FIR radiation from dust	0.31	
Starlight	0.54	
Thermal kinetic energy	0.49	0.22
Turbulent kinetic energy	0.89	
Magnetic field	1.39	
Cosmic rays		

There seems to be equi-partition between these energies. Why? Read Draine's book, page 10

$$
\begin{aligned}
& \text { A "standard" HI cloud } \\
& \quad D \sim 5 \mathrm{pc} \\
& M \sim 50 \mathrm{M}_{\odot} ; \\
& d_{\text {intercloud }} \sim 100 \mathrm{pc} \\
& V_{\text {cloud }} \sim 10 \mathrm{kms}^{-1}
\end{aligned}
$$

Clouds are patchy \rightarrow extinction depends greatly on the sightline
Extinction $=$ absorption + scattering
Extinction versus reddening $\quad \mathrm{Av}=30$ toward the Galactic center In the Galactic plane, $\mathrm{Av} \sim 0.7-1 \mathrm{mag}_{\mathrm{kpc}}{ }^{-1}$
Extinction $\leftrightarrow \rightarrow$ amounts of dust grains along the line of sight
Reddening $\longleftrightarrow \rightarrow$ grain properties (size, shape, composition, structure)

The 'normalized' extinction (extinction law)

The 'normalized' extinction (extinction law)
$F(\lambda)=\frac{A_{\lambda}-A_{V}}{A_{B}-A_{V}}=\frac{E_{\lambda-V}}{E_{B-V}}$
$F(V)=0$
$F(B)=+1$

$$
A_{\lambda}=-2.5 \log \left(e^{-\tau_{\lambda}}\right) \equiv 1.086 \tau_{\lambda} \equiv 1.086 N_{d} \sigma_{\lambda} Q_{e x t}
$$

Fiter	Al/AV
U	1.581
\boldsymbol{B}	1.824
V	1.000
\boldsymbol{R}	0.748
\boldsymbol{I}	0.482
7	0.282
H	0.175
K	0.112
\boldsymbol{L}	0.058
M	0.028
\boldsymbol{N}	0.052

$$
A_{K} \approx 0.1 A_{V}
$$

Figure 1. Solid line: The extinction cross-section normalized per H -atom of the diffuse neutral (95% HI, $5 \% \mathrm{HII}, 10 \% \mathrm{HeI}$) interstellar medium from the far-infrared to the X-rays. Dotted lines: The UV extinction on the lines of sight in two extreme cases, HD 204827 (upper curve) and HD 37023 (θ_{1} given in the text.

Gas and dust coexist.

A gas-to-dust ratio ~100 (by mass) seems universal.

Fig. 3. Visual extinction vs. equivalent hydrogen column density. The fit (dotted line) does not contain GX 17+2 and LMC X-1. It yields $N_{H}=1.79 \pm 0.03 A_{V}[\mathrm{mag}] \times 10^{21}\left[\mathrm{~cm}^{-2}\right]$

$$
\frac{N_{H}}{A_{V}} \approx 1.8 \times 10^{21} \text { atoms } \mathrm{cm}^{-2} \mathrm{mag}^{-1}
$$

Exercise

1. The star Vega is used to define the zeroth magnitude in all the classical (Vega) photometric systems, e.g., Johnson.
2. Plot its spectral energy distribution (SED) from UV to IR.
3. What is the spectral type of Vega? What is its effective temperature?
4. Compare this in a plot with a blackbody curve of the temperature.
5. It was surprising hence when IRAS data revealed IR excess of Vega. What are the flux densities observed by IRAS? Given the age of Vega, why is this discovery significant?
http://www.astro.utoronto.ca/~patton/astro/mags.html\#conversions

| Band | lambda_c | dlambda/lambda | Flux at $\mathbf{m}=\mathbf{0}$ | Reference |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathbf{u m}$ | | Jy | |
| U | 0.36 | 0.15 | 1810 | Bessel (1979) |
| B | 0.44 | 0.22 | 4260 | Bessel (1979) |
| V | 0.55 | 0.16 | 3640 | Bessel (1979) |
| R | 0.64 | 0.23 | 3080 | Bessel (1979) |
| I | 0.79 | 0.19 | 2550 | Bessel (1979) |
| J | 1.26 | 0.16 | 1600 | Campins, Reike, \& Lebovsky (1985) |
| H | 1.60 | 0.23 | 1080 | Campins, Reike, \& Lebovsky (1985) |
| K | 2.22 | 0.23 | 670 | Campins, Reike, \& Lebovsky (1985) |

Filamentary Molecular Clouds

Molecular clumps/ clouds/condensations $\left\lvert\, \begin{aligned} & n \sim 10^{3} \mathrm{~cm}^{-3}, \\ & M \sim 10^{3} \mathrm{M}^{2}\end{aligned}\right., 5 \mathrm{pc}$, $M \sim 10^{3} \mathrm{M}_{\odot}$
Dense molecular cores
$n \geq 10^{4} \mathrm{~cm}^{-3}, \mathrm{D} \sim 0.1 \mathrm{pc}$, $M \sim 1-2 \mathrm{M}_{\odot}$

Giant Molecular Clouds
$\mathrm{D}=20 \sim 100 \mathrm{pc}$
$\mathcal{M}=10^{5} \sim 10^{6} \mathcal{M}_{\odot}$
$\rho \approx 10 \sim 300 \mathrm{~cm}^{-3}$
$T \approx 10 \sim 30 \mathrm{~K}$
$\Delta v \approx 5 \sim 15 \mathrm{~km}^{-1}$

Nearby Examples

Massive Star-Forming Region

- Per OB2 (350 pc)
- Orion OB Association (350-400 pc) ... rich

Low-Mass Star-Forming Regions

- Taurus Molecular Cloud (TMC-1) (140 pc)
- Rho Ophiuchi cloud (130 pc)
- Lupus (140 pc)
- Chamaeleon (160 pc)
- Corona Australis (130 pc)

The Gould Belt, a (partial) ring in the sky, $\sim 1 \mathrm{kpc}$ across, centered on a point 100 pc from the Sun and tilted about 20 deg to the Galactic plane, containing star-forming molecular clouds and OB stars
= local spiral arm
Origin unknown (dark matter induced star formation?)

http://www.jach.hawaii.edu/JCMT/surveys/gb/ Gould's Belt superimposed on to an IRAS 100 micron emission map

The Local Bubble, a cavity of sparse, hot gas, $\sim 100 \mathrm{pc}$ across, in the interstellar medium, with H density of $0.05 \mathrm{~cm}^{-3}$, an order less than typical in the Milky Way.

Likely caused by a (or multiple) supernova explosion (10-30 Myr ago).

Where is the supernova (remnant)?
Check out the Orion-Eridanus Superbubble

Barnard 72 in Ophiuchus

Massive Star-Forming Regions ---- OB associations

Trapezium Cluster • Orion Nebula WFPC2 • Hubble Space Telescope • NICMOS

NASA and K. Luhman (Harvard-Smithsonian Centor tor Astrophysies) - STSel-PRC00-19
(Bok) Globules silhouetted against emission nebulosity

$+A-C^{-}$
© Anglo-Australian Observatory
Photograph by David Malin

A dark cloud core seen against a star field

Frerking et al. (2987)

Molecules in space

H_{2} molecules

- the main constituent of cold clouds, but lacking a permanent electric dipole moment, so is very difficult to detect. A rotationally excited molecule would radiate through a relatively slow electric quadrupole transition.
- Only in a hot medium, where stellar radiation or stellar wind excites vibrational and electronic states which then decay relatively quickly.
$\mathrm{O}=\mathrm{C}=\mathrm{O}$ $\xrightarrow[\text { Hiespm }]{\text { (}}$

Zero electric dipole moment

Refer to the slides for WPC's ISM course http://www.astro.ncu.edu.tw/~wchen/Courses/ISM/index.htm

Figure 5.4 Rotational levels of H_{2} for the first two vibrational states. Within the $v=0$ state, the $J=2 \rightarrow 0$ transition at $28.2 \mu \mathrm{~m}$ is displayed. Also shown is the transition giving the $1-0 \mathrm{~S}(1)$ rovibrational line at $2.12 \mu \mathrm{~m}$. Note that two different energy scales are used.

CO molecules

- simple and abundant. Strong binding energy E=11.1 eV self-shielding against UV field
- with a permanent electric dipole moment; radiating strongly at radio frequencies.
- ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ easiest to detect; isotopes ${ }^{13} \mathrm{C}^{16} \mathrm{O},{ }^{12} \mathrm{C}{ }^{18} \mathrm{O},{ }^{12} \mathrm{C}^{17} \mathrm{O},{ }^{13} \mathrm{C}^{18} \mathrm{O}$ also useful
- Excitation of CO to the $\rho=1$ level mainly through collisions with ambient $\mathrm{H}_{2} X_{C O}=2 \times 10^{20} \mathrm{~cm}^{-2}[\mathrm{~K} \mathrm{~km} / \mathrm{s}]^{-1}$ (Bolatto et al. 2013, ARAA)
- At low densities, each excitation is followed by emission of a photon. At high densities, the excited CO transfers the energy by collision to another H_{2} molecule; $n_{\text {crit }} \approx 3 \times 10^{3} \mathrm{~cm}^{-3}$. Low critical density $\rightarrow \mathrm{CO}$ to study large-scale distribution of clouds, as a tracer of H_{2}
- ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ almost always optical thick; same line from other rare isotopes usually not. $N_{H}=10^{6} N_{13}$ co
$2.6 \mathrm{~mm}=115 \mathrm{GHz}$

Figure 5.6 Rotational levels of ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ within the ground $(v=0)$ vibrational state. The astrophysically important $J=1 \rightarrow 0$ transition at 2.60 mm is shown.

Gaballe \& Persson (1987)
Fic. 2 .- - pectra of those sources in which CO band head emission was
detected. Linear baselines have been subtracted from each spectrum. The posidetected. Linear baselines have been subtracted from each spectrum. The posi-
tions of the band heads are indicated at the top of the figure. Vertical scale marks are separated by $2 \times 10^{-17} \mathrm{~W} \mathrm{~cm}^{-2} \mu \mathrm{~m}^{-1}$. Noise levels are indicated
on the short wavelength data points.

CO band heads in the Becklin-Neugebauer (BN) object --- an infrared-emitting, embedded, massive protostar

Figure 5.8 Near-infrared spectrum of the BN object in Orion, shown at three different observing times. The relative flux is ploted against the wave number k, defined here as $1 / \lambda$.

Figure 5.9 High-resolution near-infrared spectrum of the embedded stellar source SSV 13. The structure of the $v=2 \rightarrow 0$ band head in ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ is evident. The smooth curve is from a theoretical model that employs an isothermal slab at 3500 K . Note that the spectrum here represents only a portion of the R-branch.
\qquad

Each species has a different set of excitation conditions (density, temperature; cf. Boltzmann equation)

Different molecules/isotopes serve as tracers of these conditions, e.g., C180 traces denser parts of a cloud than 12CO does; NH3 maps the dense cores where protostars are located.

Myers et al. 1991

$\bigcirc=$

Frerking et al. (3B987)

Star formation is not an isolated event. Massive stars in particular may trigger the birth of next-generation stars \rightarrow triggered star formation
... also possible by stellar jets, Galactic density waves, cloud-cloud collisions ...

Luminous stars \rightarrow photoionization of a nearby cloud

\rightarrow Radiative driven implosion

Figure 2. An illustration of a massive star to trigger star formation in a nearby molecular cloud.

Luminous stars \rightarrow photoionization/winds on a surrounding cloud \rightarrow Collect and collapse

Size Scales for Star Formation.

Object	log size scale [cm]
Galactic spiral arm	22
Giant molecular cloud	20
Molecular dense core	17
Protostellar accretion disk	15
Protostar	11

Mass Inventory in a Star-Forming Galaxy

Component	$\log \mathrm{M}\left[\mathrm{M}_{\odot}\right]$
Molecular clouds	9
H_{2}	9
He	8
CO	7
Young stars	5

Properties of Giant Molecular Clouds

Diameter $[\mathrm{pc}]$	Mass $\left[\mathrm{M}_{\odot}\right]$	Density $\left[\mathrm{cm}^{-3}\right]$	T $[\mathrm{K}]$	Velocity Width $[\mathrm{km} / \mathrm{s}]$
$20-100$	$10^{5}-10^{6}$	$10-300$	$10-30$	$5-15$

Myers in You \& Yuan (1995), p. 47

Exercise

1. What is the BN object (why is it called an "object")? What is its brightness, distance, luminosity, and mass (how are these known)?
2. Answer the same for the KL object. What is the relation between the two?
3. There is a class of objects called the "Herbig-Haro objects". What are they?
4. "Quasi-Stellar Objects (QSOs)

Cloud Stability --- The Virial Theorem

Moment of Inertia $\quad I=\int r^{2} d m=\sum_{i} m_{i} r_{i}^{2}$

$$
\begin{aligned}
\frac{d^{2} I}{d t^{2}} & =\frac{d^{2}}{d t^{2}}\left(m r^{2}\right) \cdots(\text { if } \dot{m}=0) \cdots \\
& =2 m \frac{d}{d t}(r \dot{r})=2 m\left(\dot{r}^{2}+r \dot{r}\right)
\end{aligned}
$$

To be stable, $\mathrm{LHS}=0$

$$
2 E_{K}+E_{P}=0 \longleftarrow 2(1 / 2) m v^{2}=G M / r
$$

Virial Mass

MASS, LUMINOSITY, AND LINE WIDTH RELATIONS OF GALACTIC MOLECULAR CLOUDS

We present measurements of the velocity line width, size, virial mass, and CO luminosity for 273 molecular clouds in the Galactic disk between longitudes of 8° and 90°. These are obtained from three-dimensional data in the Massachusetts-Stony Brook CO Galactic Plane Survey. From an analysis of these measurements we show that the molecular clouds are in or near virial equilibrium and are not confined by pressure equilibrium with a warm or hot phase of interstellar matter. The velocity line width is shown to be proportional to the 0.5 power of the size, $\sigma_{v} \propto S^{0.5}$. Combined with virial equilibrium, this shows that the clouds are characterized by a constant mean surface density of $170 M_{\odot} \mathrm{pc}^{-2}$ and have a mass $M \propto \sigma_{v}^{4}$. A tight relationship, over four orders of magnitude, is found between the cloud dynamical mass, as measured by the virial theorem, and the CO luminosity $M \propto\left(L_{C o}\right)^{0.81}$. This relationship establishes a calibration for measuring the total molecular cloud mass from CO luminosity for individual clouds and for the Galactic disk. The cloud CO luminosity is $L_{\mathrm{CO}} \propto \sigma_{v}^{5}$, which is the molecular cloud analog of the Tully-Fisher or Faber-Jackson law for galaxies
The mass-luminosity law is accounted for by a cloud moder consisting of a large number of optically thick clumps in virial equilibrium, each with a thermal internal velocity dispersion, bs is of clouds effectively optically thin at a fixed velocity along the line of sight. The typical clump mass is of order a stellar mass and approximately equal to the Jeans mass at the clump density and thermal velocity dispersion

$$
\text { TABLE } 1
$$

Galactic First Quadrant Molecular Cloud Catalog

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
No.	$T_{\min }-I$	l_{p}	b_{p}	v_{p}	T_{p}	R	D	z	σ_{ℓ}	σ_{b}	σ_{v}	$L_{c o} / 10^{4}$	$M_{v x} / 10^{4}$	Flag

	(K)	(Deg.)	(Deg.)	$\left(\mathrm{km} \cdot \mathrm{s}^{-1}\right)$	(K)	(kpc)	(kpc)		(Deg.)	(Deg.)	$\left(\mathrm{km} \cdot \mathrm{s}^{-1}\right.$	$\left(\mathrm{K} \cdot \mathrm{km} \cdot \mathrm{s}^{-1} \cdot \mathrm{pc}^{2}\right)$	$\left(\mathrm{M}_{\odot}\right)$	
1	4-3	8.00	-0.50	128.	5.7	1.4	10.1	-89.	0.06	0.07	4.4	7.27	44.4	T
2	5-3	8.20	0.20	20.	10.2	6.2	15.9	56.	0.17	0.21	4.1	140.2	176.3	F,V
3	4-4	8.30	0.00	3.	5.7	4.0	6.2	0.	0.40	0.11	3.8	22.6	65.4	X
4	4-5	8.30	-0.10	48.	8.2	3.6	13.2	-23.	0.05	0.05	2.2	5.02	11.1	F,U
5	5-6	8.40	-0.30	37.	17.0	4.4	5.7	-30.	0.32	0.15	3.9	23.3	66.5	N,H

FIG. 1.-Molecular cloud velocity dispersion $\sigma(v)$ as a function of size S (defined in text) for 273 clouds in the Galaxy. The solid circles are calibrator clouds with known distances and the open circles are for clouds with the near-far distance ambiguity resolved by the method discussed in the text. The fitted line is $\sigma(v)=S^{0.5} \mathrm{~km}$ s^{-1}. For virial equilibrium the 0.5 power law requires clouds of constant average surface density.

$$
\begin{gathered}
\text { LHS }=0 \rightarrow \text { stable } \\
\text { LHS }<0 \rightarrow \text { collapsing } \\
\text { LHS }>0 \rightarrow \text { expanding } \\
\mathrm{E}_{\mathrm{K}}
\end{gathered}
$$

- Kinetic energy of molecules
- Bulk motion of clouds
- Rotation
...
,

$$
\mathrm{E}_{\text {total }}=\mathrm{E}_{\mathrm{K}}+\mathrm{E}_{\mathrm{P}}
$$

- Gravitation
- Magnetic field
- Electrical field
- ...

$$
\mathrm{E}_{\text {total }}=\mathrm{E}_{\mathrm{K}}+\Omega \text { (mostly) }
$$

Cloud of mass M, radius R, rotating at ω

$$
E_{\text {rot }}=\frac{1}{2} I \omega^{2} \quad I=\frac{2}{5} M R^{2} \quad \Omega=-\frac{3}{5} \frac{G M^{2}}{R}
$$

Generalized virial theorem

$$
\left.\frac{1}{2} \frac{d^{2} I}{d t^{2}}=2<E_{K}\right\rangle+\int \vec{r} \cdot \vec{F} d m+3 \int P d V-\oint P \vec{r} \cdot d \vec{s}
$$

If $\omega=0$, and $P_{\text {ext }}=0 \quad 2 \cdot \frac{3}{2} \frac{M}{\mu m_{H}} k T-\frac{3}{5} \frac{G M^{2}}{R}=0$
$R_{J}=\frac{1}{5} \frac{G M \mu m_{H}}{k T}$ This is the Jeans length.
$\mu \approx 2.37$ for solar abundance with H_{2}

Jeans length $=$ critical spatial wavelength
If perturbation length scale is longer
\rightarrow Medium is decoupled from self-gravity \rightarrow stable

$$
\begin{gathered}
M_{J}=\frac{4}{3} \pi R_{J}^{3} \rho \\
R_{J}=\left(\frac{15}{4 \pi} \frac{k T}{\mu m_{H} G \rho}\right)^{1 / 2} \sim \sqrt{\frac{T}{\rho}} \\
M_{J}=\left(\frac{\pi k T}{4 \mu m_{H} G}\right)^{3 / 2} \sqrt{\frac{1}{\rho}} \sim \frac{T^{3 / 2}}{\rho^{1 / 2}}
\end{gathered}
$$

This is the Jeans mass ... the critical mass for onset of gravitational collapse
If cloud mass $M>M_{\text {Jeans }} \rightarrow$ cloud collapse Note the above does not consider external pressure, or other internal supporting mechanisms.

A non-magnetic, isothermal cloud in equilibrium with external pressure \rightarrow a Bonnor-Ebert sphere (Bonnor 1956, Ebert 1955)

$$
2 E_{K}+E_{P}-3 P_{\mathrm{ext}} V=0
$$

The potential term can include, other than the gravitational force, also rotation, magnetic field, etc.

At first, the cloud is optically thin.
Contraction \rightarrow density $\uparrow \rightarrow$ collisions more frequent \rightarrow molecules excited and radiated \rightarrow radiation escapes
\rightarrow cooling \rightarrow less resistance to the contraction
\rightarrow collapse (free fall)
$R_{J} \approx c_{S} \tau_{\mathrm{ff}}=[$ isothermal sound speed $] *[$ free fall time $]$

A spherical symmetric gas cloud with temperature T and external pressure P
For one particle, $\quad F_{i}=m_{i} \ddot{r}_{i} \leftarrow \frac{\partial}{\partial r}$

$$
\begin{aligned}
m_{i} r_{i} \cdot \ddot{r}_{i} & =m_{i} \frac{d}{d t}\left(\dot{r}_{i} \cdot r_{i}\right)-m_{i} \dot{r}_{i} \cdot \dot{r}_{i} \\
& =\frac{1}{2} m_{i} \frac{d^{2}}{d t^{2}}\left(r_{i}^{2}\right)-m \dot{r}_{i}^{2}
\end{aligned}
$$

Summing over all particles

$$
\frac{1}{2} \frac{d^{2}}{d t^{2}}\left[\sum_{i} m_{i} r_{i}^{2}\right]-2 \sum_{i} \frac{1}{2} m_{i} \dot{r}_{i}^{2}=\sum_{i} r_{i} F_{i}
$$

Moment of inertial

> Kinetic energy

To maintain $2 E_{K}+E_{P}=0$, the total energy $E_{t}=E_{K}+E_{P}$ must change. The gravitational energy

$$
\Omega \sim-\frac{G M^{2}}{r} \rightarrow d \Omega \sim \frac{d r}{r^{2}}
$$

For contraction, $\mathrm{d} r<0$, so $\mathrm{d} \Omega<0 \rightarrow$ Then $\mathrm{d} E_{t}=\mathrm{d} E_{K}+\mathrm{d} \Omega=1 / 2 \Omega=L \Delta t$

This means to maintain quasistatic contraction, half of the gravitation energy from the contraction is radiated away.

Eventually the cloud becomes dense enough (i.e., optically thick) and contraction leads to temperature increase.

The cloud's temperature increases while energy is taken away \rightarrow negative heat capacity

- H I clouds
$R_{\mathrm{J}} \approx 25 \mathrm{pc} ; M_{\mathrm{J}} \approx 120 \mathrm{M}_{\odot}>M_{\mathrm{obs}}$
So H I clouds are not collapsing.
- Dark molecular clouds
$M_{\mathrm{obs}} \approx 100-1000 \mathrm{M}_{\odot}>M_{\mathrm{J}} \approx 10 \mathrm{M}_{\odot}$
So H_{2} clouds should be collapsing. But observations show that most are not.
\rightarrow There is additional support other than the thermal pressure, e.g., rotation, magnetic field, turbulence, etc.

Roughly, the requirement for a cloud to be gravitational stable is

$$
\left|E_{\text {grav }}\right|>E_{\text {th }}+E_{\text {rot }}+E_{\text {turb }}+E_{\text {mag }}+\ldots
$$

For a spherical cloud, $E_{\text {grav }}=-C_{\text {grav }} G M^{2} / R$, where $C_{\text {grav }}$ is a constant depending on the mass distribution ($=3 / 5$ for uniform density).
The thermal energy, $E_{\text {th }}=\frac{3}{2} \frac{m}{\mu m_{H}} k_{B} T$, where μ is the mean molecular weight of the gas in atomic mass units.

The rotational energy $E_{\text {rot }}=C_{\text {rot }} M R^{2} \omega^{2}$, where $C_{\text {rot }}$ depends on the mass distribution and is $1 / 5$ for uniform density; ω is the (assumed) uniform angular velocity.
The turbulent kinetic energy $E_{\text {turb }}=\frac{1}{2} M \sigma^{2}$, where σ is the mean turbulent velocity.
The magnetic energy $E_{\text {mag }}=\frac{1}{8} \int B^{2} \mathrm{~d} V \approx \frac{1}{6} B^{2} R^{3}$, where B is the uniform magnetic field.

For rotational support to be important,

$$
\frac{3}{5} \frac{G M}{R}=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{2}{5} M R^{2}\right)\left(\frac{v_{\text {crit }}}{R}\right)^{2}=\frac{1}{5} M v_{\text {crit }}^{2}
$$

So $v_{\text {crit }}=(3 G M / R)^{1 / 2}$, where $v_{\text {crit }}$ is the critical rotation velocity at the equator.

Numerically, $v_{\text {crit }}=0.11\left[\frac{M}{M_{\odot}} \frac{\mathrm{pc}}{R}\right]^{1 / 2}[\mathrm{~km} / \mathrm{s}]$
For HI clouds, $v_{\text {crit }}=0.11\left[\frac{50}{2.5}\right]^{1 / 2} \approx 0.5[\mathrm{~km} / \mathrm{s}]$
Typically, $\omega \approx 10^{-16} \mathrm{~s}^{-1}$, so $v \approx 0.01$ to $0.1[\mathrm{~km} / \mathrm{s}]$
Clouds are generally not rotationally supported.

Measuring the ISM Magnetic Fields

Method	Medium	Info	
Polarization of starlight	Dust	B_{\perp}	
Zeeman effect	Neutral hydrogen; a few mol. lines	$B_{\\|}$	
Synchrotron radiation	Relativistic electrons	B_{\perp}	
Faraday rotation	Thermal electrons	$B_{\\|}$	

The Zeeman effect is the only technique for direct measurements of magnetic field strengths.

Polarization of Starlight

Crutcher RM. 2012.
Annu. Rev. Astron. Astrophys. 50:29-63

Organized magnetic field morphology in the Taurus darkcloud complex superposed on a ${ }^{13} \mathrm{CO}$ map (Chapman et al. 2011). Blue lines show polarization measured at optical wavelengths and red lines show near-IR (Hband and I-band) polarization.

Dichroic extinction by dust (optical and near-IR) $\vec{P} \| \vec{B}$

Interstellar Polarization

Mathewson \& Ford (1970)

Fig. 6.-HERTZ polarization map of M17 at $350 \mu \mathrm{~m}$. All of the polarization vectors shown have a polarization level and error such that $P>3 \sigma_{P}$. Circles indicate cases where $P+2 \sigma_{P}<1 \%$. The contours delineate the total continuum flux (from 10% to 90% with a maximum flux of $\approx 700 \mathrm{Jy}$), whereas the underlying gray scale gives the polarized flux according to the scale on the right. The beam width $\left(\simeq 20^{\prime}\right)$ is shown in the lower left corner and the origin of the map is at R.A. $=18^{\mathrm{h}} 17^{\mathrm{m}} 31 \leqslant 4$, decl. $=$ $-16^{\circ} 14^{\prime} 25^{\prime \prime} 0$ (B1950.0).

Fig. 11.- Orientation of the magnetic field in M17. The orientation of the projection of the magnetic field in the plane of the sky is shown by the vectors and the viewing angle is given by the length of the vectors (using the
scale shown in the bottom right corner). The contours and the gray scale delineate the total continuum flux. The beam width $\left(\approx 20^{\circ}\right)$ is shown in the lower left corner, and the origin of the map is at R.A. $=18^{\mathrm{h}} 17^{\mathrm{m}} 3154$, decl. $=-16^{\circ} 1425 \%($ B1950.0 $)$

Thermal emission by dust (far-IR, and smm) $\vec{P} \perp \vec{B}$

$\Delta v_{\mathrm{B}}[\mathrm{Hz}]=1.40 \times 10^{10} \mathrm{~g} \mathrm{~B}[\mathrm{~T}]$
$\Delta \lambda_{\mathrm{B}}[\mathrm{nm}]=4.67 \times 10^{-8} g\left(\lambda_{0}[\mathrm{~nm}]\right)^{2} \mathrm{~B}[\mathrm{~T}]$
g : Landé or g factor $(L, S, J) \sim 1$
Ex: B = 0.1 T (1 kG) for a typical sunspot, at $500 \mathrm{~nm}, g=1$
\rightarrow wavelength shift $0.001 \mathrm{~nm} \approx$ natural line width
\rightarrow difficult to measure

Astron. Astrophys. 125, L 23-L 26 (1983)

Letter to the Editor

The magnetic field of the NGC 2024 molecular cloud: detection of $\mathbf{O H}$ line Zeeman splitting

Richard M. Crutcher ${ }^{1,2}$ and Ilya Kazès ${ }^{1}$
${ }^{1}$ Department de Radioastronomie, Observatoire de Paris-Meudon, F-92195 Meudon, France
${ }^{2}$ Department of Astronomy, University of Illinois, Urbana, IL 61801, USA

Zeeman splitting of the main lines of OH in absorption has been detected for the first time. The derived magnetic field for a clump in the NGC 2024 molecular cloud is -38 ± 1 microgauss.

Faraday Rotation --- rotation of the plane of polarization when light passes through a magnetic field

Circularly polarized light $\rightarrow E$ field rotates \rightarrow force on the charged particles to make circular motion \rightarrow creating its own B field, either parallel or in opposite direction to the external field \rightarrow phase difference \rightarrow Change of position angle of the linear polarization

Faraday rotation angle $\beta=R M \lambda^{2}$ where the rotation measure (RM) is $\mathrm{RM}=\frac{e^{3}}{2 \pi m^{2} c^{4}} \int_{0}^{d} n_{e}(s) B_{\|}(s) \mathrm{d} s$

Galactic Longitude
Figure 3. A smoothed representation of 2257 Faraday rotation measures in Galactic coordinates with the Galactic center at (0,0). (Kronberg \& Newton-McGee, [3]). Blue and red circles represent positive and negative RM's respectively, and the circle size is proportional to RM strength.
http://ned.ipac.caltech.edu/level5/Sept10/Kronberg/Figures/figure3.jpg

For magnetic support to be important,

$$
\frac{3}{5} \frac{G M^{2}}{R}=\frac{B^{2}}{8 \pi}\left(\frac{4}{3} \pi R^{3}\right)=\frac{1}{6} B^{2} R^{3}
$$

So, $M \propto B R^{2}$, and since $M \propto \rho R^{3}$, we get $\mathrm{R} \propto \frac{B}{\rho}$
The magnetic Jeans mass becomes

$$
M_{\text {Jeans }}^{B} \propto B R^{2} \propto B^{3} / \rho^{2}
$$

Numerically, $M_{\text {Jeans }}^{B} \approx 2.4 \times 10^{4} B_{\mu \mathrm{G}}^{3} n_{H}^{-2}\left[M_{\odot}\right]$
and $B_{\text {crit }}=0.1 \frac{M}{M_{\odot}}\left(\frac{\mathrm{pc}}{R}\right)^{2}[\mu \mathrm{G}]$

If the magnetic flux is conserved, $\boldsymbol{B} \propto \frac{1}{R^{2}}$
Because $M \propto R^{3} \rho=$ constant, the frozen-in (i.e., flux conservation) condition would have led to $\boldsymbol{B} \propto R^{-2} \sim \rho^{2 / 3}$

If flux is conserved, \boldsymbol{B}_{0} (ISM) $\sim 10^{-6}$ [G]

$$
R_{0} \approx 0.1[\mathrm{pc}] \rightarrow R=R_{\odot} \rightarrow \boldsymbol{B} \approx 10^{7}[\mathrm{G}]
$$

But what has been actually observed is

$$
\boldsymbol{B} \propto \rho^{1 / 3} \text { to } \rho^{1 / 2}
$$

Implying magnetic flux loss.

We present an updated compilation of observational data concerning the relationship between the interstellar magnetic field strength and the gas density. Pulsar and Zeeman-effect data provide the only reliable stellar magnetic field strength and the gas density. Pulsar and Zeeman-effect data provide the only reliable Field strengths show no evidence of increase over the density range $0.1-\sim 100 \mathrm{~cm}^{-3}$. At higher densities, a Field strengths show no evidence of increase over the density range $0.1-\sim 100 \mathrm{~cm}$. At higher densities, a
modest increase in field strength is observed in some regions, in line with theoretical expectations for selfmodest increase in field strength is observed in some regions, in line with theoretical expectations for self-
gravitating clouds. In two regions of the interstellar medium, the magnetic field is unusually high; however gravitating clouds. In two regions of the interstellar medium, the magnetic field is unusually high; however,
these are not locales where self-gravitation is important. Despite the consistency between observations and these are not locales where self-gravitation is important. Despite the consistency between observations and
theory, questions still exist about how the magnetic field strength remains constant for densities up to $\sim 100 \mathrm{~cm}^{-3}$. Further Zeeman effect studies and a better theoretical understanding of the formation of interstellar clouds and complexes will be necessary to answer these questions.


```
A&A 484, 773-781 (2008)
DOI: 10.1051/0004-6361:200809447
```

A new probe of magnetic fields during high-mass star formation
Zeeman splitting of 6.7 GHz methanol masers ${ }^{\text {* }}$
W. H. T. Vlemmings

Argelander Institute for Astronomy, University of Bonn, Auf dem Hagel 71, 53121 Bonn, Germany
Received 24 January 2008 / Accepted 30 March 2008
Abstract
Context. The role of magnetic fields during high-mass star formation is a matter of fierce debate, yet only a few direct probes of magnetic field strengths are available.
fims. The magnetic field is detected in a number of massive star-forming regions through polarization occurving during high-mass star formation, most magnetic field measurements in the high-density gas currently come from OH and $\mathrm{H}_{2} \mathrm{O}$ maser observations.
Methods. The $100-\mathrm{m}$ Effelsberg telescope was used to measure the Zeeman splitting of 6.7 GHz methanol masers for the first time. The observations were performed on a sample of 24 bright northem maser sources Results. Significant Zeeman splitting is detected in 17 of the sources with an average magnitude of $0.56 \mathrm{~m} \mathrm{~s}^{-1}$ Using the current best estimate of the 6.7 GHz methanol maser Zeeman splitting coefficient and a geometrical correction, this corresponds to an absolute magnetic field strength of 23 mG in the methanol maser region: Conclusions. The magnetic field is dynamically important in the dense maser regions. No clear relation is found with the available OH maser magnetic field measurements. The general sense of direction of the magnetic field is consistent with other Galactic magnetic field measurements, although a few of the masers display a change of splittion provides the erent maser features. Due to the abundance or methan masers, measuring their Zeen forming regions.
\vec{B} confines motion of charged particles.
Molecular clouds \rightarrow most neutral with only a tiny fraction of particles; ionized by cosmic rays or by natural radioactivity

$=$ decoupling of neutral particles from plasma in the initial stage of star formation

\rightarrow 1. leakage of \vec{B}

2. charged particles escaped from magnetic poles (ampipolar diffusion=plasma drift)

$$
\left.\begin{array}{l}
\text { If } \boldsymbol{\mathcal { M }}_{\text {cloud }}>\boldsymbol{\mathcal { M }}_{\text {crit }} \rightarrow \underline{\text { supercritical }} \rightarrow \\
\\
\text { If } \boldsymbol{\mathcal { M }}_{\text {cloud }}<\boldsymbol{\mathcal { M }}_{\text {crit }} \rightarrow \underline{\text { Cloud will collapse dynamically }} \\
\\
\rightarrow \text { Massive star formation }
\end{array}\right] \text { Cloud collapses, if ever, quasi-statically }
$$

Clouds tend to condense with $\mathcal{M} \sim 10^{4} M_{\odot}$, but observed stellar mass ranges $0.05 \leq \mathcal{M} / M_{\odot} \leq 100$

Why is there a lower mass limit and an upper mass limit for stars?
Cloud collapse \rightarrow (local) density increase \rightarrow (local) M_{J} decrease \rightarrow easier to satisfy $M>M_{\mathrm{J}}$, i.e., cloud becomes more unstable
\rightarrow fragmentation
Formation of a cluster of stars $\sim \sim$

Recall Jeans mass $M_{J} \approx 1.2 \times 10^{5}\left(\frac{T}{100 K}\right)^{3 / 2}\left(\frac{\rho_{0}}{10^{-24} \mathrm{~g} \mathrm{~cm}^{-3}}\right)^{-1 / 2} \frac{1}{\mu^{3 / 2}}\left[M_{\odot}\right]$

$$
\propto T^{2 / 3} /_{\rho^{1 / 2}}
$$

If during collapse, $M_{J} \downarrow \rightarrow$ subregions become unstable and continue to collapse to smaller and smaller scales (fragmentation).

Since during collapse ρ always \uparrow, the behavior of M_{J} depends on T. If gravitational energy is radiated away, i.e., $\tau_{\text {cooling }} \ll \tau_{\mathrm{ff}}$ and collapse is isothermal, $T=$ const, so $M_{J} \propto \rho^{-1 / 2} \rightarrow$ collapse continues

However, once the isothermal condition is no longer valid, e.g., when the cloud becomes optically thick, the collapse is adiabatical.

$$
T \propto P^{2 / 5} \propto \rho^{2 / 3}
$$

So $M_{J} \propto \frac{\rho}{\rho^{1 / 2}}=\rho^{1 / 2}$, i.e., grows with time (ever more difficult to overcome/collapse), so the collapse halts

For a monatomic idea gas, the adabatic index

$$
\begin{aligned}
& \gamma \equiv c_{p} / c_{v}=\frac{f+2}{f}=5 / 2 / 3 / 2=5 / 3 \\
& \mathrm{P} V^{\gamma}=\text { const; } \mathrm{T}^{\gamma-1}=\text { const } ;
\end{aligned}
$$

Equation of motion for a spherical surface at r is

$$
\frac{d^{2} r}{d t^{2}}=-\frac{G m}{r^{2}}
$$

with initial condition $r(0)=r_{0}, \frac{d r}{d t}(0)=0, m=4 \pi r_{0}{ }^{3} \rho_{0} / 3$.
Multiplying both sides by $d r / d t$, and since $\frac{d}{d t}\left(\frac{d r}{d t}\right)^{2}=2 \frac{d r}{d t} \frac{d^{2} r}{d t^{2}}$,

$$
\frac{d}{d t}\left(\frac{d r}{d t}\right)^{2}=-\frac{2 G m}{r^{2}} \frac{d r}{d t}
$$

Integrating both sides, we get

$$
\left(\frac{d r}{d t}\right)^{2}=2 G m\left(\frac{1}{r}-\frac{1}{r_{0}}\right)
$$

Substituting m, we get

$$
\frac{d r}{d t}=-\left[\frac{8 \pi G \rho_{0} r_{0}^{2}}{3}\left(\frac{r_{0}}{r}-1\right)\right]^{\frac{1}{2}}
$$

Define a new variable θ, so that $r(t)=r_{0} \cos ^{2} \theta,(\theta=0$ at $t=0)$ then

$$
\frac{d \theta}{d t} \cos ^{2} \theta=\frac{1}{2}\left(\frac{8 \pi G \rho_{0}}{3}\right)^{1 / 2}
$$

Integrating this, we obtain $\theta+\frac{1}{2} \sin 2 \theta=\left(\frac{8 \pi G \rho_{0}}{3}\right)^{1 / 2} t$
The free-fall time is when $\theta=\pi / 2, \quad t_{\mathrm{ff}}=\left(\frac{3 \pi}{32 G \rho_{0}}\right)^{\frac{1}{2}}=\frac{3.4 \times 10^{7}}{\sqrt{n_{0}}}[\mathrm{yr}]$
Bodenheimer p. $34 \quad$... when density becomes ∞ for all m.

Figure 12.5 The ratio of the radius relative to its initial value as a function of time for the homologous collapse of a molecular cloud. The collapse is assumed to be isothermal, beginning with a density of $\rho_{0}=2 \times 10^{-16} \mathrm{~g} \mathrm{~cm}^{-3}$.

Figure 12.6 The ratio of the cloud's density relative to its initial value as a function of time for the isothermal, homologous collapse of a molecular cloud with an initial density of $\rho_{0}=2 \times 10^{-16} \mathrm{~g} \mathrm{~cm}^{-3}$.

Note that $t_{\mathrm{ff}} \propto \frac{1}{\sqrt{G \rho_{0}}}$ has no dependence on r_{0}.
If ρ_{0} is uniform, all m collapse to the center at the same time
\rightarrow homologous collapse

If ρ_{0} is somewhat centrally condensed, as observed, e.g., $\rho_{0} \propto r^{-1}$ to r^{-2}, inner region (small r), $t_{\text {ff }} \downarrow \downarrow$
\rightarrow inside-out collapse

$$
\begin{aligned}
& \text { Gravitational energy a available } E_{G} \sim \frac{G M^{2}}{\beta} \\
& \text { which is released during the orntraction } \\
& 08 \text { made } M \text { from } \infty \text { to } P \\
& t_{K H} \sim \frac{G H^{2}}{R} / \angle \sim R^{-3}\left(\because \angle \sim R^{2} T_{1}^{4}\right) \\
& t_{f f} \sim \frac{1}{\sqrt{G p}} \sim R^{3 / 2} \quad \text { cost } \\
& \text { For an object already on the main sequence } \\
& t_{f f} \ll t_{\mathrm{KH}} \\
& \text { Ex. For } 1 \mathrm{Mo}_{0}, 1 \angle 0 \quad t_{f f} \sim 10^{4} \mathrm{rr} \\
& t_{\mathrm{KH}} \sim 2 \times 10^{7} \text { yr } \quad \mathrm{t}_{\mathrm{ff}} \ll \mathrm{t}_{\mathrm{KH}} \\
& \therefore \text { When } R \geqslant 300 R_{0} t_{f f} \gtrsim t_{\mathrm{KH}} \\
& \Rightarrow \text { protostellan collapse is a dynamical process. } \\
& \tau_{\mathrm{ff}} \sim 66120 / \sqrt{\rho}_{\mathrm{MKS}} \sim 35 / \sqrt{\rho}_{\text {cgi }}[\mathrm{min}]
\end{aligned}
$$

Free-Fall Collapse

$$
m \frac{d^{2} r}{d t^{2}}=\frac{G M m}{r^{2}}
$$

Dimension analysis

$$
\begin{aligned}
& \frac{\frac{R}{t^{2}} \sim \frac{G M}{R^{2}} \Rightarrow t_{f f} \sim \frac{1}{\sqrt{G \rho}}}{\text { or }} \frac{4.3 \times 10^{7}}{\sqrt{n_{N_{0}}}}\left[\begin{array}{rrr}
\\
2 E_{K}+E_{P}=\cdots & <0
\end{array}\right. \\
& t_{s}=\frac{R}{v_{\text {sound }}} \sim \frac{1}{\sqrt{G \rho}}, \quad v_{s} \sim \sqrt{\frac{R T}{\mu}} \\
& \begin{array}{l}
\text { 1.9. } \rho \sim 10^{3} \times 1.6 \times 10^{-24}, \quad t_{f f} \sim \frac{1}{\sqrt{6.6 \times 10^{-8} \times 10^{-21}}} \sim 3 \times 10^{6} \times r \\
\text { In reality }
\end{array} \\
& \text { In reality, } \rho \uparrow \text { as } r \notin \text { (iss., density concentration } \\
& \therefore t_{f f} \text { shorter for smaller } r \\
& \Rightarrow \text { collapse proceeds in an inside-out fashion. }
\end{aligned}
$$

Recall the relation between a circular motion and a simple harmonic motion.

Acceleration to the center
Time scale $=1 / 4$ period

Applications:

- Gas in a collapsing cloud
- Stars in a globular cluster
- Galaxies in a galaxy cluster

Exercise

1. For a the sun, i.e., a mass $\mathcal{M}=1 \mathcal{M}_{\odot}$, a luminosity $\mathcal{L}=1 \mathcal{L}_{\odot}$, and a radius $\mathcal{R}=1 \mathcal{R}_{\odot}$, compute the free-fall time scale τ_{ff} and the KevinHelmholtz time scale $\tau_{\mathrm{KH}} \approx G \mathcal{M}^{2} / R L$. Which time scale is longer?
2. Note that both time scales have different dependence on the size scale. At what size, do the two time scales equal?

Ann. Rev. Astron. Astrophys. 1987. 25: 23-81
STAR FORMATION IN
$\stackrel{\sim}{\subsetneq}$ MOLECULAR CLOUDS: OBSERVATION AND THEORY

Frank H. Shu, Fred C. Adams, and Susana Lizano
Astronomy Department, University of California, Berkeley, California 94720

Figure 7 The four stages of star formation. (a) Cores form within molecular clouds as
magnetic and turbulent support is lost through ambipolar diffusion. (b) A protostar with a
surrounding nebular disk forms at the center of a cloud core collapsing from inside-out. (c) A stellar wind breaks out along the rotational axis of the system, creating a bipolar flow

A TWO MICRON POLARIZATION SURVEY OF T TAURI STARS
Motohide TAMURA ${ }^{\text {a }}$
Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606, Japan
Department of Astronomy, University of Massachusetts, Amherst, Massachusetts 01003
Shul Sate
National Astronomical Observatory, Mitaka, Tokyo 181, Japan
Received 30 September 1988; revised 23 May 1989

Fig. 2. Polarization map at optical (thin vectors) and at infrared (thick vectors) towards background stars in the Taurus dark cloud complex, compiled from the data in the literature (Monet et al. 1984; Hsu 1984; Hexer et al. 1987; Tamera et al. 1987).

Evolution from a circumstellar toroid (geometrically thick) to a disk; opening angle of the outflow widened

[^0]
Data cube

 (sky position and frequency)

FiG. 5.-A schematic picture of the stellar wind driven shock model for L1551, indicating the CO line profiles which would be expected at different positions across the source. The Herbig-Haro objects are not necessarily located inside the shell; because of their high veloc
ities, they may have been ejected through the shell and into the surrounding medium.

Figure 4 Superposition of a gray-scaled image of the HH 211 jet taken in the $\mathrm{H}_{2} v=1-0 \mathrm{~S}(1)$ line at $2.122 \mu \mathrm{~m}$ (from McCaughrean et al 1994) with a $\mathrm{NH}_{3}(1,1)$ image obtained with the VLA at its D configuration (6 angular resolution) (R Bachiller \& M Tafalla 1995, unpublished data). The star marks the position of the jet source HH $211-\mathrm{mm}$ (see also Table 1),

Molecular Hydrogen Objects (MHOs) 1000+ now known

Infrared image of molecular bow shocks (MHO 27) associated with bipolar outflows in Orion. Credit: UKIRT/Joint Astronomy Centre

Spectral Energy Distribution

SED for 2MASS 08093547-4913033, with that of an M5 star (Young et al. 2004, ApJS, 154, 428)
\Rightarrow clear line-of-sight \Rightarrow disk or thin shell

Exciting source of an
HH object = protostar

Fig. 6. The energy distribution of the infrared source of HH83 based on nearand far-infrared photometry. Error bars are shown for the near-infrared data points where the errors are larger than the extent of the crosses. No error bars are given for the far-infrared IRAS data

Accretion Disks

- Found in YSOs, supermassive BHs in AGB, binaries, Saturnian rings
- Turbulent viscosity important
- generating heat
- transporting angular momentum outwards
- transporting matter inwards

Fact: The Sun has $>99 \%$ of the total mass in the solar system, but accounts for $\sim 3 \%$ of the total angular momentum (rotation), whereas Jupiter's orbital angular moment accounts for 60%.
Fact: Outer planets rotate fast (thus are flattened.)

Exercise

1. Compare the angular momenta of the Sun, Jupiter, and Earth.
2. What is the specific angular momentum of the Earth versus Jupiter?
3. How round (or flat) is the shape of the Earth, of Jupiter, and of the Sun?
http://www.zipcon.net/~swhite/docs/astronomy/Angular_Momentum.html

Water and carbon dioxide in solid form
\rightarrow cold materials near the protostar

T Tauri stars (= PMS sun-like stars) are seen against dark nebulosity and characterized by emission-line spectra.

Figure 2 Medium resolution spectrograms covering the spectral range $3200-8800 \AA$ of four late-K or early-M T Tauri stars, shown in order of increasing emission levels. The relative intensity is displayed in wavelength units.

(

Fie. 3a. Spectrum of T Tau and of \& Tau, a standard star of the same temperature.

P Cygni profile \rightarrow A spectral profile showing an expanding envelope

T Tauri stars also show infrared excess in the SEDs.

... and also UV excess
\rightarrow spectral "veiling"

Figure 3 Observed spectral energy distributions from $3600 \AA$ to $100 \mu \mathrm{~m}$ of the stars whose spectra are shown in Figure 2. The energy distribution of the K7V WTTS TAP 57, shown
spectra are shown in Figure 2. The energy distribution of the K7V WTTS TAP 57, shown
as a solid line, has been displaced downward by 0.3 dex. The filled symbols are simultaneous
(for DN Tau and DF Tau) or averaged (for DR Tau) photometric data (ef. Bertout et al.
1988) supplemented by IRAS data (Rucinski 1985). When available, observed variability is
indicated by error bars. When compared with WTTSs such as TAP 57, CTTSs display
prominent ultraviolet and infrared excesses. Excess continuum fux and optical emission-line
activity are often correlated.

Appenzeller (1g83) RMAA

CS Cha K4Ve CTTS

Figure 2. CS Cha SED. The ISO measurements are shown by stars. The two arrows denote upper limits from ISO observations. Filled ments at 60 and 100 . photosphere; the dotted curve the model prediction for a standard reprocessing disk seen face-on.

Spectral index useful to classify a young stellar object (YSO)

$$
\begin{array}{ll}
\alpha=\frac{d \log \left(\lambda F_{\lambda}\right)}{d \log (\lambda)} & \text { Where } \lambda=\text { wavelength, between } \\
2.2 \text { and } 20 \mu \mathrm{~m} ; \mathrm{F}_{\lambda}=\text { flux density }
\end{array}
$$

Class 0 sources --- undetectable at $\lambda<20 \mu \mathrm{~m}$
Class I sources --- $\alpha>0.3$
Flat spectrum sources --- $0.3>\alpha>-0.3$
Class II sources --- $0.3>\alpha>-1.6$
Class III sources --- $\alpha<-1.6$
\rightarrow Evolutionary sequence in decreasing amounts of circumstellar material (disk clearing)

T Tauri stars are PMS objects, contracting toward the zero-age main sequence (ZAMS).

Figure f Position in the Hertusprung-Russell diagram of all CTTSs and WTTSs with known
$v \sin i$. WTTSs are represented by open circles, and CTTSs by dark circles. In both cases, the
circle area is proportional to the stellar $v \sin i$. Approximate pre-main-sequence quasi-static
evolutionary tracks for various masses are also plotted together with the zero-age mai
sequence (dashed line).

One half of stars lose disks within 3 Myr
Disk disposed in $\sim 6 \mathrm{Myr}$:
planet formation timescale

Fig. 3. Projected equatorial velocities, averaged over all possible inclinations, as a function of spectral type. On the main sequence (luminosity class V), early-type stars have rotational velocities that reach and even exceed $200 \mathrm{~km} / \mathrm{s}$; these velocities drop to a few km/s for late-type stars, such as the Sun (type G2) (Slettebak [20]; courtesy Gordon \& Breach)

\square Early-type stars are fast rotators
 \square Stars later than \sim F5 rotate very slowly
 \square Disk/planet formation?

Figure 1 Schematic picture of FU Ori objects. FU Ori outbursts are caused by disk accretion
increasing from $\sim 10^{-7} M_{\circ} \mathrm{yr}^{-1}$ to $\sim 10^{-4} M_{\circ} \mathrm{yr}^{-1}$, adding $\sim 10^{-2} M_{\circ}$ to the central T Tauri increasing from $\sim 10^{-7} M_{\odot} \mathrm{yr}^{-1}$ to $\sim 10^{-4} M_{\odot} \mathrm{yr}^{-1}$, adding $\sim 10^{-2} M_{\odot}$ to the central T Tauri
tar during the event. Mass is fed into the disk by the remanant collapsing protostellar envelope star during the event. Mass is fed into the disk by the remanant collapsing protostellar envelope
with an infall rate $\lesssim 10^{-5} M_{\odot} \mathrm{yr}^{-1}$; the disk ejects roughly 10% of the accreted material in a with an infall rate

MASS OUTFLOW

Fig. 1. Illustration of the regions which have been proposed as the origin of the permitted hydrogen recombination line emission observed towards HAeBe stars (this sketch is not to scale; read Sect. I for details about the individual mechanisms).

Figure 13 Schematic views of the (a) meridional plane and (b) equatorial plane of the configuration modeled by Shuet al (1994a,b) for the origin of bipolar outflows. The circumstellar disk is truncated at a distance R_{X} from the star. Both energetic outflows and funnel flows emerge from the disk truncation region. Gas accreting from the disk onto the star in a funnel flow drags the stellar field into a trailing spiral pattern. (From Najita 1995.)

Figure 6. A schematic drawing of the magnetohydrodynamical model.

Inside-out collapse (Shu 1977) isothermal sound speed \rightarrow constant accretion rate

Collision

Gas (hydrogen atoms) root-mean-squared speed

$$
m_{\mathrm{H}} \sqrt{<v^{2}>}=3 k T
$$

For H I regions,

$$
\begin{aligned}
& T \sim 100 \mathrm{~K},\langle v\rangle_{\mathrm{HI}} \sim 1 \mathrm{~km} \mathrm{~s}^{-1} \\
& \text { For } e^{-},\left\langle v>_{e^{-}} \sim 50 \mathrm{~km} \mathrm{~s}^{-1}\right.
\end{aligned}
$$

Cross sections σ

- Hard sphere OK for neutral atoms,
i.e., 'physical' cross section

$$
\sigma=\pi\left(a_{1}+a_{2}\right)^{2}
$$

$\sigma_{\mathrm{HI}, \mathrm{HI}} \leftarrow a \sim 5.6 \times 10^{-9} \mathrm{~cm}$
c.f., Bohr radius (first orbit) $=5.3 \times 10^{-9} \mathrm{~cm}$

Cross sections σ

- For free $\mathrm{e}^{-}, \mathrm{p}^{+}$

$$
\begin{aligned}
& \sigma \gg \sigma_{\text {physical }} \text { because of Coulomb force, need QM } \\
& \quad a \sim \frac{2.5 \times 10^{-2}}{v^{2}} \mathrm{~cm}(v \text { in km }) \\
& \text { If } v_{e^{-}} \sim 50 \mathrm{~km} \mathrm{~s}^{-1}, a \sim 10^{-5} \mathrm{~cm} \text { for } e^{--} e^{-} \text {collision } \\
& T=3 \times 10^{4} \mathrm{~K},<v>\sim 10^{3} \mathrm{~km} \mathrm{~s}^{-1} \\
& \quad \begin{array}{l}
\quad a \sim 2.5 \times 10^{-8} \mathrm{~cm}
\end{array} \\
& \quad \text { c.f., classical electron radius } \sim 2.8 \times 10^{-13} \mathrm{~cm} \\
& \qquad \begin{array}{l}
\frac{e^{2}}{r_{0}}=m c^{2} \\
r_{0}=\frac{e^{2}}{m c^{2}} \sim 2.8 \times 10^{-13} \mathrm{~cm}
\end{array}
\end{aligned}
$$

Conventional unit for cross section

$$
\begin{aligned}
& 1 \mathrm{barn}=10^{-24} \mathrm{~cm}^{2} \\
& \sigma_{\mathrm{HI}, \mathrm{HI}}=\sim 10^{8} \text { barns }\left(\sim 10^{-16} \mathrm{~cm}^{2}\right)
\end{aligned}
$$

Collision

\# of collisions = \# of particles in the (moving) volume

$$
N=n \sigma v t
$$

\# of collisions per unit time $=N / t=n \sigma v$

Time (mean-free time) between 2
consecutive collisions $(\mathrm{N}=1)=t_{\text {collision }}=\frac{1}{n \sigma v}$

Mean-free path $\quad \ell=v t_{\text {col }}$, i.e., $\ell=\frac{1}{N \sigma}$

Ex 1 between hydrogen atoms in an H I region

$$
\begin{aligned}
& n_{\mathrm{HI}} \sim 10 \mathrm{~cm}^{-3} ; v_{\mathrm{HI}} \sim 1 \mathrm{~km} \mathrm{~s}^{-1} ; \sigma_{\mathrm{HI}, \mathrm{HI}} \sim 10^{-16} \mathrm{~cm}^{2} \\
& t_{\mathrm{HI}, \mathrm{HI}} \sim 10^{10} \mathrm{~s} \sim 300 \text { years } \\
& \ell \sim 10^{15} \mathrm{~cm} \sim 100 \mathrm{AU}
\end{aligned}
$$

\therefore Collisions are indeed very rare.

Ex 2 between a hydrogen atom and an electron

$$
\begin{aligned}
& \sigma_{\mathrm{e}^{-}, \mathrm{HI}} \sim 10^{-15} \mathrm{~cm}^{2} \quad(\text { polarization }) \\
& t_{\mathrm{e}^{-}, \mathrm{HI}} \sim \frac{1}{10 \times 10^{-15} \times 10^{5}} \sim 30 \text { years }
\end{aligned}
$$

Ex 3 between electrons

$$
\begin{aligned}
& \sigma_{\mathrm{e}^{-}, \mathrm{e}^{-}} \sim 10^{-12} \mathrm{~cm}^{2} ; n_{e} \sim 0.2 \mathrm{~cm}^{-3} \\
& t_{\mathrm{e}^{-}, \mathrm{e}^{-}} \sim \frac{1}{0.2 \times 10^{-12} \times 50 \times 10^{5}} \sim 10 \text { days }
\end{aligned}
$$

[^0]: 1980ApJ... 239L. . 17 S

 ## OBSERVATIONS OF CO IN L1551: EVIDENCE FOR STELLAR WIND DRIVEN SHOCKS

 Ronald L. Snell
 Astronomy Department and Electrical Engineering Research Laboratory, University of Texas at Austin; and Five College Radio Astronomy Observatory, University of Massachusetts at Amherst

 Robert B. Loren
 Electrical Engineering Research Laboratory and McDonald Observatory, University of Texas at Austin
 Richard L. Plambeck
 Radio Astronomy Laboratory, University of California at Berkeley

 #### Abstract

 CO observations reveal the presence of a remarkable, double-lobed structure in the molecular cloud L1551. The two lobes extend for $\sim 0.5 \mathrm{pc}$ in opposite directions from an infrared source buried within the cloud; one lobe is associated with the Herbig-Haro objects HH28, HH29, and HH102. We suggest that the CO emission in the double-lobed structure arises from a dense shell of material which has been swept up by a strong stellar wind from the infrared source. This wind has a velocity of $\sim 200 \mathrm{~km} \mathrm{~s}^{-1}$, and evidently is channeled into two oppositely directed streams. The CO observations indicate that the shell has a velocity of $\sim 15 \mathrm{~km} \mathrm{~s}^{-1}$, a mass of $0.3 M_{\odot}$, and a kinetic temperature of $8-35 \mathrm{~K}$. Its age is roughly 3×10^{4} years. A stellar mass-loss rate of $\sim 8 \times 10^{-7} M_{\odot} \mathrm{yr}^{-1}$ would be sufficient to create such a shell.

