Thermonuclear Reactions

- Eddington in 1920s hypothesized that fusion reactions between light elements were the energy source of the stars.
- Stellar evolution = (con) sequence of nuclear reactions
- $E_{\text{kinetic}} \approx kT_c \approx 8.62 \times 10^{-8} T \sim \text{keV}$,
 - but $E_{\text{Coulomb barrier}} = \frac{Z_1 Z_2 e^2}{r} = \frac{1.44 Z_1 Z_2}{r[\text{fm}]} \sim \text{MeV}$, 3 orders higher than the kinetic energy of the particles.
- Tunneling effect in QM proposed by Gamow (1928, Z. Physik, 52, 510); applied to energy source in stars by Atkinson & Houtermans (1929, Z. Physik, 54, 656)

George Gamow (1904-1968)

Russian-born physicist, stellar and big bang nucleosynthesis, CMB, DNA, Mr. Thompkins series

1929 U Copenhagen

1960s U Colorado

Stars	$\mathcal{M}/\mathrm{M}_{\odot}$ > 0.08, core H fusion
	Spectral types O, B, A, F, G, K, M
Brown	$0.065 > \mathcal{M}/M_{\odot} > 0.013$, core D fusion
Dwarfs	$0.080 > \mathcal{M}/M_{\odot} > 0.065$, core Li fusion
	Spectral types M6.5–9, L, T, Y
	Electron degenerate core
	✓ 10 g cm ⁻³ < ρ_c < 10 ³ g cm ⁻³
	$\checkmark T_c < 3 \times 10^6 \mathrm{K}$
Planets	$\mathcal{M}/\mathrm{M}_{\odot}$ < 0.013, no fusion ever

THE ASTROPHYSICAL JOURNAL, Vol. 158, November 1969 © 1969 The University of Chicago. All rights reserved Printed in U.S.A.

THE MASS-RADIUS RELATION FOR COLD SPHERES OF LOW MASS*

H. S. ZAPOLSKY

University of Maryland, College Park, and Center for Theoretical Physics

AND

E. E. SALPETER

Laboratory of Nuclear Studies, Physics Department, and Center for Radiophysics and Space Research, Cornell University, Ithaca, New York Received 1969 March 14

ABSTRACT

The relationship between mass and radius for zero-temperature spheres is determined for each of a number of chemical elements by using a previously derived equation of state and numerical integration. The maximum radius of a cold sphere is thus found as a function of chemical composition, and a semi-empirical formula for the mass-radius curve is derived.

$$\begin{array}{l} \underbrace{Deuterium \ Burning} \\ \underbrace{Deuterium \ Burning} \\ \stackrel{2}{\rightarrow} \underbrace{H + iH \longrightarrow 3He}_{P} + & \underbrace{T > io^{6}_{K}}_{1 \ amu} = 931 \ Mev/c^{2} \\ \stackrel{2}{\rightarrow} \underbrace{H + iH \longrightarrow 3He}_{P} + & \underbrace{T > io^{6}_{K}}_{P} \\ \stackrel{2}{\rightarrow} \underbrace{H (iH, \otimes)^{3}He}_{P} \\ \underbrace{\Theta_{pP} = 5.5 \ MeV}_{P} \\ \underbrace{\Theta_{pP} = 4.19 \times io^{7} \left[\frac{D}{H}\right] \left(\frac{P}{19 \text{ m}^{3}}\right) \left(\frac{T}{10^{6} \text{ K}}\right)^{H.8}_{Iergg^{-1}s}}_{Iergg^{-1}s}}_{ISM \ value, \leq D/H > -2 \times io^{5}} \\ \end{array}$$

 $\begin{array}{l} n+p \rightarrow D+\gamma \left(\text{production of } D\right) \\ D+D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \qquad \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ \text{for density of the early} \\ \text{The lower the mass density} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ \text{density of the early} \\ \text{The lower the mass density} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ \text{The lower the mass density} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \end{array} \\ \begin{array}{l} \text{density of the early} \\ \text{The lower the mass density} \end{array} \\ \begin{array}{l} \text{The lower the lowe$

D/H

- 156 ppm ... Terrestrial seawater (1.56×10^{-4})
- 22~26 ppm ... Jupiter
- 17 ppm ... Saturn
- 55 ppm ... Uranus
- 200 ppm ... Halley's Comet

$$A hydrogen gas - proton-proton chains
$$A H \rightarrow He \quad wlikely \Rightarrow a chain g
reactions
barrow #, hepton #, ohagess all conserved
$$P + p + p + p + p + p + p + p + (1+4 \times i^{n}) + (1+4 \times i^{n})$$$$$$

- $\checkmark p + p \rightarrow {}^{2}He \text{ (unstable)} \rightarrow p + p$
- ✓ Hans Bethe (1939) realized that the weak interaction was capable of converting a proton to a neutron (!) first
- \checkmark Weak interaction \rightarrow very small cross section
- ✓ The neutron is more massive, so this requires energy, i.e., it is an <u>endothermic</u> process, but neutron + proton
 → deuteron (releasing binding energy, so <u>exothermic</u>)

All 3 branches
operate simultaneously.

$$\begin{cases}
^{3}He + ^{3}He \rightarrow ^{4}He + ^{2}P < 10^{6}yr > PP I chain$$

$$PP I chain$$

$$PP I chain$$

$$^{3}He + ^{4}He \rightarrow ^{7}Be + s^{4}$$

$$\int ^{7}Be + e^{-} \rightarrow ^{7}L; + s^{4}$$

$$\int ^{7}Be + e^{-} \rightarrow ^{7}L; + s^{4}$$

$$PP I chain$$

$$^{8}Be \rightarrow 2^{4}He$$

$$PP II chain$$

$$^{8}Be \rightarrow 2^{4}He$$

$$PP II chain$$

$$^{8}Be \rightarrow 2^{4}He$$

$$PP II chain$$

$$^{8}Be \rightarrow 2^{4}He$$

$$^{8}Be \rightarrow 2^{4}He$$

$$^{8}Be \rightarrow 2^{4}He$$

$$^{9}P II chain$$

$$^{8}Be \rightarrow 2^{4}He$$

$$^{9}P II chain$$

$$^{9}Be + 2^{4}He$$

$$^{9}P II chain$$

$$^{9}Be + 2^{4}He$$

$$^{9}P II chain$$

$$^{9}Be + 2^{4}He$$

$$^{9}P II chain$$

$$^{9}E = 2^{4}He$$

$$^{9}P II chain$$

$$^{9}E = 2^{4}He$$

$$^{9}E = chain$$

$$^{9}E = 2^{4}He$$

$$^{9}E = chain$$

$$^{9}E = 2^{4}He$$

$$^{9}E = chain$$

$$^{9}E = chain$$

$$^{9}E = chain$$

Normal 2 Atomic mass 55,845 26 atomic number ataliai metals metallois 13 14 15 16 17 Number 2 Balt Balt<	a 1	group 1 1.00794 320 1 H								Tł	ne P	erio	dic Ta	able	oft	ne E	leme	ents	18 4.002602 mm3 He
3 Association	2	6.941 am 3 Lifthum	2 9.012182 98.1 1.57 4 Beeyllium	er mest sta 1st ioni Che	atomic mass ble mass number zation energy in k3/mel emical symbol		e ⁴⁵ 1.83 <u>2</u>	6 at	omic number ectronegativit	y alkali y alkali other trans	metals ne metals metals ition metals	netalloid nonmeta halogens noble ga	ds als a ises	13	14 12.0107 ±m 6 Calbon	15 14.0067 Las 7 Nitrogen terarap	16 15.9994 8 0 0xygen 1#3# 3#	17 18.998403 9 1800 338 9 Fillio 338 9 Fillio 338 9	20.1797 1 386.7 Neon w aray
4 Modelland And Weight 20 And Weight 20 Modelland 2	3	22.98976 11 Asia 2.65 11 Na Sodium	24.3050 357 1.31 12 Magnostum Magnostum	electron 3	name configuration 4		f" 4s² 6	7	idation states st common are bo 8	ed Contraction	anoids oids 10	radioactive masses in p	n elements elements have arentheses 12	26.98153 13 1775 1.8 13 Aluminium Multier her	28.0855 14 Silicon Inc. 14	Bins 218 Phosphorus	32.055 16 Suffur Suffur per ser ter	35.453 10013 1.11 Chlonno Incinenty	199.948 1 Augon Million Augon
5 Max 4 m 37	4	Potassium	40.078 20 Calcium	44.95591 21 Scandium Maar 47	47.867 114 1.14 22 Titanium	50.9415 000 1 m Vanadium (A) ar 4r	51.9962 24	Manganese	55.845 26 Fe Main 4r	58.93319 27	58.6934 28 Nickel Mar w	Copper Della 128 Copper Milar 4	^{60.38} , a 30 Znc 2inc Mar 4r	69.723 31 Gallum Mar er er	Germanium	Arsonic Minimum ar ap	78.96 34 See Solonium	Bromine	83.798 1386 3.00 Krypton Mc30" 45" 45"
6 Scale Sca	5	85.4678 37 Rubidium Publicium	87.62 am 38 50.5 am 38 Strontium poise	88.90585 39 Yttrium Ni ar set	91.224 40.1 Las 40 Zrconium (X) 45 54	92,90638 41 Niobium Niobium	Molybdenum	(98) tae 43	Ruthenium (x); er Se ²	102.9055 45 Ph.) 2.00 Rhodium poj er ter	Paladium	107.8682 47	Cadmium	114.818 49 Indum Indum	118.710 50 Sn 50 Tin No et for Sp	121.760 51 stor son 51 Sbb Antimony poj et " tet Spi	Tollurium	126.9044 53	131.293 5 Xenon Koter ter ter
7 Fracture representation Ref. 103 Ref. 104 Ref. 106 Ref. 106 Ref. 107 108 Ref. 107 111 Ref. 112 Ref. 113 Ref. 114 Ref. 115 Ref. 114 Ref. 115 Ref. 115 Ref. 115 Ref. 116 117 Ref. 117 Ref. 116 Ref. 117 Ref. 1	6	132.9054 55 Caesium [xii] or	137.327 560 5.00 Baalum (Me Ger	174.9668 71 (20.5 1.27 71 Lutetium (Tel 47 57 64	178.49 506.5 1.30 Hf Hafnium (34) 47 59 59	180.9478 73 761.0 1.50 Tantalum (xk) 47 50 ter	183.84 7780 2.36 74 W Tungsten (54) 4" 54" 64" 64"	186.207 760.9 1.90 Realize Fibenium (Rel 47 50 Gef	190.23 000 230 76 000 000 000 000 000 000 000 0	192.217 77 190.0 2.00 77 Indium Dat er 5r ter	195.084 8700 238 Pt Platinum (X4) 4" 54 64	196.9665 79 AU Gold (Set 47 for 64	200.59 80 1007.1 2.00 80 Hog Mercary (Rel 47 507 647	204.3833 81 584 1.82 81 Thalium Decer Serior Ser	207.2 2.30 82 Pb Lead (34) 4" 50" 64" 50"	208.9904 83 000 2.02 83 Bismuth (xel 4" 50" 64 64"	(210) 102.1 2.00 84 Polonium (104.4" for 64 or	Astatine Inc. ar for or or	(220) 8 Rn Radon (34) 47 547 647 6
	7	(223) 0.70 87 Francium pw(24)	(226) 508.3 8.00 88 Radum Fladum	(252) 103 4768 103 Lawrencium (Rej St ² 797 797	(251) 104 Rf Hutherfordium (Pe) 97 96 79	⁽²⁶²⁾ 105 Db Dubnium	(266) 106 Sg Seattergium	(254) 107 Bh Bohnum	(277) 108 Hassium	(268) 109 Mt Meitnerium	⁽²⁷¹⁾ 110 DS Darmstadium	(272) 111 Rg Poentgenium	(285) 112 Copernicium	(284) 113 Uut Ununtrium	⁽²⁸⁹⁾ 114 Fl Plerovium	(200) 115 Uup Ununpentium	(292) 116	117 Uus Ununseptium	(294) 11 Uuo Ununoctiur
		 as of yet, have no off 1 k3/mol all element 	elements 113,115 icial name designa = 96.485 eV. nts are implied to h	,117 and 118 ted by the IUPAC. have an oxidation	Actiniu	Thorius		tinium P 24					n Bk	um Califor		nium Formiu		d al Nobelli Nobelli Nobelli) m

Exercise

Assuming that the solar luminosity if provided by $4 \,{}^{1}H \rightarrow {}^{4}He$, liberating 26.73 MeV, and that the neutrinos carry off about 2% of the total energy. Estimate how many neutrinos are produced each second from the sun? What is the solar neutrino flux at the earth? (How many neutrinos pass through your body per second?)

The thermonuclear reaction rate,

$$\begin{aligned} & r_{pp} = 3.09 \times 10^{-37} n_p^2 T_6^{-2/3} \exp\left(-33.81 T_6^{-1/3}\right) \\ & (1 + 0.0123 T_6^{1/3} + 0.0109 T_6^{2/3} + 0.0009 T_6) \ [cm^{-3}s^{-1}], \\ & \text{where the factor } 3.09 \times 10^{-37} n_p^2 = 11.05 \times 10^{10} \rho^2 X_H^2 \end{aligned}$$

$$\begin{aligned} & q_{pp} = 2.38 \times 10^6 \rho X_H^2 T_6^{-2/3} \exp\left(-33.81 T_6^{-1/3}\right) \\ & (1 + 0.0123 T_6^{1/3} + 0.0109 T_6^{2/3} + 0.0009 T_6) \ [erg g^{-1}s^{-1}] \end{aligned}$$

		表 6.2 氢燃	烧的核反应	
序号 r	反应式	Q. (MeV)	$(q_r)_r({\rm MeV})$	速率 $N_A < \sigma v >$ (cm ³ mol ⁻¹ s ⁻¹)
1	${}^{1}H(p,e^{+}v)^{2}H$	1.442	0.265	1.26×10 ⁻²⁰
2	2 H(p, γ) 3 He	5.494		1.85×10^{-3}
3	³ He(³ He,2p) ⁴ He	12.860		2.29×10 ⁻¹³
4	$^{3}\mathrm{He}(\alpha,\gamma)^{7}\mathrm{Be}$	1.588		1.67×10^{-18}
5	⁷ Be(e ⁻ , _v) ⁷ Li	0.862	0.862	*4.59×10 ⁶ s
6	$^7 \text{Li}(\text{p},\gamma)^8 \text{Be}(\alpha)^4 \text{He}$	17.346		3.21×10-11
7	7Be(p,γ)8B	0.137		1.38×10 ⁻¹⁴
8	${}^8B(e^+\nu){}^8Be(\alpha){}^4He$	18.072	6,710	• 0. 77s
9	¹² C(p, y) ¹³ N	1.944		1.26×10^{-12}
10	¹³ N(e ⁺ y) ¹³ C	2. 221		* 870s
11	¹³ C(p, y) ¹⁴ N	7.551		4.59×10 ⁻¹²
12	¹⁴ N(p, γ) ¹⁵ O	7.297		1. 30×10 ⁻¹⁴
13	${}^{15}O(e^+\nu){}^{15}N$	2.754	0.9965	* 178s
14	¹⁵ N(p, α) ¹² C	4, 966		3.62×10 ⁻¹⁰
15	¹⁵ N(p, γ) ¹⁶ O	12.128		2.76×10 ⁻¹³
16	${}^{16}O(p,\gamma){}^{17}F$	0.600		2.51×10 ⁻¹⁶
17	¹⁷ F(e ⁺ v) ¹⁷ O	2.762	0.9994	* 95s
18	¹⁷ O(p, a) ¹⁴ N	1. 191		4.07×10 ⁻¹⁶
19	¹⁷ O(p, y) ¹⁸ F	5.607		3.05×10 ⁻¹⁶
20	¹⁸ F(e ⁺ y) ¹⁸ O	1.655	0.3965	* 1. 67s
21	${}^{18}O(p, \alpha){}^{15}N$	3,980		7.63×10 ⁻¹³
22	¹⁸ O(p, γ) ¹⁹ F	7.994		8,43×10 ⁻¹⁶
23	¹⁹ F(p, a) ¹⁶ O	8, 114		6.25×10 ⁻¹⁵
 *表: (根据 互作用过 1968).表: 典型温度; 	示 β 赛变的半周期. Kaughlan and Fowler 程的快慢用原子半衰募 中的速率为典型温度下 为 2.5×10 ⁷ K.	, 1988:Harri 明表示,根据 I 下的速率,p一	s, et al. 1983;F `uller, et al. , 19 >链的典型温度;	owler, et al.,1975;弱相 180,1982,1985;Clayton, り1×10 ⁷ K,CNO 循环的

Does	28 S; follow the pame scenario?	
No :	28 S; + 28 S; - Fe Oto 10 K Coulomb barrier becomes extremly Righ; another nuclear reaction takes place	
eg.	hr atom < e- Elst binding force Photoionization	
Like	0.3P	
	hr Photodisintegration	

Nuclear Fuel	Process	T _{threshold} (10 ⁶ K)	Products	Energy per nucleon (MeV)
Н	р-р	~4	Не	6.55
Н	CNO	15	Не	6.25
Не	3α	100	С, О	0.61
С	C + C	600	O, Ne, Na, Mg	0.54
0	0 + 0	1,000	Mg, S, P, Si	~0.3
Si	Nuc. Equil.	3,000	Co, Fe, Ni	<0.18
	_			

```
{}^{56}Fe + 100 \text{ MeV} \rightarrow 13 {}^{4}He + 4 n
```

If $T \uparrow \uparrow \uparrow$, even ${}^{4}He \rightarrow p^{+} + n^{0}$

So stellar interior has to be between a few T_6 and a few T_9 .

<u>Lesson</u>: Nuclear reaction that absorb energy from ambient radiation field (in stellar interior) can lead to catastrophic consequences.

Alternative Energy --- Accretion Energy $\frac{Accretion \ Energy}{L = \frac{GM}{R} \ \dot{m}}$ $L = \frac{GM}{R} \ \dot{m}$ $\text{Th terms } g \text{ the Scharzschild radius } R_{S} = \frac{2GM}{C^{2}}$ $\Rightarrow L = \left[\frac{R_{S}}{2R} \right] \ \dot{m} \ c^{2}$ $\stackrel{'}{=} \text{efficiency } j \ \alpha \in R \ d$ Accretion is highly efficient onto a compact object. For chemical reactions Appically ~ a few eV Agr H2 dissociation, E~ 4.48 eV $\therefore \frac{4.48}{2mp} e^{-32} erg g^{-1} \Rightarrow 10^{-2} eff.$ For nuclear reactions Appically ~ a few MeV $Rq., HH \rightarrow He$, E~ 7 MeV $\therefore \frac{7}{162} erg g^{-1} \Rightarrow 10^{-2} eff.$ For accretion process $E \sim 10^{12} erg g^{-1}$ $Ex. a neutron star R \sim 15 km, \frac{Rs}{2R} \sim 0.1$ Longan "High-Energy Astrophysic"

Time Scales

Different physical processes inside a star, e.g., nuclear reactions (changing chemical composition) are slow (longer time scales); structural adjustments (dP/dt)take places on relatively shorter time scales.

- ✓ Dynamical timescale
- ✓ Thermal timescale
- ✓ Nuclear timescale
- ✓ Diffusion timescale

Nuclear Timescale Time taken to radiate at a rate of *L* on nuclear energy $4 {}^{1}H \rightarrow {}^{4}He \ (Q = 6.3 \times 10^{18} \text{ erg/g})$ $\tau_{\text{nuc}} = \frac{E_{\text{nuc}}}{L} = 6.3 \times 10^{18} \frac{M}{L}$ $\tau_{\text{nuc}} \approx 10^{11} \left(\frac{M}{M_{\odot}}\right) \left(\frac{L_{\odot}}{L}\right) \text{ [yr]}$ From the discussion above, $\tau_{\text{nuc}} \gg \tau_{\text{KH}} \gg \tau_{\text{dyn}}$

Diffusion Timescale Time taken for photons to randomly walk out from the stellar interior to eventual radiation from the surface $r_e = \frac{1}{4\pi\epsilon_0} \frac{e^2}{m_e c^2}$ ("classical" radius of the electron) $\sigma_{Thomson} = \frac{8\pi}{3} r_e^2 = 6.6525 \times 10^{-29} [m^2]$ for interactions with photon energy $hv \ll m_e c^2$ (electron rest energy) Thus, mean free path $\ell = 1/(\sigma_T n_e)$, where for complete ionization of a hydrogen gas, $n_e = M/(m_p R^3)$. So, $\ell \approx m_p R^3 / \sigma_T M = 4$ [mm] for the mean density. At the core, it is 100 times shorter. $\tau_{dif} \approx 10^4$ [yr] (Exercise: Show this.)

For an isotropic gas

$$P = \frac{1}{3} \int_{0}^{\infty} p v_{p} n(p) dp$$

$$P = \frac{1}{3} \int_{0}^{\infty} p v_{p} n(p) dp$$

$$P = \frac{1}{3} u_{p}$$

64

Radiation Pressure

 $P_{\text{total}} = P_{\text{radiation}} + P_{\text{gas}}$ Since $P_{\text{rad}} \sim T^4 \sim M^4 / R^4$ But $P_{\text{tot}} \sim M^2 / R^4$ $\Rightarrow P_{\text{rad}} / P_{\text{tot}} \sim M^2$

So the more massive of a star, the higher relative contribution by radiation pressure (and γ decreases to 4/3.)

When P_{rad} dominates $\mathcal{F} = \frac{-d P_{rad}/dr}{\kappa \rho} = \frac{4ac}{3} T^3 \frac{dT}{dr} = \frac{L}{4\pi r^2}$ $\frac{dP_{rad}}{dr} \sim \frac{\kappa \rho}{c} \frac{L}{4\pi r^2}$ On the other hand, by definition $\frac{dP_{tot}}{dr} = -\rho \frac{Gm}{r^2}$ $\Rightarrow \frac{dP_{rad}}{dP_{tot}} = \frac{\kappa L}{4\pi c Gm}$

Toward the outer layers, both $P_{gas} \lor$ and $P_{rad} \lor$, so $P_{tot} \lor \lor$, and $dP_{\text{tot}} > dP_{\text{rad}}$. This leads to $\kappa L \leq 4\pi cGm$ At the surface, m = M, P = 0, it is always radiative, so This is the **Eddington luminosity limit** $4\pi cGM$ L < -= Maximum luminosity of a celestial object in balance between the radiation and gravitational force. Numerically, $L_{Edd}/L_{\odot} = 3.27 \times 10^4 \ \mu_e \, M/M_{\odot}$ For X-ray luminosity, scattered by electrons in an optically thin gas, $L_X < 10^{38} \, \text{erg sec}^{-1}$

Eddington limit is the upper limit on the luminosity of an object of mass $M, L \leq \left(\frac{4\pi G m_p}{\sigma_T}\right) M$ $\equiv L_{\rm Edd} \approx 10^{38} M / M_{\odot} [{\rm erg \, s^{-1}}]$ For 1 M_{\odot} , $L_{\rm Edd} \approx 5 \times 10^4 L_{\odot}$, $M_{\rm bol} = -7.0$ For 40 M_{\odot} , $M_{\rm bol} = -11.0$ Eta Carina, $L \approx 5 \times 10^6 L_{\odot}$, $M_{\text{bol}} = -11.6$, $M \approx 120 M_{\odot}$ 66

In general, LEAN = 3.2×10 4 M Ke. [Lo] Inequality is violated LEad can be exceeded if O L TT, s.g., intense thermonuclean burning ② K ÎÎ, e.g. H a He ionization => Hydrostatic equilibrium can no longer maintained . need a different heat tramfer mechanism 68

