Thermonuclear Reactions

- Eddington in 1920s hypothesized that fusion reactions between light elements were the energy source of the stars.
- Stellar evolution $=(c o n)$ sequence of nuclear reactions
- $E_{\text {kinetic }} \approx k T_{c} \approx 8.62 \times 10^{-8} T \sim \mathrm{keV}$,
but $E_{\text {Coulomb barrier }}=\frac{Z_{1} Z_{2} e^{2}}{r}=\frac{1.44 Z_{1} Z_{2}}{r[\mathrm{fm}]} \sim \mathrm{MeV}, 3$ orders
higher than the kinetic energy of the particles.
- Tunneling effect in QM proposed by Gamow (1928, Z. Physik, 52, 510); applied to energy source in stars by Atkinson
\& Houtermans (1929, Z. Physik, 54, 656)

George Gamow (1904-1968)

Russian-born physicist, stellar and big bang nucleosynthesis, CMB, DNA, Mr. Thompkins series

1929 U Copenhagen

1960s U Colorado

Figure 4.2 Schematic representation of the Coulomb barrier - the repulsive potential encountered by a nucleus in motion relative to another - and the short-range negative potential well that is due to the nuclear force. The height of the barrier and the depth of the well depend on the nuclear charge (atomic number).

Quantum mechanics tunneling effect

Figure 3.4 Illustration of the potential seen by particle b when approaching particle A with a kinetic energy $E_{\text {kin }}$, and the corresponding wavefunction Ψ; classically, particle b would reach only a distance r_{1} from particle A before being repelled by the Coulomb force

Cross section for nuclear reactions (penetrating probability) $\propto e^{-\pi Z_{1} Z_{2} e^{2} / \varepsilon_{0} h \nu}$
 This \nearrow as $v \nearrow$

Velocity probability distribution (Maxwellian)
 $\propto e^{-m v^{2} / 2 k T}$
 This ゝasv \nearrow

\therefore Product of these 2 factors \rightarrow Gamow peak

D. Clayton "Principles of Stellar Evolutions
 and Nucleosynthesis"

Fig. 4-6 The dominant energy-dependent factors in thermonuclear reactions. Most of the reactions occur in the high-energy tail of the max wellian energy distribution, which introduces the rapidly falling factor $\exp (-E / k T)$. Penetration through the coulomb barrier introduces the exp $(-E / k T)$ exp $\left(-b E^{-1}\right)$, which vanishes strongly at low energy. Their factor $\exp \left(-b E^{-1}\right)$, which vanishes strongly at low energy. Their product is a fairly sharp peak near an energy designated by E_{0}, which is
generally much larger than $k T$. The peak is pushed out to this energy by generally much larger than $k T$. The peak is pushed out to this energy by the penetration factor, and it is therefore commonly called the Gamow
peak in honor of the physicist who first studied the penetration through the coulomb barrier.

Fig. 4-7 The Gamow peak for the reaction $\mathrm{C}^{12}(p, \gamma) \mathrm{N}^{13}$ at $T=30 \times 10^{6}{ }^{\circ} \mathrm{K}$. The curve is actually somewhat asymmetric about E_{0}, but it is nonetheless adequately approximated by a gaussian.

Resonance \rightarrow very sharp peak in the reaction rate
\rightarrow 'ignition' of a nuclear reaction
So there exists a narrow range of temperature in which the reaction rate $\uparrow \uparrow$

Resonance reactions Energy of interacting particles \approx Energy level of compound nucleus \rightarrow a power law
\rightarrow an ignition (threshold) temperature
For a thermonuclear reaction or a nucleosynthesis (fusion) process, the reaction rate is expressed as
q [energy released per mass] $\propto \rho^{m} T^{n}$

Collision

A two-body encounter,
[\# of collisions] = [total \# of particles in the (moving) volume], so $N=n(\sigma v t)$
\checkmark \# of collisions per unit time $={ }^{N} / t=n \sigma v$
\checkmark Time between 2 consecutive collisions, mean free time ($N=1$), $t_{\text {col }}=1 / n \sigma v$
\checkmark Mean free path $\ell=v t_{\text {col }}=1 / n \sigma$

Nuclear reaction rate

$\checkmark r_{12} \propto n_{1} n_{2}\langle\sigma v\rangle \propto n_{1} n_{2} \exp \left[-C\left(\frac{z_{1}^{2} z_{2}^{2}}{T_{6}}\right)^{1 / 3}\right]\left[\mathrm{cm}^{-3} \mathrm{~s}^{-1}\right]$
\checkmark As T $\nearrow, r_{12} \nearrow \nearrow$
\checkmark Major reactions are those with smallest $Z_{1} Z_{2}$
$\checkmark n_{i}$ is the particle volume number density, $n_{i} m_{i}=\rho X_{i}$, where X_{i} is the mass fraction
$\checkmark q_{12} \propto Q \rho X_{1} X_{2} / m_{1} m_{2}\left[\operatorname{erg~g}^{-1} \mathrm{~s}^{-1}\right]$

> Planets - form in cireumstellas disks by aggregation of ever larger dust grains (and gas)

Brown dwarfs - form like stars but evolve like planets

In terms of nuclear reactions

- Stars, $M>0.08 M_{0}$, core H burning

$$
\text { flat } L(t)
$$

- $B D_{s}, M>0.01 M_{0}$, short D burning for $t=10^{6}-10^{8} y_{r}$ ${ }^{1}$ also for low-mass PMS Stars
- Planets, no nuclear burning ever

$$
L(t) \& \text { continuous /y }
$$

7.-Evolution of the luminosity (in L_{0}) of solar-metallicity M dwarfs and substellar objects vs time (in yr) after formation. The stars, "brown dwarfs" and "planets s are e shown as solid, dashed, and dot-dashect curves, respectively. In this figure, we arbitrarily designate as "brown dwarf " those
objects that burn deuterium, while we designate those that do not as "planets." The mass (in $M \circ$) label most of the curves, with the lowest three corresponding to the mass of Saturn, half the mass of Jupiter, and the mass of Jupiter.
$\left.\begin{array}{|c|l|}\hline \text { Stars } & \mathcal{M} / \mathrm{M}_{\odot}>0.08 \text {, core } \mathrm{H} \text { fusion } \\ & \text { Spectral types } 0, \mathrm{~B}, \mathrm{~A}, \mathrm{~F}, \mathrm{G}, \mathrm{K}, \mathrm{M}\end{array}\right]$

The Astrophysical Journal, Vol. 158, November 1969
(C) 1969 The University of Chicago. All rights reserved Printed in U.S.A.

THE MASS-RADIUS RELATION FOR COLD SPHERES OF LOW MASS*

H. S. Zapolsky

University of Maryland, College Park, and Center for Theoretical Physics
AND
E. E. Salpeter

Laboratory of Nuclear Studies, Physics Department, and Center for Radiophysics and Space Research, Cornell University, Ithaca, New York

Received 1960 March 14

ABSTRACT

The relationship between mass and radius for zero-temperature spheres is determined for each of a number of chemical elements by using a previously derived equation of state and numerical integration. The maximum radius of a cold sphere is thus found as a function of chemical composition, and a semiempirical formula for the mass-radius curve is derived.

Fig. 1.-Mass-radius plot for homogeneous spheres of various chemical compositions. The points J, S, U, N are the observed values for the Jovian planets.

Brown dwarfs and very lowmass stars ... partial $P_{\text {deg }}^{e-}$

White dwarfs
\approx completely degenerate, $\mathrm{R} \downarrow$ as M フ

Terrestrial planets

$\mathrm{R} \nearrow$ as $\mathrm{M} \nearrow \leftarrow$ complicated EoSs

Figure 12.4 Mass-radius relation for low-mass objects (following H. S. Zapolsky \& E. E. Salpeter, Astrophys. J. 158). Different curves correspond to different compositions, as indicated. The locations of several planets - Earth, Jupiter, Saturn, Uranus and Neptune are marked by the planets' symbols. Also marked are the locations of two white dwarfs, Sirius B (§) and 40 Eridani B (ϵ) (data from D. Koester (1987), Astrophys. J., 322).

Mass-radius relation max @ $M_{\text {Jupiter }} \approx$
$(1 / 1000) M_{\odot}$

Deuterium Burning
 $$
M_{\odot} c^{2}=2 \times 10^{54} \mathrm{ergs}
$$
 $$
1 \mathrm{amu}=931 \mathrm{Mev} / \mathrm{c}^{2}
$$

$$
{ }^{2} \mathrm{H}+{ }^{1} \mathrm{H} \longrightarrow{ }^{3} \mathrm{He}+\gamma \quad\left(T>10^{6} \mathrm{~K}\right)
$$

$$
{ }^{2} H\left(1 H, r^{2}\right)^{3} H e
$$

$$
Q_{D P}=5.5 \mathrm{MeV}
$$

$$
q_{D P}=4.19 \times 10^{7}[\mathrm{D} / \mathrm{H}]\left(\frac{\rho}{1 g_{\mathrm{mm}^{-3}}}\right)\left(\frac{T}{10^{6} \mathrm{~K}}\right)^{11.8}\left[\operatorname{logg} g^{-1} \mathrm{~s}^{-1}\right.
$$

$$
\text { ISM value, }\langle D / H\rangle \sim 2 \times 10^{-5}
$$

$n+p \rightarrow D+\gamma$ (production of D$)$

The lower the mass density, the more the D abundant $\rightarrow D$ as a sensitive tracer of the density of the early Universe

Before the Big Bang nucleosynthesis, there were plenty of neutrons, but much less abundant than protons, so all neutrons go into making ${ }^{4} \mathrm{He}$
$\rightarrow{ }^{4} \mathrm{He} \approx \frac{n / 2}{(n+p) / 4}=\frac{2 n}{n+p}$
Current value $n / p \approx 0.12$, so ${ }^{4} \mathrm{He} \approx 2 / 9$, as observed today.

D/H

- 156 ppm ... Terrestrial seawater $\left(1.56 \times 10^{-4}\right)$
- 22~26 ppm ... Jupiter
- 17 ppm ... Saturn
- $55 \mathrm{ppm} . .$. Uranus
- 200 ppm ... Halley's Comet

Recall a star's central temperature

$$
T_{c} \sim \frac{\mu G M}{R} \cdot \alpha^{\prime} \text { mass distr. }
$$

Numerically

$$
\begin{aligned}
T_{c} & =7.5 \times 10^{6} \mathrm{~K}\left(\frac{M_{*}}{M_{\theta}}\right)\left(\frac{R_{*}}{R_{\theta}}\right)^{-1} \\
\therefore \quad M_{*} & =0.4 M_{0} \longrightarrow T_{c} \sim 10^{6} \mathrm{~K}
\end{aligned}
$$

Fig. 5-1 The path on the H-R diagram of the contraction of the sun to the main sequence. The interior has become sufficiently hot to burn deuterium after about 10^{5} years. The contraction ceases near the main sequence when the core has become hot enough to replenish the solar luminosity with the thermonuclear power generated by the fusion of hydrogen into helium. [After D. Ezer and A. G. W. Cameron, The Contraction Phase of Stellar Evolution, in R. F. Stein and A. G. W. Cameron (eds.), "Stellar Evolution," Plenum Press, New York, 1966.]

The Astrophysical Journal, 274:822-829, 1983 November 15

THE BIRTHLINE FOR LOW-MASS STARS
Steven W. Stahler
Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts
nithsonian Center for Astrophysics, Cambridge. M
Received I983 January 19; accopted I983 May 4

ABSTRACT

Using the results of protostar theory, I find the locus in the Hertzsprung-Russell diagram where pre-main-sequence stars of subsolar mass should begin their quasi-static contraction phase and first appear as visible objects. This "birthline" is in striking agreement with observations of T Tauri stars, providing a strong confirmation of the fact that these stars are indeed contracting along Hayashi tracks. The assumption that most T Taun stars first appear along this line forces a recalibration of their ages. This recalibration removes the puzzling dip in present-day star formation seen in age histograms of several cloud complexes. Since the underlying protostar calculation assumes that the parent cloud was only thermally supported prior to its collapse, the observed location of the birthline places severe restrictions on the degree of extrathermal support provided by rotation, magnetic fields,
or turbulence. In addition, the hypothesis that the collapse from thermally supported clouds to or turb-mass stars proceeds through protostellar disks appears untenable, since the disk accretion process almost certainly produces pre-main-sequence stars with radii well below the observed birthline.

Protostars are heavily embedded in clouds, so obscured, with no definition of $T_{\text {eff }}$
Birthline=beginning of PMS; star becomes optically visible \approx deuterium main sequence

Stahler (1983, 1988),
Palla \& Stahler (1990)

... compared with observations

Figure 4 Hertzsprung-Russell diagrams from Cohen \& Kuhi (1979) showing theoretical pre-main-sequence contraction tracks and T Tauri stars in the Taurus-Auriga and Orion cloud complexes. The heavy solid curve is the theoretical "birthline" of Stahler (1983).

```
Lithium Burning
\({ }^{7} \mathrm{Li}+{ }^{1} \mathrm{H} \rightarrow 4 \mathrm{He}+{ }^{4} \mathrm{He}\left(\underline{T>3 \times 10^{6} \mathrm{k}}\right)\)
    ISM \([\mathrm{Li} / \mathrm{H}] \sim 2 \times 10^{-9}\)
                                    Primordial abundance \(10 \times\) lower,
                                    produced by cosmic rays a hitting 4 He
            (inverse reaction)
Li measurable in stellar spectra
    LiI 6708\& absorption
    (actually doublet 6707.78 and 6707.93
    but difficult to resolve
```


Figure 16.9 Lithium absorption in a pre-main-sequence star. Shown is a portion of the optical spectrum of BP Tau, a T Tauri star of spectral type K7, corresponding to an effective temperature of 4000 K . Also shown, for comparison, is a main-sequence star of the same spectral type, 61 Cyg B. Only in the first star do we see the Li I absorption line at $6708 \AA$. Both objects also have a strong line due to neutral calcium.

$\mathrm{M}>1.2 \mathrm{M}$ _sun \rightarrow shallow convection \rightarrow surface Li does not deplete during contraction

For protostars with $T_{c} \geq 3 \times 10^{6} \mathrm{~K}$, the central lithium is readily destroyed.

Stars $\geq 0.9 M_{\odot}$ become radiative at the core, so Li not fully depleted.

Li abundance \rightarrow age clock

Figure 16.10 Theoretical predietion of pre-main-sequence lithium depletion. Within the white area between the birthline and the ZAMS, the surface [L/H] is equal to its interstellar value of 2×10^{-8}. Sars in the lighlly shaded region have depleted the element down to 0.1 times the interstellar value. The darker shading indicates depletion by at least this amount. Note also the masses on the ZAMS, in solar units, and the indicated isochrone.

Older \rightarrow depletion at higher $\mathrm{T}_{\text {eff }}$

$$
\left[L_{i} / H\right] \downarrow \text { as } T_{\text {eff }} \downarrow
$$

$$
\begin{aligned}
& \text { A hydrogen gas - proton-proton chains } \\
& 4 \mathrm{H} \rightarrow 4 \mathrm{He} \text { unlikely } \Rightarrow \text { a chain of } \\
& \text { reactions } \\
& \text { baryon \#\#, lepton it, charges all conserved } \\
& P^{+}+P^{+} \rightarrow 2 D^{+}+e^{+}+\nu\left\langle 1.4 \times 10^{1 c} \text { 人 } \quad 0.420 \mathrm{MeV}\right. \text { to the positron and }
\end{aligned}
$$

but the nucleus of
deuterium, a deuteron,
consists of a proton
and a neutron!
$\checkmark p+p \rightarrow{ }^{2} \mathrm{He}$ (unstable) $\rightarrow p+p$
\checkmark Hans Bethe (1939) realized that the weak interaction was capable of converting a proton to a neutron (!) first
\checkmark Weak interaction \rightarrow very small cross section

\checkmark The neutron is more massive, so this requires energy, i.e., it is an endothermic process, but neutron + proton
\rightarrow deuteron (releasing binding energy, so exothermic)

$\begin{array}{\|c} \hline \mathbf{H} \\ \hline \end{array}$																			
$\begin{array}{\|c} \hline \mathbf{L i} \\ \mathrm{c} \end{array}$	$\underset{c}{\text { Be }}$			Cosmic rays			Small stars			Manmade		B	C	N_{S}	S	F			
$\overline{\mathrm{Na}}$	$\mathbf{M g}$					Al			Si			P	S	Cl					
\mathbf{K}	${ }_{\text {Ca }}$	Sc	$\begin{aligned} & \mathrm{Ti} \\ & \$ \mathrm{i} \end{aligned}$	$\left.\right\|_{s L} ^{V}$	$\mathbf{C r}$		Mn	$\mathrm{Fe}_{\mathrm{se}}$		Co	$\underset{\mathrm{si}}{\mathrm{Ni}}$	Cu	$\mathbf{Z n}$	Ga	Ce_{5}	As	Se	Br	
$\mathbf{R b}$	Sr	Y	Zr	Nb	$\mathrm{Mo}_{\substack{\text { L } \\ \text { L }}}$	Tc	R_{5}	${ }_{\text {Rh }}$	$\underset{\$}{\text { Pd }}$	${ }_{\text {Ag }}$	$\mathbf{C d}$	In	Sn	Sb	${ }_{\text {Te }}$	I			
Cs	Ba		$\mathrm{Hf}_{\substack{\text { L }}}$	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At			
Fr																			
			La	Ce		Nd			Eu	Gd		Dy	Ho	Er	Tm	Yo			
				,	\$	\$ 2	\$ 2	\$	${ }_{5}$		¢	${ }_{5}$				\$			
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No			

The proton-proton chain

```
\({ }^{1} \mathrm{H}+{ }^{1} \mathrm{H} \rightarrow{ }^{2} \mathrm{D}+\mathrm{e}^{+}+\nu_{e} \quad\left(1.44 \mathrm{MeV}, 1.4 \times 10^{10} \mathrm{yr}\right) \quad\) pp I important when
\({ }^{2} \mathrm{D}+{ }^{1} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\gamma \quad(5.49 \mathrm{MeV}, 6 \mathrm{~s})\)
pp I chain
\({ }^{3} \mathrm{He}+{ }^{3} \mathrm{He} \rightarrow{ }^{4} \mathrm{He}+{ }^{1} \mathrm{H}+{ }^{1} \mathrm{H} \quad\left(12.85 \mathrm{MeV}, 10^{6} \mathrm{yr}\right)\)
    Note: net \(6{ }^{1} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+2{ }^{1} \mathrm{H}\)
        \(T_{\mathrm{c}}>5 \times 10^{6} \mathrm{~K}\)
    \(Q_{\text {total }}=1.44 \times 2+5.49 \times 2\)
        \(+12.85=27.7 \mathrm{MeV}\)
    \(Q_{\text {net }}=27.7-0.26 \times 2=26.2 \mathrm{MeV}\)
```

pp II chain
${ }^{3} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{7} \mathrm{Be}+\gamma$
${ }^{7} \mathrm{Be}+\mathrm{e}^{-} \rightarrow{ }^{7} \mathrm{Li}+\nu_{e}$
${ }^{7} \mathrm{Li}+{ }^{1} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$
pp III chain
The baryon number, lepton number, and
charges are all conserved.
${ }^{3} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{7} \mathrm{Be}+\gamma$
${ }^{7} \mathrm{Be}+{ }^{1} \mathrm{H} \rightarrow{ }^{8} \mathrm{~B}+\gamma$
${ }^{8} \mathrm{~B}+\rightarrow{ }^{8} \mathrm{Be}+\mathrm{e}^{+}+\nu_{e}$
${ }^{8} \mathrm{Be} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$
All 3 branches operate simultaneously.
pp I is responsible for $>90 \%$ stellar luminosity

Exercise

Assuming that the solar luminosity if provided by $4{ }^{1} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}$, liberating 26.73 MeV , and that the neutrinos carry off about 2% of the total energy. Estimate how many neutrinos are produced each second from the sun? What is the solar neutrino flux at the earth? (How many neutrinos pass through your body per second?)

Solution

2% is carried away by neutrinos, so the actual energy produced for radiation

$$
E=(0.98 \times 26.731 \mathrm{MeV}) \times 1.6 \times 10^{-12} \mathrm{erg} / \mathrm{eV}
$$

Each alpha particle produced $\rightarrow 2$ neutrinos, so with $L_{\odot}=3.846 \times 10^{33} \mathrm{ergs} / \mathrm{s}$, the neutrino production rate is $2 \times 10^{38} \mathrm{v} / \mathrm{s}$, and the flux at earth is $2 \times 10^{38} / 4 \pi(1 \mathrm{AU})^{2} \approx 6.6 \times 10^{10} v \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

The thermonuclear reaction rate,

$$
\begin{aligned}
r_{p p}= & 3.09 \times 10^{-37} n_{p}^{2} T_{6}^{-2 / 3} \exp \left(-33.81 T_{6}^{-1 / 3}\right) \\
& \left(1+0.0123 T_{6}^{1 / 3}+0.0109 T_{6}^{2 / 3}+0.0009 T_{6}\right)\left[\mathrm{cm}^{-3} \mathrm{~s}^{-1}\right]
\end{aligned}
$$

where the factor $3.09 \times 10^{-37} n_{p}^{2}=11.05 \times 10^{10} \rho^{2} X_{H}^{2}$

$$
\begin{aligned}
q_{p p}= & 2.38 \times 10^{6} \rho X_{H}^{2} T_{6}^{-2 / 3} \exp \left(-33.81 T_{6}^{-1 / 3}\right) \\
& \left(1+0.0123 T_{6}^{1 / 3}+0.0109 T_{6}^{2 / 3}+0.0009 T_{6}\right)\left[\operatorname{erg~g}^{-1} \mathrm{~s}^{-1}\right]
\end{aligned}
$$

```
\(P P I\) vs \(P P I I\)
ie., \({ }^{3} \mathrm{He}\) to react with \({ }^{3} \mathrm{He}\) lower temp.
    or with \(4 \mathrm{He} T>1.4 \times 10^{7} \mathrm{~K}\)
Relative importame of each chain
        i, e, branching ratio \(\longleftrightarrow T, \rho, \mu\)
\(T>3 \times 10^{7} \mathrm{~K}\), PPIII dominates
    out in reality, at this temperature. CNO reactions
                                    take over.
Overall rate of energy generation io determined by
    the slowest reaction, i, e, the \(1^{s t}\) one, \(\uparrow \sim 10^{10} \mathrm{y} r\)
        \(q_{p P} \sim \rho^{\prime} T^{n}, \quad n \sim 4-6\)
\(Q_{P P} \sim 26.73 \mathrm{MaV} \approx 6.54 \mathrm{MeV}\) per proton
\(n \sim 6\) for \(\mathrm{T} \approx 5 \times 10^{6} \mathrm{~K}\)
\(n \sim 3.8\) for \(\mathrm{T} \approx 15 \times 10^{6} \mathrm{~K}(\) Sun \()\)
\(n \sim 3.5\) for \(\mathrm{T} \approx 20 \times 10^{6} \mathrm{~K}\)
```

Among all fusion processes, the p-p chain has the lower temperature threshold, and the weakest temperature dependence.
$Q_{p p}=\left(M_{4 H}-M_{H e}\right) c^{2}$
$=26.73 \mathrm{MeV}$
But some energy (up to a few MeV) is carried away by neutrinos.

CNO cyele C．N．O as catalysts

（bi－cycle）

$$
\begin{aligned}
& { }^{12} \mathrm{C}+{ }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{~N}+\gamma^{10^{6}} \mathrm{y} \quad{ }^{14} \mathrm{~N}+{ }^{1} \mathrm{H} \rightarrow{ }^{15} \mathrm{O}+\gamma \\
& { }^{13} \mathrm{~N} \rightarrow{ }^{13} \mathrm{C}+e^{+}+v 14 \text { min }{ }^{15} \mathrm{O} \rightarrow{ }^{15} \mathrm{~N}+e^{+}+v \\
& { }^{13} \mathrm{C}+{ }^{1} \mathrm{H} \rightarrow{ }^{14} \mathrm{~N}+\gamma_{3 \times 1} 0^{5} y{ }^{15} \mathrm{~N}+{ }^{1} \mathrm{H} \rightarrow{ }^{16} \mathrm{O}+\gamma \leftarrow
\end{aligned}
$$

$$
\begin{aligned}
& { }^{15} \mathrm{O} \rightarrow{ }^{15} \mathrm{~N}+e^{+}+v 82 \mathrm{~s}{ }^{17} \mathrm{~F} \rightarrow{ }^{17} \mathrm{O}+e^{+}+\nu \\
& \rightarrow{ }^{15} \mathrm{~N}+{ }^{1} \mathrm{H} \rightarrow{ }^{12} \mathrm{C}+{ }^{4} \mathrm{He}^{10}{ }^{4} \mathrm{y} \text { 铞 } \mathrm{O}+{ }^{1} \mathrm{H} \rightarrow{ }^{14} \mathrm{~N}+{ }^{4} \mathrm{He}
\end{aligned}
$$

CN cycle more significant
NO cycle efficient only when $T>20 \times 10^{6} \mathrm{~K}$

Recognized by Bethe and independently by von Weizsäcker

CN cycle＋NO cycle Cycle can start from any reaction as long as the involved isotope is present．
$Q_{\text {CNO }} \sim 25 \mathrm{MeV}$ after that carried away by the neutrinos
$8_{C N O} \sim \rho T^{16}$

序号r	反应式	Q（MeV）	（q．），（MeV）	速率 $\left.N_{A}<\sigma 0\right\rangle$ （ $\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ ）
1	${ }^{1} \mathrm{H}\left(\mathrm{p}, \mathrm{e}^{+} \nu\right)^{2} \mathrm{H}$	1． 442	0． 265	1． 26×10^{-20}
2	${ }^{2} \mathrm{H}(\mathrm{p}, \gamma)^{3} \mathrm{He}$	5.494		1.85×10^{-3}
3	${ }^{3} \mathrm{He}\left({ }^{3} \mathrm{He}, 2 \mathrm{p}\right)^{4} \mathrm{He}$	12.860		2． 29×10^{-11}
4	${ }^{3} \mathrm{He}(\alpha, \gamma){ }^{\prime} \mathrm{Be}$	1． 588		1.67×10^{-18}
5	${ }^{7} \mathrm{Be}\left(\mathrm{e}^{-}, \nu\right)^{7} \mathrm{Li}$	0.862	0． 862	－4． $59 \times 10^{6} \mathrm{~s}$
6	${ }^{7} \mathrm{Li}(\mathrm{p}, \gamma)^{8} \mathrm{Be}(\alpha){ }^{4} \mathrm{He}$	17．346		3． 21×10^{-11}
7	${ }^{\prime} \mathrm{Be}(\mathrm{p}, \gamma)^{4} \mathrm{~B}$	0． 137		1． 38×10^{-4}
8	${ }^{5} \mathrm{~B}\left(\mathrm{e}^{+} \nu\right)^{2} \mathrm{Be}(\alpha){ }^{4} \mathrm{He}$	18．072	6.710	$\cdot 0.77 \mathrm{~s}$
9	${ }^{12} \mathrm{C}(\mathrm{p}, \gamma)^{1{ }^{1} \mathrm{~N}}$	1． 944		1． 26×10^{-11}
10	${ }^{31} \mathrm{~N}\left(\mathrm{e}^{+} \nu\right)^{13} \mathrm{C}$	2． 221		－870s
11	${ }^{13} \mathrm{C}(\mathrm{p}, \gamma){ }^{4 \prime} \mathrm{~N}$	7． 551		4.59×10^{-12}
12	${ }^{4} \mathrm{~N}(\mathrm{p}, \gamma)^{3} \mathrm{O}$	7． 297		1.30×10^{-14}
13	${ }^{15} \mathrm{O}\left(\mathrm{e}^{+}\right)^{14} \mathrm{~N}$	2． 754	0． 9965	$\cdot 178$ s
14	${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha)^{12} \mathrm{C}$	4． 966		3.62×10^{-10}
15	${ }^{15} \mathrm{~N}(\mathrm{p}, \gamma){ }^{14} \mathrm{O}$	12． 128		2.76×10^{-11}
16	${ }^{\text {a }} \mathrm{O}(\mathrm{p}, \gamma)^{10} \mathrm{~F}$	0.600		2.51×10^{-18}
17	${ }^{n} \mathrm{~F}\left(\mathrm{e}^{+} \nu\right)^{17} \mathrm{O}$	2． 762	0． 9994	$\cdot 95$ s
18	${ }^{12} \mathrm{O}(\mathrm{p}, \alpha)^{4} \mathrm{~N}$	1． 191		4.07×10^{-16}
19	${ }^{10} \mathrm{O}(\mathrm{p}, \gamma)^{40} \mathrm{~F}$	5． 607		3.05×10^{-18}
20	${ }^{3} \mathrm{~F}\left(\mathrm{e}^{+} \nu\right)^{18} \mathrm{O}$	1． 655	0． 3965	$\cdot{ }^{1.67}$
21	${ }^{18} \mathrm{O}(\mathrm{p}, \alpha)^{15} \mathrm{~N}$	3． 980		7． 63×10^{-13}
22	${ }^{12} \mathrm{O}(\mathrm{p}, \gamma)^{19} \mathrm{~F}$	7． 994		8． 43×10^{-16}
23	${ }^{19} \mathrm{~F}\left(\mathrm{p}, \alpha^{2}\right)^{10} \mathrm{O}$	8． 114		6.25×10^{-18}

表示 β 裹变的半周期．

互作用过程的快椇用原子半衰期表示，根擆 Fuller，et al．，1980，1982，1985；Clayton
1968）。表中的速承为典型温度下的速事， $\mathrm{p}-\mathrm{p}$ 锛的典型濞度为 $1 \times 10^{\prime} \mathrm{K}, \mathrm{CNO}$ 循环的

Fig. 10.1. Nuclear energy generation as a function of temperature (with $\rho X^{2}=100$ and $X_{\mathrm{CN}}=0.005 X$ for the proton-proton reaction and the carbon cycle, but $\rho^{2} Y^{3}=10^{8}$ for the triple-alpha process).

At the center of the Sun,

$$
q_{\mathrm{CNO}} / q_{\mathrm{pp}} \approx 0.1
$$

CNO dominates in stars
$>1.2 \mathrm{M}_{\odot}$, i.e., of a spectral
type F7 or earlier
\rightarrow large energy outflux
\rightarrow a convective core
This separates the lower and upper MS.

CN cycle takes over the PP chains near $\mathrm{T}_{6}=18$. Helium burning starts $\sim 10^{8} \mathrm{~K}$.

The Solar Standard Model (SSM)

Best structural and evolutionary model to reproduce the observational properties of the Sun

- $L_{\odot}=3.842 \times 10^{33}$ [ergs $\left./ \mathrm{s}\right]$
- $R_{\odot}=6.9599 \times 10^{10}[\mathrm{~cm}]$
- $M_{\odot}=1.9891 \times 10^{33}[\mathrm{gm}]$
- Spectroscopic observations $\rightarrow \mathrm{Z} / \mathrm{X}=0.0245$
(latest value seems to indicate $\mathrm{Z}_{\odot}=0.013$)
Neglecting rotation, magnetic fields, and mass loss ($d M / d t \sim 10^{-14} M_{\odot} / \mathrm{yr}$)

Sun Fact Sheet

http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html

```
A He Gas - the triple-alpha process He-burning ignites at \(\mathrm{Tc} \sim 10^{8} \mathrm{~K}\)
\({ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{8} \mathrm{Be} \quad\left(-95 \mathrm{keV}\right.\), i.e., endothermic) \(\quad\) The lifetime of \({ }^{8} \mathrm{Be}\) is \(2.6 \times 10^{-16} \mathrm{~s}\) but is still
                                    longer than the mean-free time between \(\alpha\) particles at \(T_{8}\)
                                    (Edwin Salpeter, 1952)
    \({ }^{8} \mathrm{Be}+{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}+\gamma \quad(7.4 \mathrm{MeV}) \leftarrow\) bottleneck
            Note: net \(3{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}\)
```

```
\[
5=
\]
```



```
\[
Q_{3 \infty}=\underset{\hookrightarrow 5.8 \times 10^{17} \mathrm{lerg} g^{-1} \sim 0.1 \text { of } \mathrm{He} \rightarrow \mathrm{He}^{72} \mathrm{C}}{\substack{\text { ne }}}
\]
```



```
\[
q_{z \alpha} \sim \rho^{2} T^{4 / 0} \quad \because \underset{\substack{\text { bottleneck }=2^{\text {nd }} \\ \leftrightarrow B_{B_{e}}}}{\text { reaction }}
\]
    \(q_{z \alpha} \sim \rho^{2} T^{4 / 0} \quad \because\) bettroneck \(=2^{\text {ned }}\) reaction
nucleosynthesis during helium burning
                            \(\mathrm{k} \quad \ldots\)
\[
=
\]
nucleosynthesis during helium burning
```



```
\[
C^{\prime 2}\left(\alpha, \gamma^{2}\right) O^{16} \quad Q=7,162 \mathrm{MeV}
\]
\[
O^{16}(\alpha, \gamma) N_{l}^{20}
\]
\[
\text { A succession of }(\alpha, \gamma) \text { processes }
\]
\[
\rightarrow{ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne},{ }^{24} \mathrm{Mg} \ldots \text { (the } \alpha \text {-process) }
\]
```


A carbon/ oxygen Gas

C-burning ignites when $\mathrm{Tc} \sim(0.3-1.2) \times 10^{9} \mathrm{~K}$, i.e., for stars $15-30 \mathrm{M}_{\odot}$

O-burning ignites when $\mathrm{Tc} \sim(1.5-2.6) \times 10^{9} \mathrm{~K}$, i.e., for stars $>15-30 \mathrm{M}_{\odot}$

The p and α particles produced are captured immediately (because of the low Coulomb barriers) by heavy elements
\rightarrow isotopes
0 burning \rightarrow Si

$$
\begin{aligned}
& q_{P P}=2.4 \times 10^{6} \rho X^{2} T_{6}{ }^{-2 / 3} \exp \left[-33.8 T_{6}{ }^{-1 / 3}\right] \quad\left[\operatorname{erg~g}^{-1} \mathrm{~s}^{-1}\right] \\
& q \propto \rho X_{H}^{2} T^{4} \\
& q_{C N}=8 \times 10^{27} \rho X X_{C N} T_{6}{ }^{-2 / 3} \exp \left[-152.3 T_{6}{ }^{-1 / 3}\right]\left[\operatorname{erg~g}^{-1} \mathrm{~s}^{-1}\right] \\
& q \propto \rho X_{H} X_{C N} T^{16} \quad \frac{X_{C N}}{X_{H}}=0.02 \text { ok for Pop I } \\
& \begin{aligned}
q_{3 \alpha} & =3.9 \times 10^{11} \rho^{2} X_{\alpha}{ }^{3} T_{8}{ }^{-3} \exp \left[-42.9 T_{8}\right] \quad\left[\operatorname{erg~g}^{-1} \mathrm{~s}^{-1}\right] \\
& \approx 4.4 \times 10^{-8} \rho^{2} X^{3} T_{8}{ }^{40}\left[\operatorname{erg~g}^{-1} \mathrm{~s}^{-1}\right] \quad\left(\text { if } T_{8} \approx 1\right)
\end{aligned} \\
& \approx 4.4 \times 10^{-8} \rho^{2} X_{\alpha}{ }^{3} T_{8}{ }^{40}\left[\operatorname{erg~g}^{-1} \mathrm{~s}^{-1}\right] \quad\left(\text { if } T_{8} \approx 1\right)
\end{aligned}
$$

No: Coulomb barrier becomes extremly high; another nuclear reaction takes place
EM binding force

Likewise

For example, ${ }^{16} \mathrm{O}+\alpha \leftrightarrow{ }^{20} \mathrm{Ne}+\gamma$
If $T<10^{9} \mathrm{~K} \rightarrow$
but if $T \geq 1.5 \times 10^{9} \mathrm{~K}$ (in radiation field) \leftarrow
So ${ }^{28}$ Si disintegrates at $\approx 3 \times 10^{9} \mathrm{~K}$ to lighter elements (then recaptured ...)
Until a nuclear statistical equilibrium is reached
But the equilibrium is not exact
\rightarrow pileup of the iron group nuclei ($\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$) which can resist photodisintegration until $7 \times 10^{9} \mathrm{~K}$

Nuclear Fuel	Process	$\mathrm{T}_{\text {threshold }}$ $\left(10^{6} \mathrm{~K}\right)$	Products	Energy per nucleon (MeV)
H	$\mathrm{p}-\mathrm{p}$	~ 4	He	6.55
H	CNO	15	He	6.25
He	3α	100	C, O	0.61
C	$\mathrm{C}+\mathrm{C}$	600	$\mathrm{O}, \mathrm{Ne}, \mathrm{Na}, \mathrm{Mg}$	0.54
O	$\mathrm{O}+\mathrm{O}$	1,000	$\mathrm{Mg}, \mathrm{S}, \mathrm{P}, \mathrm{Si}$	~ 0.3
Si	Nuc. Equil.	3,000	$\mathrm{Co}, \mathrm{Fe}, \mathrm{Ni}$	<0.18

${ }^{56} \mathrm{Fe}+100 \mathrm{MeV} \rightarrow 13{ }^{4} \mathrm{He}+4 n$

If $T \uparrow \uparrow \uparrow$, even ${ }^{4} \mathrm{He} \rightarrow p^{+}+n^{0}$

So stellar interior has to be between a few T_{6} and a few T_{9}.

Lesson: Nuclear reaction that absorb energy from ambient radiation field (in stellar interior) can lead to catastrophic consequences.

Alternative Energy --- Accretion Energy

$$
\begin{aligned}
& \text { Accretion Energy } \\
& \qquad L=\frac{G M}{R} \dot{M} \\
& \text { in terms of the Scharzschild radius } R_{s}=\frac{2 G M}{c^{2}} \\
& \Rightarrow L=\underbrace{\left[\frac{R_{s}}{2 R}\right] \dot{M} c^{2}}_{\text {'efficiency; }}
\end{aligned}
$$

Accretion is highly efficient onto a compact object,

$$
\begin{aligned}
& \text { For chemical reaction typically ~ a few eV } \\
& \text { R.9., } H_{2} \text { dissociation, } E \sim 4.48 \mathrm{eV} \\
& \therefore \quad \frac{4.480 \mathrm{cv}}{2 \mathrm{mp}} \sim 10^{12} \mathrm{erg} g^{-1} \rightarrow 10^{-9} \mathrm{sff} \text {. } \\
& \text { For nuctear reactions typically } \sim \text { a few MeV } \\
& \text { R.9., } H H \rightarrow H e, E \sim 7 \mathrm{meV} \\
& \therefore \frac{7 \mathrm{MeV}}{\mathrm{mp}} \sim 10^{19} \mathrm{srg} \mathrm{~g}^{-1} \rightarrow 10^{-2} \mathrm{eff} . \\
& \text { For accretion process } \quad E \sim 10^{21} \text { ang } g^{-1} \\
& \text { Ex. a neutron star } R \sim 15 \mathrm{~km}, \frac{R_{s}}{2 R} \sim 0.1 \\
& \text { Longain "High-Energy Astophyaic" }
\end{aligned}
$$

Time Scales

Different physical processes inside a star,
e.g., nuclear reactions (changing chemical composition) are slow (longer time scales); structural adjustments ($d P / d t$) take places on relatively shorter time scales.
\checkmark Dynamical timescale
\checkmark Thermal timescale
\checkmark Nuclear timescale
\checkmark Diffusion timescale

Dynamical Timescale

hydrostatic equilibrium $\xrightarrow{\text { perturbation }}$ motion $\xrightarrow{\text { adjustment }}$ hydrostatic equilibrium

Free-fall collapse

Equation of motion $\ddot{r}=-\frac{G M_{r}}{r^{2}}-\frac{1}{\varrho} \frac{d P}{d r}$
Near the star's surface $r=R, M_{r}=M$, so $\ddot{R}=-\frac{G M}{R^{2}}-\frac{1}{\varrho} \frac{d P}{d R}$
Free-fall means pressure << gravity, so $\ddot{R} \approx-\frac{G M}{R^{2}}$
Assuming a constant acceleration $R=-(\ddot{R} / 2) \tau_{\mathrm{ff}}^{2}$, so

$$
\tau_{\mathrm{ff}}=\left(2 R^{3} / G M\right)^{1 / 2}=\frac{1}{\left(\frac{2}{3} \pi G \bar{\rho}\right)^{1 / 2}} \approx 0.04\left(\frac{\rho_{\odot}}{\bar{\rho}}\right)^{1 / 2}[\mathrm{~d}]
$$

Stellar Pulsation

The star pulsates about the equilibrium configuration
\rightarrow same as dynamical timescale

$$
\tau_{\text {pul }} \propto 1 / \sqrt{\bar{\rho}}
$$

Propagation of Sound Speed (pressure wave)

Pressure induced perturbation,

$$
R / \tau_{\mathrm{ff}}^{2}=-\frac{\ddot{R}}{2}=\frac{G M}{R^{2}}+\frac{1}{\varrho} \frac{d P}{d R} \approx \frac{1}{\varrho} \frac{d P}{d R} \approx \frac{1}{\varrho} \frac{P}{R}
$$

so $\frac{R}{\tau_{\mathrm{ff}}} \approx \sqrt{\frac{P}{\rho}} \approx c_{S}$ (sound speed) $\propto \sqrt{T}$ (for ideal gas) $\tau_{\mathrm{s}} \approx \frac{R}{c_{S}}$
In general, $\tau_{\mathrm{dyn}} \approx \frac{1}{\sqrt{G \bar{\rho}}} \approx \frac{1.6 \times 10^{15}}{\sqrt{n}}[\mathrm{~s}]=1000 \sqrt{\left(\frac{R}{R_{\odot}}\right)^{3}\left(\frac{M_{\odot}}{M}\right)}[\mathrm{S}]$

Thermal Timescale

Kelvin-Helmholtz timescale (radiation by gravitational contraction)

$$
E_{\text {total }}=E_{\text {grav }}+\mathrm{E}_{\text {thermal }}=\frac{1}{2} E_{\text {grav }}=-\frac{1}{2} \alpha G M^{2} / R
$$

This amount of energy is radiated away at a rate L, so timescale

$$
\begin{aligned}
\tau_{\mathrm{KH}} & =\frac{E_{\text {total }}}{L}=\frac{1}{2} \alpha G M^{2} / R L \\
& =2 \times 10^{7} \mathrm{M}^{2} / R L \quad[\mathrm{yr}] \text { in solar units }
\end{aligned}
$$

$$
\tau_{\mathrm{KH}} \approx 2 \times 10^{7}\left(\frac{M}{M_{\odot}}\right)^{2}\left(\frac{R_{\odot}}{R}\right)\left(\frac{L_{\odot}}{L}\right)[\mathrm{yr}]
$$

$$
\begin{array}{c|c}
\hline M=1 \mathcal{M}_{\odot}, R=1 \mathrm{pc} & M=1 \mathcal{M}_{\odot}, R=1 \mathcal{R}_{\odot} \\
\hline \tau_{\mathrm{dyn}} \approx 1.6 \times 10^{7} \mathrm{yr} & \tau_{\mathrm{dyn}} \approx 1.6 \times 10^{3} \mathrm{~s} \approx 30 \mathrm{~min} \\
\tau_{\text {ther }} \approx 1 \mathrm{yr} & \tau_{\text {ther }} \approx 3 \times 10^{7} \mathrm{yr}
\end{array}
$$

Nuclear Timescale

Time taken to radiate at a rate of L on nuclear energy

$$
\begin{aligned}
& 4{ }^{1} H \rightarrow{ }^{4} \mathrm{He}\left(Q=6.3 \times 10^{18} \mathrm{erg} / \mathrm{g}\right) \\
& \tau_{\text {nuc }}= \frac{E_{\text {nuc }}}{L}=6.3 \times 10^{18} \frac{M}{L} \\
& \tau_{\text {nuc }} \approx 10^{11}\left(\frac{M}{M_{\odot}}\right)\left(\frac{L_{\odot}}{L}\right)[\mathrm{yr}]
\end{aligned}
$$

From the discussion above, $\tau_{\text {nuc }} \gg \tau_{\text {KH }} \gg \tau_{\text {dyn }}$

Main-Sequence Lifetime of the Sun

Energy Gained in a PP Chain

$4 \mathrm{H} \rightarrow 1 \mathrm{He}+$ neutrinos + energy

Mass of $4 \mathrm{H}=6.693 \times 10^{-27} \mathrm{~kg}$
Mass of $1 \mathrm{He}=6.645 \times 10^{-27} \mathrm{~kg}$
Mass deficit $\boldsymbol{>} \mathbf{0 . 0 4 8} \times \mathbf{1 0}^{-27} \mathrm{~kg}=0.7 \%$

$$
\mathrm{M}_{\odot} \approx 2 \times 10^{33}[\mathrm{~g}]
$$

$\mathrm{L}_{\odot} \approx 4 \times 10^{33}$ [ergs/s]
Fusion efficiency

Nuclear
physics

$$
\tau_{\odot}^{\mathrm{MS}} \approx \mathrm{M}_{\odot} \frac{(0.007)(0.1) c^{2}}{\mathrm{~L}_{\odot}}=3.15 \times 10^{17}[\mathrm{~s}]=10^{10}[\mathrm{yr}]
$$

Given $L_{\mathrm{MS}} / L_{\odot} \approx\left(M / M_{\odot}\right)^{4} \rightarrow \tau^{\mathrm{MS}} \approx 10^{10}\left(M_{\odot} / M\right)^{3}[\mathrm{yr}]$

Diffusion Timescale

Time taken for photons to randomly walk out from the stellar interior to eventual radiation from the surface
$r_{e}=\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{m_{e} c^{2}}$ ("classical" radius of the electron)
$\sigma_{\text {Thomson }}=\frac{8 \pi}{3} r_{e}^{2}=6.6525 \times 10^{-29}\left[\mathrm{~m}^{2}\right]$ for interactions with photon energy $h \nu \ll m_{e} c^{2}$ (electron rest energy)
Thus, mean free path $\ell=1 /\left(\sigma_{T} n_{e}\right)$, where for complete ionization of a hydrogen gas, $n_{e}=M /\left(m_{p} R^{3}\right)$.
So, $\ell \approx m_{p} R^{3} / \sigma_{T} M=4[\mathrm{~mm}]$ for the mean density.
At the core, it is 100 times shorter.
$\tau_{\mathrm{dif}} \approx 10^{4}[\mathrm{yr}]$ (Exercise: Show this.)

For an isotropic gas

$$
P=\frac{1}{3} \int_{0}^{\infty} p v_{p} n(p) d p
$$

- p and v_{p} : relativistic case
- $n(p)$: particle type \& quantum statistics

For a photon gas, $p=h v / c$, so

$$
\begin{gathered}
P_{\text {rad }}=\frac{1}{3} \int_{0}^{\infty} h v n(v) d v=\frac{1}{3} u=\frac{1}{3} a T^{4} \\
a=7.565 \times 10^{15} \mathrm{ergs} \mathrm{~cm}^{-3} \mathrm{~K}^{-4}
\end{gathered}
$$

Radiation Pressure

$P_{\text {total }}=P_{\text {radiation }}+P_{\text {gas }}$
Since $P_{\text {rad }} \sim T^{4} \sim M^{4} / R^{4}$
But $P_{\text {tot }} \sim M^{2} / R^{4}$
$\rightarrow P_{\text {rad }} / P_{\text {tot }} \sim M^{2}$
So the more massive of a star, the higher relative contribution by radiation pressure (and γ decreases to 4/3.)

When $P_{\text {rad }}$ dominates

$$
\begin{gathered}
\mathcal{F}=\frac{-d P_{\mathrm{rad}} / d r}{\kappa \rho}=\frac{4 a c}{3} T^{3} \frac{d T}{d r}=\frac{L}{4 \pi r^{2}} \\
\frac{d \mathrm{P}_{\mathrm{rad}}}{d r}
\end{gathered} \sim \frac{\kappa \rho}{c} \frac{L}{4 \pi r^{2}}
$$

On the other hand, by definition

$$
\begin{aligned}
& \frac{d P_{\text {tot }}}{d r}=-\rho \frac{G m}{r^{2}} \\
\Rightarrow & \frac{d \mathrm{P}_{\mathrm{rad}}}{d P_{\mathrm{tot}}}=\frac{\kappa L}{4 \pi c G m}
\end{aligned}
$$

Toward the outer layers, both $P_{\text {gas }} \searrow$ and $P_{\text {rad }} \searrow$, so $P_{\text {tot }} \downarrow \searrow$, and $d P_{\text {tot }}>d P_{\text {rad }}$. This leads to

$$
\kappa L \leq 4 \pi c G m
$$

At the surface, $m=M, P=0$, it is always radiative, so

$$
L<\frac{4 \pi c G M}{\kappa}
$$

This is the Eddington luminosity limit = Maximum luminosity of a celestial object in balance between the radiation and
Numerically, gravitational force.

$$
L_{E d d} / L_{\odot}=3.27 \times 10^{4} \mu_{e} M / M_{\odot}
$$

For X-ray luminosity, scattered by electrons in an optically thin gas, $L_{X}<10^{38} \mathrm{erg} \mathrm{sec}^{-1}$

Eddington limit is the upper limit on the luminosity of an object of mass $M, L \leq\left(\frac{4 \pi G m_{p}}{\sigma_{T}}\right) M$

$$
\equiv L_{\mathrm{Edd}} \approx 10^{38 M} / M_{\odot}\left[\mathrm{erg} \mathrm{~s}^{-1}\right]
$$

For $1 M_{\odot}, L_{\mathrm{Edd}} \approx 5 \times 10^{4} L_{\odot}, M_{\mathrm{bol}}=-7.0$
For $40 M_{\odot}, M_{\mathrm{bol}}=-11.0$
Eta Carina, $L \approx 5 \times 10^{6} L_{\odot}, M_{\mathrm{bol}}=-11.6, M \approx 120 M_{\odot}$

In general,

$$
L_{E \text { ad }}=3.2 \times 10^{4} \frac{M}{M_{0}} \frac{K_{0}}{K}\left[L_{0}\right]
$$

inequality is violated
$L_{\text {Ed }}$ can be exceeded if
(1) $L \uparrow \uparrow$, e.g., intense thermonuclear burning
(2) $K \uparrow \uparrow, ~ e .9, H$ a H e ionization
\Rightarrow Hydrostatic equilibrium can wo longer
maintained
\therefore need a different neat tramper mechanism

Comparison of 1,5 , and $25 \mathcal{M}_{\odot}$ stars

Evolutionary tracks of theoretical model stars in the HR diagram (Iben, 1985)

