Compact Objects

Compact objects

Nuclear energy $4^{m} H-{ }^{m} H_{e}=0.029 m_{H}$ mass deficit $=7 \times 10^{-3} \mathrm{~g} / \mathrm{g}$
\therefore Energy available $=m c^{2}=6 \times 10^{18}$ eng g^{-1}
Chemical energy $\approx 100 \mathrm{kcal} \Rightarrow 4 \times 10^{12} \mathrm{rg} \mathrm{g} \mathrm{g}^{-1}$
Gravitational energy 8.9 . for $0, \frac{3}{5} \frac{M_{\theta}^{2} G}{R_{\theta}} \sim 2 \times 10^{48} \mathrm{eg}$
$\Rightarrow 10^{15} \mathrm{eg} \mathrm{g} \mathrm{g}^{-1}$
Accretion $\frac{M G}{r} \cdot \dot{m}$

$$
\text { In general } \begin{aligned}
\frac{\varepsilon_{n u c}}{\text { mass }} \sim 0.01 \mathrm{C}^{2} \quad & \frac{\varepsilon_{\text {grave }}}{\text { mass }}
\end{aligned} \sim \frac{3 G M}{5 R},
$$

For very compact objects, longe amounts of gravitational energy can be released, perhaps even more than nuclear energy,

$$
R \lesssim \frac{M G}{0.01 \mathrm{c}^{2}} \sim 10^{7} \text { an } \sim 100 \mathrm{~km} \text {, for } 1 \mathrm{M}_{0}
$$

of. Schwareschild radio $R_{S} \equiv \frac{2 G M}{c^{2}} \sim 3 \mathrm{~km}$, for $1 M_{0}$

More about Degeneracy

Atoms in a white dwarf are fully ionized and the e^{-}gas is degenerate.

184 u Bessel observed the oscillated path of Sirius 1862 Sirius B discoved by Clark

$$
\begin{aligned}
M(\operatorname{sinins} B) & \sim 2 \times 10^{33} \mathrm{~g} \longleftarrow \text { orbit } \\
R(\text { sirim } B) \sim & 2 \times 10^{9} \mathrm{~cm} \longleftarrow \text { surface temp. } \\
& \text { \&f } R_{Q} \sim 7 \times 10^{10} \mathrm{am} \text { and radiati }
\end{aligned}
$$

$$
\bar{P}_{\text {siring } B}=\frac{M}{\frac{4}{3} \pi R^{3}} \sim 0.7 \times 10^{5} \mathrm{~g} \mathrm{am}^{-3}
$$

$$
\text { cf } \bar{\rho}_{\text {sun }} \sim 1 \operatorname{gan}^{-3}
$$

Sirius B and A by the Chandra Observatory

$$
\begin{aligned}
& \text { For } \omega D_{s}\langle\rho\rangle \sim 11^{5}-1 c^{6} \mathrm{gam}^{-3} \\
& \text { mean separation of carbon ions } \\
& \left\langle d_{i i}\right\rangle \sim\left(\frac{\rho}{m_{c}}\right)^{-1 / 3} \approx 0.02 \mathrm{~A} \\
& m_{c} \simeq 12 \mathrm{~m}_{\mathrm{H}} \\
& \text { but the size of a normal carbon atom } \\
& r_{c} \simeq \frac{a_{0}}{z} \simeq \frac{a_{0}}{6} \simeq 0.08 \mathrm{~A} \\
& \therefore \text { complete ionization } \\
& \rightarrow \text { fermion gas } r \text { separate nuclei \& } e^{-} \\
& \text {electron gas } \\
& \text { Mean separation of electron } \\
& \left\langle d_{s e}\right\rangle \sim\left(\frac{z \rho}{m_{0}}\right)^{-1 / 3} \approx 0.01 \AA \\
& \text { but } \lambda_{e}=\left[\hbar^{2} / m_{e} k T\right]^{1 / 2} \approx 10 \AA \Rightarrow \text { QM treatment! }
\end{aligned}
$$

Particle in a Box

cf. standing wave in a string
$\Psi=0$ at the walls
\rightarrow De Broglie wavelength

$$
\lambda_{n}=2 L / n, \quad n=1,2,3, \ldots
$$

Since $\lambda_{n}=h / m v \rightarrow E_{K}=1 / 2 m v^{2}=(m v)^{2} / 2 m=\frac{h^{2}}{2 m \lambda^{2}}$
No potential $\rightarrow E_{n}=(m v)^{2} / 2 m=\frac{h^{2}}{2 m \lambda_{n}^{2}}=\frac{n^{2} h^{2}}{8 m L^{2}}=\frac{1}{2 m} \frac{n^{2} \pi^{2} \hbar^{2}}{L^{2}}$

Within the box, the Schrödinger equation

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m}{\hbar^{2}} E \psi=0 \rightarrow \psi_{n}=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}
$$

At the center, ψ_{1}, ψ_{3} probability \rightarrow max
ψ_{2} probability $=0$
c.f. classical physics \rightarrow same probability everywhere in the box

Consider an atom in a box of volume $V=l^{3}$
wave equation $-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=\varepsilon \psi$
energies, $\quad \varepsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi}{l}\right)^{2}\left[n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right]$
where n_{i} 's are quantum no's
any positive integer
(ni_{i})
In the phase space

$$
\begin{aligned}
& \varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi n_{F}}{l}\right)^{2} \\
& n_{F}: \text { radio that separates } \\
& \text { filled amply states }
\end{aligned}
$$

For N electrons

$$
\varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi n_{F}}{\ell}\right)^{2}
$$

$N_{e}=2 \times \frac{1}{8} \times \frac{4}{3} \pi n_{F}^{3} \quad n_{F}=\left(\frac{3}{\pi} N_{e}\right)^{1 / 3}$
2 spin states
$\therefore \varepsilon_{F}=\frac{\hbar^{2}}{2 m} \frac{\pi^{2}}{V^{2 / 3}}\left(\frac{3}{\pi} \mathrm{Ne}\right)^{2 / 3}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} \frac{N_{e}}{V}\right)^{2 / 3}$
$\varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n_{e}\right)^{2 / 3} \sim n_{e}^{2 / 3}$
electron concentration
Fermi energy: the highest filled energy level at temperature zero

The total energy of the system in the ground state

$$
\begin{aligned}
U_{e} & =2 \sum \varepsilon_{n \leq n_{F}}=2 \times \frac{1}{8} \times 4 \pi \int_{0}^{n_{F}} n^{2} \varepsilon_{n} d n \\
& =\frac{\pi^{2}}{2 m}\left(\frac{\hbar^{0}}{l}\right)^{2} \int_{0}^{n_{F}} n^{4} d n \quad \varepsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi n}{l}\right)^{2} \\
& =\frac{\pi^{3}}{10 m}\left(\frac{\hbar^{0}}{l}\right)^{2} n_{F}^{5}=\cdots=\frac{3}{5} N e \varepsilon_{F}
\end{aligned}
$$

Fermi energy of degenerate fermion gases

Phase of matter	Particles	E_{F}	$T_{F}=E_{F} / k_{B}[\mathrm{~K}]$
Liquid ${ }^{3} \mathrm{He}$	atoms	$4 \times 10^{-4} \mathrm{eV}$	4.9
Metal	electrons	$2-10 \mathrm{eV}$	5×10^{4}
White dwarfs	electrons	0.3 MeV	3×10^{9}
Nuclear matter	nucleons	30 MeV	3×10^{11}
Neutron stars	neutrons 300 MeV	3×10^{12}	
		$E_{F}=\frac{\hbar^{2}}{2 m_{e}}\left(3 \pi^{2} n_{e}\right)^{2 / 3}$	

$$
\begin{aligned}
& \text { The average kinetic energy per fermion (} e^{-} \text {) } \\
& \frac{U_{e}}{N_{e}}=\frac{3}{5} \varepsilon_{F} \quad \text { (Degenerate, nonrelativistic) } \\
& \text { For } N=\text { cost, if } n e \uparrow \text { (ide, volume) } \\
& \Rightarrow u_{0} \uparrow \Rightarrow \text { repulsive effect } \\
& \text { the volume. } \\
& \mathbb{P}=\frac{2}{3} u_{e}=\frac{2}{5} n \varepsilon_{F} \\
& \text { It can be shown (!) that for a relativistic, for } \\
& \text { which the energy } \varepsilon \sim p c \\
& \varepsilon_{F}=\hbar \pi c\left(\frac{3}{\pi} n_{e}\right)^{1 / 3} \sim n_{e}^{1 / 3} \\
& \text { and } \frac{U_{e}}{N}=\frac{3}{\mu} \varepsilon_{T} \text { (Degenente, relativistic) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { For any nonrelativistic particles } \\
& \qquad P V=\frac{2}{3} N E_{K} \Rightarrow P=\frac{2}{3} n E_{k} \\
& \text { For nonrelativistic degenerate gas } \\
& \qquad E_{k}=\frac{3}{5} \varepsilon_{F}=\frac{3}{5}\left(3 \pi^{2}\right)^{2 / 3} \frac{\hbar^{2}}{2 m} n_{e}^{2 / 3} \\
& \Rightarrow P_{\text {deg }} \sim 1.004 \times 10^{13}\left(\frac{\rho}{\mu_{e}}\right)^{5 / 3}\left[\text { dynes an }^{2}\right]
\end{aligned}
$$

$$
\mu_{\mathrm{e}} \approx 2 \text { with no } \mathrm{H}
$$

$$
\begin{aligned}
& \text { Degenerate State } \\
& E_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{n \pi}{l}\right)^{2} \Rightarrow E_{f}=\frac{\hbar^{2}}{2 m}\left(\frac{n_{F} \pi}{l}\right)^{2}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n_{e}\right)^{2 / 3} \\
& \text { Total } N_{e}=2 \cdot \frac{1}{8} \cdot \frac{4}{3} \pi n_{F}^{3}=\frac{\pi}{3} n_{F}^{3} \Rightarrow n_{F}=\left(\frac{3}{1} n_{e}\right)^{1 / 3} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Uncertainty prianiople } \Delta V \Delta^{3} p<h^{3} \\
& \text { 2. } 4 \pi p^{2} \alpha p=h^{3} \cdot n_{e}(p) \alpha p \quad \text { Considering the problem in terms of momentum } \\
& \text { pto } p_{F}, \quad 2 \cdot \frac{4}{3} \pi p_{F}^{3}=N_{e}=n_{e} \cdot h^{3} \Rightarrow p_{F}=\left(\frac{3 h^{3}}{8 \pi} n_{e}\right)^{1 / 3} \\
& \text { Presume integral } \mathbb{P}=\frac{1}{3} \int_{0}^{\infty} n(p) v p d p \text { (use } v=p / m_{e} \text {) } \\
& =\frac{1}{3} \int_{0}^{p_{F}} \frac{s \pi p^{2}}{h^{3}} \frac{p}{m_{e}} p d p \\
& =\frac{8 \pi}{3 m e h^{3}} \frac{1}{5} p_{F}^{5}=\frac{8 \pi}{15 m+h^{3}} p_{F}^{5} \\
& \text { For electron, } n_{e}=\frac{\rho}{\mu_{e} m_{H}} \quad \therefore \mathbb{P}=\frac{h^{2}}{20 m_{e}}\left(\frac{3}{\pi}\right)^{2 / 3}\left(\frac{\rho}{\mu_{e} m_{H}}\right)^{5 / 3} \\
& \text { Pressure and Momentum } \\
& \boldsymbol{P}=\frac{1}{3} \int_{0}^{\infty} n(p) v p d p
\end{aligned}
$$

In the non-relativistic case

$$
\begin{aligned}
P_{\mathrm{e}, \mathrm{deg}}^{\mathrm{NR}} & =\frac{h^{2}}{20 m_{e}}\left(\frac{3}{\pi}\right)^{2 / 3} \frac{1}{m_{\mathrm{H}}^{5 / 3}}\left(\frac{\rho}{\mu_{e}}\right)^{5 / 3} \\
& =1.00 \times 10^{13}\left(\frac{\rho}{\mu_{e}}\right)^{5 / 3}[\mathrm{cgs}] \\
& \propto \rho^{5 / 3}
\end{aligned}
$$

In the extremely relativistic case $v \rightarrow c$ in the pressure integral

$$
\begin{aligned}
P_{\mathrm{e}, \mathrm{deg}}^{\mathrm{ER}} & =\frac{h c}{8}\left(\frac{3}{\pi}\right)^{1 / 3} \frac{1}{m_{\mathrm{H}}^{3 / 4}}\left(\frac{\rho}{\mu_{e}}\right)^{4 / 3} \\
& =1.24 \times 10^{15}\left(\frac{\rho}{\mu_{e}}\right)^{4 / 3}[\mathrm{cgs}] \\
& \propto \rho^{4 / 3}
\end{aligned}
$$

For a composition devoid of hydrogen, and not very rich in extremely heavy elements, $\mu_{e} \approx 2$.

$$
\begin{aligned}
& \text { For Stave } M \Sigma 0.8 M_{C} \\
& \\
& \text { Peg enough to support the envelope } \\
& \rightarrow \\
& \rightarrow \text { core contracts slowly, } T \uparrow \text { little } \\
& \rightarrow \\
& \text { envelope expands gradically } \\
& \text { Star moves upwards on } H \cdot R \text { diagram } \\
& \text { Originally, the structure of the star } \\
& \downarrow T \uparrow
\end{aligned}
$$

Why does a red giant puff off?

$$
\begin{aligned}
& \text { As envelope } \uparrow, T \downarrow\left(\text { cooling), } E_{K} \downarrow\right. \text { and } \\
& H^{+}+e^{-} \text {recombine } \\
& H^{+}+e^{-} \longrightarrow H+\gamma \\
& \Rightarrow \text { Energy source! } \\
& \text { So outer envelope (beyond recombination layers) } \\
& \Delta T / \Delta r \uparrow \text { pushing the envelope } \\
& \text { At the same time, gravity } F_{g} \propto 1 / r^{2} \downarrow \downarrow \\
& \text { Recombination } \uparrow \Rightarrow \quad \angle \uparrow, \nabla T \uparrow, F_{g} \downarrow \\
& \Rightarrow \text { T } \downarrow \downarrow \Rightarrow \text { Recombination } \uparrow \uparrow \ldots
\end{aligned}
$$

Mechanical Pressure

$$
P=P_{\text {Ions }}+P_{\text {electrons }}+P_{\text {rad }}+\ldots
$$

- If the gas non degenerate

$$
P_{I}+P_{e}=P_{\text {gas }}=\frac{k}{\mu m_{H}} \rho T
$$

e^{-}

- If gas degenerate P_{z} : ideal gas
P_{e} : degenerate eq. 07 state
- If photon gas $P_{I}+P_{e}$ 《 $P_{\text {rad }=\frac{1}{3} a \pi^{*}}^{\substack{\frac{4 \sigma}{c}}}$

$$
\begin{aligned}
& \text { Note Above needs modifications } \\
& -T \uparrow \uparrow \text {, e.9. } T>10^{9} \mathrm{k} \\
& \qquad p^{+} \cdot e^{-} \text {pain pronation } \\
& -\rho \uparrow \uparrow \text {, particle interaction }<x \text { ideal gas } \\
& -\vec{B} \text {, addition of } P_{\text {mag }} \\
& \text { Radiation pressure } P_{\text {rad }}=\frac{1}{3} a T^{4} \\
& \text { Kor } \mathbb{P}_{\text {gas }}=\mathbb{P}_{\text {rad }} \Rightarrow T=3.20 \times 10^{7}(\rho / \mu)^{1 / 3} \sim 3.6 \times 10^{7} \rho^{1 / 3} \\
& P_{\text {ideal gas }} \propto \rho T / \mu
\end{aligned}
$$

Fig. 2-11 Zones of the equation of state of a gas in thermodynamic equilibrium. Radiation pressure dominates the gas pressure in the upper left-hand corner. The remaining boundaries are similar to those in Fig. 2-7. Also included for comparison are the transition strips in a hydrogen-dominated gas between H^{0} and H^{+}, between He° and He^{+}, and between He^{+}and He^{++}

$$
\begin{aligned}
& \text { Non relativistic, complete degeneracy } \\
& -\mathbb{P}_{N R, e} \sim 1.004 \times 10^{13}\left(\rho / \mu_{e}\right)^{5 / 3}\left[\text { dynes } \mathrm{cmi}^{-2}\right] \\
& \text { of } N R \text {, non-degenerate case, i.e., ideal gas } \\
& - \\
& \mathbb{P i d o a l ~} \sim \rho T \\
& S_{0, \text { as } \rho \uparrow \Rightarrow \mathbb{P}_{\text {ideal }} \longrightarrow \mathbb{P}_{\text {deg }}} \quad \begin{array}{l}
\text { and at relatively } \\
\quad \text { low temperature }
\end{array}
\end{aligned}
$$

Relativistic complete degeneracy
Total energy $\sim m_{0} c^{2}$

$$
p_{0} c
$$

$$
\frac{\rho_{\text {crit }}}{\mu_{e}} \approx 7.3 \times 10^{6}\left[\mathrm{gan}^{3}\right]
$$

where relativistic kinetics has to be used.
Note $\rho>10^{6} \mathrm{gam}^{3}$ or a degerate gas to be relativistic, $T>10^{9} \mathrm{~K}$ to be completely degenerate.
Condition that satisfy both $\rho>10^{6}, T>10^{9}$ probably exist oily in very late stages of stella n evolutions

Almost in all other cases, men relativistic is ok !

$$
\begin{aligned}
& \mathbb{P}_{\text {gas }}=\mathbb{P}_{\text {ion }}+\mathbb{P}_{e^{-}}=\left(\frac{1}{\mu_{s}}+\frac{1}{\mu_{e}}\right) \cdots \\
& \equiv \frac{1}{\mu} \cdots \\
& \therefore \frac{1}{\mu}=\frac{1}{\mu_{x}}+\frac{1}{\mu_{e}}=0.6 \text {, for } \odot \\
& \text { cf. } \frac{1}{\mu_{e}} \approx \frac{1}{2}(1+x) \text { for } \text { © } \\
& \sum_{i} x_{i} \frac{Z_{i}}{A_{i}} \text { [average \#of free electrons } \\
& \left(\frac{\rho}{\mu_{e}}\right)^{5 / 3} \leftrightarrow \rho^{T} n T \sim \rho^{2 / 3} \\
& \frac{P_{\text {crit }}}{\mu_{R}} \gtrsim 2.4 \times 10^{-8} T^{3 / 2}\left[\mathrm{gman}^{-3}\right] \begin{array}{l}
\text { When } \\
\text { sets in } \frac{\text { degeneracy }}{}
\end{array}
\end{aligned}
$$

Figure 7.1 Mapping of the temperature-density diagram according to the equation of state.

In general \rightarrow partial degeneracy

Fig. 15.5. The solid line gives the distribution function ($f(p)$ and p in cgs) for a partially degenerate electron gas with $n_{0}=10^{25} \mathrm{~cm}^{-3}$ and $T=1.9 \times 10^{7} \mathrm{~K}$, which corresponds to a degeneracy parameter $\psi=10$ (cf. the case of complete degeneracy of Fig. 15.2). The dot-dashed line shows the further increase of the parabola that defines an upper bound for the distribution function

... need evaluation of each parameter ...

$$
\begin{aligned}
& n_{e}=\frac{8 \pi}{h^{3}} \int_{0}^{\infty} \frac{p^{2} d p}{1+\exp [E / R T-\psi]} \\
& P_{e}=\frac{8 \pi}{3 h^{3}} \int_{0}^{\infty} p^{3} \cdot v_{(P)} \frac{d p}{1+\exp \left[\frac{E}{R T}-\psi\right]} \\
& u_{e}=\frac{8 \pi}{h^{3}} \int_{0}^{\infty} \frac{E P^{2} d p}{1+\exp \left[\frac{E}{R T}-\psi\right]}
\end{aligned}
$$

In the now rel. case $E=P^{2} / 2 \mathrm{me}_{\mathrm{e}}$

$$
\begin{gathered}
n_{e}=\frac{8 \pi}{h^{3}} \int \frac{p^{2} d p}{1+\exp \left[\frac{p^{2}}{2 m_{k} k T}-\psi\right]} \equiv \frac{8 \pi}{h^{3}}\left(2 m_{e} k T\right)^{3 / 2} a(\psi) \\
\text { where } a(\psi)=\int_{0}^{\infty} \frac{\eta^{2}}{1+e_{x p}\left[\eta^{2}-\psi\right]} d ? \\
\text { where } \eta \equiv p /\left(2 m_{e} k T\right)^{1 / 2} \\
\text { Note }=n_{e} \sim T^{3 / 2} a(\psi) \\
\text { So, } \psi \equiv \psi\left(n_{e} T^{-3 / 2}\right) \\
\vdots \\
\text { (rel. case 田各) }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Define Fermi- Dirac integral } \\
& \qquad F_{\nu}(\psi)=\int_{0}^{\infty} \frac{u^{\nu}}{1+e^{u-\psi}} d u \\
& n_{e}=\frac{4 \pi}{h^{3}}\left(2 m_{e} / R T\right)^{3 / 2} F_{1 / 2}(\psi) \\
& \text { In general, the condition maybe neither } \\
& \text { highly relativistic, nor completely nonreletivistie. } \\
& \text { The pressure can be expresacel as } \\
& \mathbb{P}=K \quad f(x) \quad x=P_{F} / m_{e} c \\
& f(x)=\cdots \quad
\end{aligned}
$$

Tabulation of Fermi integrals

> For partial degeneracy: Fermi-Dirae function
> See: clayton
> Radiation pressure $P_{\text {rad }}=\frac{1}{3} a T^{4}$
> $P_{\text {gas }}=P_{\text {rad }} \Rightarrow T=3.20 \times 10^{7}(\rho / \mu)^{1 / 3}$

$$
\begin{aligned}
& \boldsymbol{P}_{\text {ideal gas }} \propto \rho T / \mu \\
& \boldsymbol{P}_{e, \text { deg }}^{N R}=1.00 \times 10^{13}\left(\frac{\rho}{\mu_{e}}\right)^{5 / 3}[\mathrm{cgs}] \\
& \boldsymbol{P}_{e, \text { deg }}^{E R}=1.24 \times 10^{15}\left(\frac{\rho}{\mu_{e}}\right)^{4 / 3}[\mathrm{cgs}] \\
& \boldsymbol{P}_{\mathrm{rad}}=\frac{1}{3} a T^{4} \\
& \text { Non-Relativistic, Non-Degenerate (ide., ideal gas) } \\
& \text { Non-Relativistic, Extremely Degenerate } \\
& \text { Extremely Relativistic, Extremely Degenerate } \\
& \text { Figure 7.1 Mapping of the temperature-density diagram according to the equation of state. } \\
& \left.\begin{array}{ll}
N R, N D & P \sim P T \\
N R, E D & P \sim \rho^{5 / 3}
\end{array}\right\} \log \rho=1,5 \log T+\operatorname{con} t . \\
& \text { ER, ED } \left.\begin{array}{rl}
p \sim \rho^{4 / 3} \\
& (\sim \rho T)
\end{array}\right\} \log \rho=3 \log T+\text { conc } \\
& \text { Prod us Pidares gasp } \left.\begin{array}{l}
P_{\text {rad }} \sim T^{\prime \prime} \\
P_{\text {gan }} \sim \rho T
\end{array}\right\} \quad \log \rho=3 \log T+\operatorname{conot}
\end{aligned}
$$

Figure 7.2 Mapping of the temperature-density diagram according to nuclear processes.

$$
\begin{aligned}
& q=q_{0} p^{m} T^{n \quad \text { threshold } \quad q>q_{\min }\left(\equiv 10^{3} \operatorname{lng} s^{-1} g^{-1}\right)} \begin{array}{l}
\log \frac{q_{m i n}}{q_{0}}=m \log p+n \log T \quad \Rightarrow \text { important } \\
\Rightarrow \log p=-\frac{n}{m} \log T+\frac{1}{m} \log \left(q_{m i n} / q_{0}\right) \\
\Rightarrow \operatorname{sope}<0 \\
\text { for } H(p-p, C N O), H e(3 \alpha), C, 0, S ; \text { burning, } n>m
\end{array}
\end{aligned}
$$

\Rightarrow nearly vertical lmes

Figure 7.3 Outline of the stable and unstable zones in the temperature-density diagram.
$r>4 / 3 \Rightarrow$ stability

Figure 7.4 Relation of central density to central temperature for stars of different masses within the stable ideal gas and degenerate gas zones.

Figure 7.5 Schematic illustration of the evolution of stars according to their central temperature-density tracks.

From nonrelativistic to relativistic degeneracy

In a completely degenerate gas, the equation of
state

$$
\mathbb{P} \sim \rho^{5 / 3} N R
$$

$$
\text { or } \mathbb{P} \sim \rho^{u / 3} E R \quad \text { of ideal gas }
$$

Hydrostatic equilibrium n requmes

$$
\mathbb{P} \sim \frac{M^{2}}{R^{4}}
$$

In the nourelativstic case There is a solution in case of NR.

$$
\begin{aligned}
& \mathbb{P} \sim \frac{M^{2}}{R^{4}} \sim \rho^{5 / 3} \approx\left(\frac{M}{R^{3}}\right)^{5 / 3} \sim \frac{M^{5 / 3}}{R^{5}} \\
& \Rightarrow R \sim M^{-1 / 3}
\end{aligned}
$$

$$
\therefore R \downarrow \text { as } M \uparrow \text { for } \omega D_{s} \quad \begin{aligned}
& \text { The more massive of a } \\
& W D, ~ t h e ~ s m a l l e r ~ o f ~ i t s ~ s i z e . ~
\end{aligned}
$$

Numerically

$$
\log \left(\frac{R}{R_{\theta}}\right)=-\frac{1}{3} \log \left(\frac{M}{M_{\theta}}\right)-\frac{5}{3} \log \left(\mu_{e}\right)-1.397
$$

$$
\text { For } \begin{aligned}
1 M_{\odot}, R & =0.0126 R_{\odot} \\
\langle\rho\rangle & \sim 7 \times 10^{5} \mathrm{gam}^{-3}
\end{aligned}
$$

$$
\text { (Lang) Vol. } 1
$$

What happens in
the ER case?

Total kinetic energy

$$
\begin{gathered}
E_{R}=N_{e} \frac{p^{2}}{2 m}(N R) \\
\left(\begin{array}{c}
\text { degeneracy } p \\
\text { and } \Delta p_{\Delta} \Delta x \hbar \\
n_{e}=\frac{N_{e}}{R^{3}}, \Delta p \sim \frac{\hbar}{\Delta x} \sim \frac{\hbar}{n^{-1 / 3}}
\end{array}\right) \\
E_{t /}=\frac{N_{e}(\Delta p)^{2}}{2 m_{e}}=\frac{N_{e}^{5 / 3}}{2 m_{e}} \cdot \frac{\hbar^{2}}{R^{2}} \sim \frac{1}{\mu_{e}} \\
\left(N_{e}=\frac{M Z}{A m_{N}} \approx \frac{1}{2} \frac{M}{m_{M}}\right)
\end{gathered}
$$

Virial theorem (Equipartion)
$E_{P}=\left|\frac{G M^{2}}{R}\right| \simeq 2 E_{K} \Rightarrow R \approx \frac{\hbar^{2}}{G m_{0} m_{M}^{5 / 3}} \cdot M^{1 / 3}$
Note $M^{1 / 3} R \approx$ cont

$$
\frac{R}{R_{\odot}} \approx \frac{1}{74}\left(\frac{M_{\odot}}{M}\right)^{1 / 3}
$$

The luminosity $L=4 \pi R^{2} \sigma T_{\text {eff }}^{4} \approx \frac{1}{74^{2}}\left(\frac{M_{\odot}}{M}\right)^{2 / 3}\left(\frac{T_{\text {eff }}}{6000}\right)^{4} \quad\left[L_{\odot}\right]$
So a WD with $M=0.4 \mathrm{M}_{\odot}$ and $T_{\mathrm{eff}}=10^{4} \mathrm{~K}$ has $L=3 \times 10^{-3} \mathrm{~L}_{\odot}$

Gravity

$$
g=\frac{G M}{R^{2}} \approx 74^{2}\left(\frac{M}{M_{\odot}}\right)^{5 / 3} \frac{G M_{\odot}}{R_{\odot}^{2}}
$$

For a WD with $M=0.4 \mathrm{M}_{\odot}, \mathrm{g}=4 \times 10^{7} \mathrm{~cm} \mathrm{~s}^{-2}$

Gravitational Red shift

$$
\frac{\Delta \lambda}{\lambda}=\left(1-\frac{2 G M}{R c^{2}}\right)^{-1 / 2} \approx \frac{G M}{R c^{2}} \approx 74\left(\frac{M}{M_{\odot}}\right)^{4 / 3} \frac{G M_{\odot}}{R_{\odot} c^{2}}
$$

In case of $E R, E_{R}=N_{k} p c$ There is no solution in case of ER.

$$
\begin{aligned}
& E_{R}=N_{e} \frac{\hbar N_{e}^{1 / 3}}{R} \cdot c=\frac{M^{M / 3} \hbar c}{m_{H}^{U / 3} \cdot R} \\
& E_{P}=\left|\frac{G M^{2}}{R}\right| \\
& E_{R} \approx E_{P}, R \text { cancels out; no solution for } \\
& M \equiv M(R) \\
& P=\frac{M^{2}}{R^{4}}(\text { if })=\rho^{4 / 3}=\left(\frac{M}{R^{3}}\right)^{4 / 3} \rightarrow \text { no solution }
\end{aligned}
$$

\square For degenerate gas, $M_{\mathrm{WD}} \uparrow, R_{\mathrm{WD}} \downarrow$
\square For $M_{\mathrm{WD}}=1 M_{\odot}, R_{\mathrm{WD}}=0.02 R_{\odot}$
\square There is an upper limit to the mass

$$
\begin{aligned}
M_{\text {limit }} \approx\left(\frac{\hbar c}{G M_{H}^{4 / 3}}\right)^{3 / 2} \approx 2 M_{\odot} \quad \mu_{e} & =1 \text { (for } \mathrm{H}) \\
& =2 \text { (for } \mathrm{He}) \\
& =56 / 26=2.15
\end{aligned}
$$

Rigorously,

$$
M_{\mathrm{limit}} \approx \frac{5.836}{\mu_{e}^{2}} M_{\odot}
$$

$$
M_{\text {limit }}(\mathrm{Fe})=1.26 \mathrm{M}_{\odot}
$$

Weinberg (1972) $M_{\mathrm{limit}} \approx 1.2 M_{\odot}$, Later value $M_{\mathrm{limit}} \approx 1.44 M_{\odot}$

TABLE 8.5. Central Densities, Total Mass, and Radius of Different White Dwarf Models,
Taking $\mu_{e}=2$ (Negligible Hydrogen Concentration). ${ }^{a}$

$$
\begin{aligned}
& M_{c h}=1.44 M_{\odot} \text { needs } \\
& \text { corrections } \\
& \text { - grav force on nuclei } \\
& \text { deg. force on electrons }
\end{aligned}
$$

$\log \rho_{c}$	M / M_{\odot}	$\log R / R_{\odot}$
5.39	0.22	-1.70
6.03	0.40	-1.81
6.29	0.50	-1.86
6.56	0.61	-1.91
6.85	0.74	-1.96
7.20	0.88	-2.03
7.72	1.08	-2.15
8.21	1.22	-2.26
8.83	1.33	-2.41
9.29	1.38	-2.53
∞	1.44	$-\infty$

${ }^{a}$ See text for comments (after M. Schwarzschild (Sc58b)). From Structure and Evolution of the Stars ©1958 by Princeton University Press, p. 232.

$$
\begin{aligned}
& L=\sigma T_{e}^{\mu}\left(4 \pi R^{2}\right) \\
& \log \left(\frac{L}{L_{\odot}}\right)=4 \log \left(\frac{T_{e}}{T_{e \odot}}\right)+2 \log \left(\frac{R}{R_{\odot}}\right)
\end{aligned}
$$

FIGURE 8.14. White dwarf Hertzsprung-Russell diagram. Lines of constant radius are shown. Also shown are the masses based on completely degenerate core models containing elements having $\mu_{e}=2$ (after Weidemann(We68)). Reprinted with permission from Annual Review of Astronomy and Astrophysics, Vol. 6, 01968 by Annual Reviews, Inc.).

The Astrophysical Journal, 784:57 (10pp), 2014 March 20

Figure 4. Top: J vs. $J-K_{s}$ CMD for all the stars (gray dots), those with angular distances greater than 3° from the cluster center but with $\Delta \mu<9 \mathrm{mas} \mathrm{yr}^{-1}$ (small black crosses), those within 3° from the cluster center and with $\Delta \mu<9 \mathrm{mas} \mathrm{yr}^{-1}$ (blue open circles), and those within 3° and with $\Delta \mu<4$ mas yr $^{-1}$ (blue filled circles). The stars at the very center of the cluster, namely within 30^{\prime}, and with $\Delta \mu<4$ mas yr^{-1} are highly probable members and are marked as orange crosses. Note the group of blue stragglers beyond the main sequence turn-off point (Andrievsky 1998). Bottom: g_{PI} vs. $g_{\mathrm{PI}}-y_{\mathrm{PI}}$ CMD, with the same symbols as in the top panel. The group of stars near $g_{\mathrm{P} 1}=18 \mathrm{mag}$, and $g_{\mathrm{PI}}-y_{\mathrm{PI}}=-1$ mag include white dwarfs known in the cluster (Debbie et al. 2004, 2006).

The Astronomical Journal, 143:11 (21pp), 2012 January
O 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

A DEEP, WIDE-FIELD, AND PANCHROMATIC VIEW OF 47 Tuc AND THE SMC WITH HST: OBSERVATIONS AND DATA ANALYSIS METHODS*

Jason S. Kaliral ${ }^{1,8}$, Harvey B. Richer ${ }^{2}$, Jay Anderson ${ }^{1}$, Aaron Dotter ${ }^{1}$, Gregory G. Fahlman ${ }^{3}$, Brad M. S. Hansen ${ }^{4}$, Jarrod Hurley ${ }^{5}$, Ivan R. King ${ }^{6}$, David Reitzel ${ }^{4}$, R. M. Rich ${ }^{4}$, Michael M. Shara ${ }^{7}$, Peter B. Stetson ${ }^{3}$, and Kristin A. Woodley ${ }^{2}$
${ }^{1}$ Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA; jkalirai@stsci.edu, jayander/dotter@ stsci.edu

White Dwarf Cooling

\square WDs are supported by electron degeneracy pressure. With no sustaining energy source (such as fusion), they continue to cool and fade \rightarrow very faint
The luminosity of the faintest WDs in a star cluster $\longleftrightarrow \rightarrow$ cooling theory \rightarrow age
\square The age of the oldest globular cluster = lower limit of the age of the universe

Limiting $V=30$

White Dwarf Cooling

ON THE THEORY OF WHITE DWARF STARS

I. The Energy Sources of White Dwarfs

L. Mestel
(Communicated by F. Hoyle)

(Received 1952 May 9)

Summary

Present theories of the origin of white dwarfs are discussed; it is shown that all theories imply that there can be no effective energy sources present in a white dwarf at the time of its birth. The temperature distribution of a white dwarf is then discussed on the assumption that no energy liberation occurs within the star, and that it radiates at the expense of the thermal energy of the heavy particles present. In the resulting picture, a white dwarf consists of a degenerate core containing the bulk of the mass, surrounded by a thin, non-degenerate envelope. The energy flow in the core is due to the large conductivity of the degenerate electrons, while the high opacity of the outer layer keeps down the luminosity to a low level. Estimates of the ages of observed white dwarfs are given and interpreted. Finally, it is shown that white dwarfs may accrete energy sources and yet continue to cool off, provided the temperature at the time of accretion is not too high; this suggests a possible model for Sirius B.

Boundary between the degenerate core d the $\left(r_{b}\right)$ radiative envelope
$r<r_{b}, T=T_{c}$
$r>r_{b}, L=$ cons

$$
m(r>r b) \simeq M
$$

Figure 8.13 Sketch of the configuration of a cooling white dwarf.

In the envelope,

(1) $\quad \frac{d P}{d r}=-\rho \frac{G M}{r^{2}} \quad$ (ie. $M(r) \rightarrow M$)
(2) $\frac{d T}{d r}=-\frac{3}{4 a c} \frac{k \rho}{T^{3}} \frac{L}{4 \pi r^{2}} \quad($ i.e. $F(r) \rightarrow L)$
(3) $\quad k=k_{0} \rho T^{-3.5}=k_{0} \frac{\mu m_{\mu}}{\notin P} \mathbb{P} T^{-4.5}$ Ideal gas
(3) into (2), and (1)/(2)

$$
\begin{aligned}
& \frac{d P}{d T}=\frac{G M 16 \pi a c}{3 K L} T^{3}=\frac{16 \pi a c G M T^{3}}{3 K_{0} \mu m_{n} P T^{-4.5}} \cdot \frac{R}{L} \\
& =\frac{16}{3} K_{1} \frac{M}{L P} T^{* 7.5} \\
& P d P=\frac{16}{3} K, \frac{M}{L} T^{7.5} d T \\
& \frac{1}{2} P^{2}=\frac{16}{3} K_{1} \frac{M}{4} T^{8.5} \quad \text { is integrate inward, }
\end{aligned}
$$

$$
\begin{aligned}
& P=\cdots\left(\frac{M}{L} T^{8.5}\right)^{1 / 2} \quad \frac{1}{2} P^{2}=\frac{16}{3} K \cdot \frac{M}{2} \frac{T^{8.5}}{8.5} \\
& P(T)=\left(\frac{64}{51} K_{1}\right)^{1 / 2}\left(\frac{M}{L}\right)^{1 / 2} T^{17 / 4}
\end{aligned}
$$

This is the general radiative zero solution to the outer envelope (atmosphere) of stars
or
(4) $\int(T)=K_{2}\left(\frac{M}{L}\right)^{1 / 2} T^{13 / 4}$

$$
\begin{aligned}
& \text { At } r_{b}, e^{-} \text {ideal gas presume }=\begin{array}{c}
\text { degenerate gas } \\
\text { prase }
\end{array} \\
& P_{e}=\left(\frac{k}{\mu m_{N}} \rho T\right)_{b}=P_{\text {deg }}=K_{1}^{\prime}\left(\frac{\rho}{\mu_{e}}\right)_{b}^{5 / 3} \\
& \rho T=K_{2}^{\prime} \rho^{5 / 3} \\
& \rho=K_{3}^{\prime} T_{b}^{3 / 2} A \\
& \text { Here } T_{b}=T_{c} \\
& \therefore \frac{L}{M} \sim \frac{T^{3 / 2}}{\rho^{2}} \sim \frac{T^{13 / 2}}{T^{3}} \sim T_{c}^{3.5} \\
& \frac{L}{M}=K T_{e}^{3.5} L \leftarrow T(T)=K_{2}\left(\frac{M}{L}\right)^{1 / 2} T^{13 / 4} \\
&
\end{aligned}
$$

$$
\frac{L}{L_{\odot}}=6.4 \times 10^{-3} \frac{\mu}{\mu_{e}^{2}} \frac{M}{M_{\odot}} \frac{1}{\kappa_{0}} T_{c}^{3.5} \leftarrow \rightarrow \text { chemical composition and opacity }
$$

$$
\text { Numerically, with constants }\left(\mu, \mu_{e}, k_{3}^{\prime}\right) \text { typical }
$$

$$
\text { for a } W D
$$

$$
\frac{L / L_{0}}{M / H_{0}} \approx 6.8 \times 10^{-3}\left(\frac{T_{e}}{10^{7} \mathrm{~K}}\right)^{3.5}
$$

$$
\stackrel{\sim}{T_{C}} \approx 4 \times 10^{7}\left(\frac{L / L_{0}}{M / M_{0}}\right)^{2 / 7}[k] \text { of } T_{F} \sim 10^{9} \mathrm{k}
$$

The interior of a WD need not be exceedingly hot.

$$
\begin{array}{lr}
\text { Energy source: } E_{\text {thermal }}^{\text {ions }}=(3 / 2) \frac{M}{\mu_{I} m_{H}} k T & \frac{L}{M}=K T_{e}^{3.5} \\
\text { Luminosity } L & =-d E_{\text {thermal }}^{\text {ions }} / d t \\
& =-(3 / 2) \frac{M}{\mu_{I} m_{H}} k d T_{c} / d t
\end{array} \begin{aligned}
d t & \Longleftrightarrow \frac{d L}{2} T_{c}^{5 / 2} \frac{d T_{c}}{d t}
\end{aligned}
$$

(5) $\therefore L=-\frac{3}{7} \frac{M}{\mu m_{H}} k \frac{T_{e}}{L} \frac{d L}{d t}$

$$
\Rightarrow \frac{d L}{d t}=-M T_{c}^{6}
$$

$$
\begin{aligned}
& L=-\frac{M T_{c}}{L} \frac{d L}{\frac{d}{t}} \\
& \frac{d L}{d t}=-\frac{L^{2}}{M T_{c}}=\frac{M^{2}}{M T_{c}} T_{c}^{7}
\end{aligned}
$$

Cooling rate $\downarrow \downarrow \downarrow$ as $T_{c} \downarrow$

Thermal energy of ions in the isothermal core

$$
E_{k, i o n}=\frac{3}{2} \frac{M}{\mu_{I} m_{N}} R T_{c}
$$ = energy source of a white dwarf

Luminosity $L=-\frac{d E_{K}}{d t}=-\frac{3}{2} \frac{M}{\mu_{I} m_{M}} k \frac{d T_{C}}{d t}$

$$
L \downarrow \text { as } T_{c} \downarrow
$$

but $T_{c} \sim L^{2 / 7}$
\Rightarrow lower. mass WD, evolves plowlier
Cooling timescale, from $T_{e}{ }^{\prime}, L$ ' Yo $T_{c},{ }^{\circ} L$

$$
\begin{aligned}
& \text { Integrate (5) } \\
& \tau_{\text {cool }}=0.6 \frac{k}{\mu_{2} m M} M\left(\frac{T_{e}}{L}-\frac{T_{e}^{\prime}}{L^{\prime}}\right) \\
& I f T_{e}^{\prime} \gg T_{e} \quad\left(\frac{T_{e}^{\prime}}{L^{\prime}} \sim T_{e}^{\prime-2.5}\right) \Rightarrow \frac{T_{e}}{L} \gg \frac{T_{e}^{\prime}}{L^{\prime}}
\end{aligned}
$$

$$
\hat{\tau}_{\operatorname{cool}} \approx 2.5 \times 10^{6}\left(\frac{M / M_{0}}{L / L_{0}}\right)^{5 / 7}[y r]
$$

Core Temperature

$$
\begin{aligned}
M & \approx \mathrm{M}_{\odot}, L_{L}^{L} \odot \\
& \approx 10^{-4}-10^{-2} \text { B } \rightarrow T_{\mathrm{c}} \approx 10^{6} \mathrm{~K} \\
A & \rightarrow \rho_{\mathrm{b}} \approx 10^{3} \mathrm{~g} \mathrm{~cm}^{-3}
\end{aligned}
$$

Envelope

$$
\ell \approx \frac{P}{\rho g} \approx \frac{k T}{\mu g}
$$

$T \sim 10^{6} \mathrm{~K}, l \approx 1-10 \mathrm{~km}$
Envelope mass $<4 \pi R^{2} l \rho_{\mathrm{b}} \approx 2 \times 10^{-4} \mathrm{M}_{\odot}$, is indeed small

Figure 8.15 White dwarfs in the H-R diagram. Lines of constant radius (mass) are marked [data from M. A. Sweeney (1976), Astron. \& Astrophys., 49]

$$
\begin{aligned}
& M R^{3}=\text { const, and } L \propto R^{2} \mathrm{~T}_{\text {eff }} \\
& \rightarrow \text { WD evolutionary tracks }
\end{aligned}
$$

$$
\log \left(\frac{L}{L_{\odot}}\right)=4 \log \left(\frac{\mathrm{~T}_{\text {eff }}}{T_{\odot}}\right)-\frac{2}{3} \log \left(\frac{M}{M_{\odot}}\right)+\mathrm{C}
$$

Figure 8.14 White dwarf luminosity function: number density of white dwarfs within a logarithmic luminosity interval corresponding to a factor of $10^{2 / 5} \approx 2.5$ against luminosity [data from D. E. Winget et al. (1987), Astrophys. J., 315].

[^0]THE WHITE DWARF COOLING SEQUENCE OF THE GLOBULAR CLUSTER MESSIER 4^{1}
Brad M. S. Hansen, ${ }^{2,3}$ James Brewer, ${ }^{4}$ Greg G. Fahlman, ${ }^{4,5}$ Brad K. Gibson, ${ }^{6}$ Rodrigo Ibata, ${ }^{7}$ Marco Limongi, ${ }^{8}$ R. Michael Rich, ${ }^{2}$ Harvey B. Richer, ${ }^{4}$ Michael M. Shara, ${ }^{9}$ and Peter B. Stetson ${ }^{10}$

Received 2002 March 5; accepted 2002 June 26; published 2002 July 11

ABSTRACT

We present the white dwarf sequence of the globular cluster M4, based on a 123 orbit Hubble Space Telescope exposure, with a limiting magnitude of $V \sim 30$ and $I \sim 28$. The white dwarf luminosity function rises sharply for $I>25.5$, consistent with the behavior expected for a burst population. The white dwarfs of M4 extend to approximately 2.5 mag fainter than the peak of the local Galactic disk white dwarf luminosity function. This demonstrates a clear and significant age difference between the Galactic disk and the halo globular cluster M4. Using the same standard white dwarf models to fit each luminosity function yields ages of $7.3 \pm 1.5 \mathrm{Gyr}$ for the disk and 12.7 ± 0.7 Gyr for M4 (2σ statistical errors).

White dwarf sequence of M4

Blue - H atmosphere models Red - He atmosphere models
for a $0.6 \mathrm{M}^{\prime \prime}$ WD

- The WD envelope is typically thin, $\sim 1 \%$ of the total WD radius.
- DA WD: layer of $M_{\mathrm{He}} \sim 10^{-2} M_{\mathrm{WD}}$ outside the CO core, then an outer layer $M_{\mathrm{H}} \sim 10^{-4} M_{\mathrm{WD}}$
- A non-DA WD layer of $M_{\mathrm{He}} \sim 10^{-2}-10^{-3} M_{\mathrm{WD}}$

[^0]: The Astrophysical Journal. 574:L155-L158, 2002 August 1
 O 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

