Supernovae and Others

Possible evolutionary paths of a supernova

1. Core collapse
2. Thermonuclear runaway

Evolution of an Intermediate-mass (8 to $25 \mathrm{M}_{\odot}$) or High-mass ($>25 \mathrm{M}_{\odot}$) Star

\square Core size ~ Earth
\square Layers of nuclear reactions (cf an onion)
\square Envelope as a supergiant, with the diameter comparable to the Jupiter's orbit

Each subsequent reaction proceeds ever faster; silicon \rightarrow iron
An iron nucleus is most compact between protons and neutrons
\rightarrow further fusion does not release energy
\rightarrow iron core collapses ($\mathrm{D} \sim 3000 \mathrm{~km}$, collapses in $\sim 0.1 \mathrm{~s}$)

	Evolutionary Stages of a $25-\mathrm{M}_{\odot}$ Star		
Stage	Central temperature (K)	Central density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Duration of stage
Hydrogen fusion	4×10^{7}	5×10^{3}	$7 \times 10^{6} \mathrm{yr}$
Helium fusion	2×10^{8}	7×10^{5}	$5 \times 10^{5} \mathrm{yr}$
Carbon fusion	6×10^{8}	2×10^{8}	6×10^{9}
Neon fusion	1.2×10^{9}	1×10^{10}	1 yr
Oxygen fusion	1.5×10^{9}	3×10^{10}	6×10^{12}
Silicon fusion	2.7×10^{9}	4×10^{17}	1 mo
Core collapse	5.4×10^{9}	varies	0.2 s
Core bounce	2.3×10^{10}	about 10^{9}	
Supernova explosion			

Iron core collapse $\rightarrow 5$ billion $\mathrm{K} \rightarrow$ photodisintegration by energetic gamma rays
The star spends millions of years on the main sequence, synthesizing simple nuclei such as H and He to iron, then takes less than a second to disintegrate back to protons, neutrons and electrons.

Density of the core $\nearrow \nearrow$, reaching $4 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3}$ (cf density of a nucleus) in $<1 \mathrm{~s} \rightarrow$ even the electron degenerate pressure cannot support the core $\rightarrow e^{-}+p^{+} \rightarrow n^{0}+v$

Core supported by neutron degenerate pressure \rightarrow a neutron star
Core bounces \rightarrow supernova explosion + supernova remnant

Evolution of a Binary System

- Both stars of a few solar masses
- More massive component $\rightarrow \mathrm{RG} \rightarrow$ transfers and loses mass \rightarrow a hot WD
- Secondary \rightarrow RG \rightarrow fills the Roche lobe \rightarrow transfers mass to the hot WD via an accreting disk
- Accreted material is compressed and heated, and if $T>10^{7} \mathrm{~K}$ \rightarrow CNO takes place at the base of the accreted layer (even with a thermonuclear runaway if the material is degenerate)
\rightarrow A nova explosion
If accretion onto a C-O WD \rightarrow core mass $>\mathrm{M}_{\mathrm{Ch}}=1.4 \mathrm{M}_{\odot}$
\rightarrow Catastrophic collapse +C burning \rightarrow a Type Ia supernova

Fig. 7.10. Schematic light curve for a typical nova; the time axis is arbitrary and not to scale.

Accreting Binary Systems

A semi-detached	e 7.4. Taxonomy of binary systems		
	Name	Description	Remarks
binary system with the primary being a	Algols	Two normal stars (main sequence or subgiants): semidetached binary	Provide checks on stellar evolution, information on mass loss
WD: (in increasing L) \checkmark dwarf nova	RS Canum Venaticorum	Chromospherically active binaries	Useful for studies of dynamo-based magnetic activity; exhibits starspot chromospheres, corona, and flares similar to the Sun
classical nova (these may be	W Ursae Majoris	Short period (0.2-0.8 days) Contact binaries	High levels of magnetic activity, important for studying stellar dynamo model
cataclysmic variables)	Cataclysmic variables and novas	White dwarfs with cool M-type secondaries; short periods	Exhibits accretion phenomena and accretion disks
\checkmark type Ia supernova	X-ray binaries	Neutron star or black hole as the compact component; powerful x-ray sources with $L_{x}>10^{35}$ ergs s $^{-1}$	Study of structure and evolution of compact remnants; indirect evidence for black holes
	ζ Aurigae/ VV Cephi	Long-period interacting binaries; Late-type supergiant plus a hot companion	Study of supergiant phase, especially atmospheres of supergiants

Gum Nebula is the largest SNR in the sky, originated from a supernova explosion perhaps a Myr ago.

Gum Nebula has a angular extent $>40 \mathrm{deg} \rightarrow$ linear size more than 2300 ly across \rightarrow The closest part from Earth ~ 300 ly

Cassiopeia A SNR is 3.4 kpc from us. The explosion should have been seen 300 years ago, but was not recorded.

X rays

Visible (HST)

Radio

Supernovae in History

- OB association in Scorpius-Centaurus Solar system within 150 ly 2 Myr ago; should have experienced SN explosions

Table 10.1 Historical supernovae

Galaxy: Name	Year	Distance $\times 3000$ ly
Milky Way:		
\quad Lupus	1006	1.4
Crab	1054	2.4
3C 58	$1181(?)$	2.6
Tycho	1572	2.5
Kepler	1604	4.2
Cas A	1658 ± 3	2.8
Andromeda	1885	700
LMC: SN1987A	1987	50

SN 1987A
First observed $24 \mathrm{Feb}, 1987$
not quite $S N$ II
preSN progenitor observed and sp. Classified
Sanduleak-69202
$S_{p}=B 3 I$
$L \sim 1.1 \times 10^{5} L_{\odot} ; T_{\text {eff }} \sim 16,000 \mathrm{~K}$
($M \sim 16-22 M_{\odot}$)
Pop I but metal-poor
Neutrino events (Kamiokande) detected hours before SN visible

Supernova classification

Divided into two types based on spectra
Type I - with no H lines

- Further classification based also on spectra:
\checkmark Ia - strong Si line
$\checkmark \mathrm{Ib}$ - no H or Si line, but have He lines
\checkmark Ic - no Si, He or H lines

DAYS AFTER MAXIMUM LIGHT

- Ia found in all types of galaxies
\rightarrow associated with white dwarfs in binary systems

Supernova classification II

Type II - with H lines
Further classification based on light curve
\checkmark II P - flat 'plateau' in LC
\checkmark II L - linear light curve
DAYS AFIER MAXIMUM LIGHT

- Type II, Ib, Ic found only in spiral arms of spiral galaxies (i.e. regions of recent star formation) \rightarrow massive stars
Core collapse supernovae with mass loss in Ib and Ic

DAYS AFTER MAXIMUM LIGHT

图10．8 几种类型超新星的光变曲线（Wheeler，Harkness，1992）

Figure 1 Spectra of SNe, showing early-time distinctions between the four major types and subtypes. The parent galaxies and their redshifts (kilometers per second) are as follows: SN 1987 N (NGC 7606; 2171), SN 1987A (LMC; 291), SN 1987M (NGC 2715; 1339), and SN 1984L (NGC 991; 1532). In this review, the variables t and τ represent time after observed B-band maximum and time after core collapse, respectively. The ordinate units are essentially "AB magnitudes" as defined by Oke \& Gunn (1983).

Figure 2 Spectra of SNe, showing late-time distinctions between various types and subtypes. Notation is the same as in Figure 1. The parent galaxy of SN 1987L is NGC $2336(c z=2206 \mathrm{~km}$ s^{-1}); others are listed in the caption of Figure 1. At even later phases, SN 1987A was dominated by strong emission lines of $\mathrm{H} \alpha,[\mathrm{O} \mathrm{I]}. \mathrm{[Ca} \mathrm{II]}$,and the Ca II near-IR triplet, with only a weak continuum.

Subelass	\sim maximum	~ 6 mowths
SNIa	$0, \mathrm{Mg}, \mathrm{Si}, \mathrm{S}, \mathrm{Ca}, \mathrm{Fe}$	Fe, Co
SNI6	O, Ca, Fe	$0, \mathrm{Ca}, \mathrm{Mg}$
SNIC	$\mathrm{He}, \mathrm{Fe}, \mathrm{Ca}$	0, Mg

- The energy source of the type Ia supernovae comes from nuclear fusion. The explosion produces various radioactive isotopes , e.g., nickel becomes cobalt.
- So far, a few thousands SNe have been detected in external galaxies.
- Applying the statistics, the Milky Way should have occurred one type Ia SN every 36 years, and one type II SN every 44 years.
- Each century, therefore, we should have seen about 5 supernovae. So, what happened?
- Which star is most likely the next? In the solar neighborhood?

SN 1994D
 A type Ia in NGC 4526

$$
\begin{aligned}
& \text { Supernovae } \\
& M>8 M_{0} \text { core carbon burning } \\
& \rightarrow{ }_{8}^{16} \mathrm{O},{ }_{10}^{20} \mathrm{~N},{ }_{11}^{23} \mathrm{Na},{ }_{12}^{23} \mathrm{Mg} \text { and }{ }_{12}^{24} \mathrm{Mg} \cdots \\
& \text { Eventually }{ }_{26}^{54} \mathrm{Fe},{ }_{26}^{56} \mathrm{Fe} \text {, and }{ }_{28}^{56} \mathrm{~N} \text {; } \\
& \text { Three critical processes } \\
& \text { (1) Neutrino cooling } \\
& \text { At this stage, a lot of } \mathrm{L}_{\mathrm{s}} \\
& \text { Solar neutrino flux } \\
& =7 \times 10^{10} / \mathrm{cm}^{2} / \mathrm{s} \\
& \text { Ex. dining Si burning, a } 20 \mathrm{M}_{\circ} \\
& \begin{array}{lll}
L_{20 M_{0}} \sim 4.4 \times 10^{38} \text { by }_{5}{ }^{-1} & \begin{array}{l}
\text { Neutrino mass } \\
<0.32 \mathrm{eV} \text { for the sum of }
\end{array}
\end{array} \\
& L_{\mu} \sim 3.1 \times 10^{45} \lg _{5}{ }^{-1} \text { masses of } 3 \text { known flavors }
\end{aligned}
$$

（2）Photodisintegration
Energetic photons disintegrate iron nuclei
皮赖 into a particles and protons
This is an endothermic process；ie，takes energy away and lowers pressure support at the core

$$
\begin{aligned}
& { }^{56} \mathrm{Fe}+\gamma \rightarrow 13^{4} \mathrm{He}+4 n \\
& 4 \mathrm{He}+\gamma \rightarrow 2 p^{+}+2 n
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. Neutronization } \\
& \text { possible inverse } \beta \text { decay } p^{+}+e^{\circ} \rightarrow n^{0}+\nu \\
& n_{e} \downarrow^{\downarrow} \Rightarrow p_{\text {deg }} \downarrow \\
& \text { escape } \Rightarrow \text { cooling } \\
& \Rightarrow \text { A rapid collapse of the core } \\
& \text { Note exothermic } \\
& \text { releasing energy }
\end{aligned}
$$

This sends an outgoing pressure wave through the infalling material

Two possibilities

When the shock propagates through the inner
core \rightarrow photodisintegration
(i) If the iron core is small, shock emerges energetically
\rightarrow an explosion on the outer material
prompt hydrodynamic explosion

This can explain the explosion of MS stars with 8~12 M_{\odot}, ending with a core $<1.2 \mathrm{M}_{\odot}$. But the progenitor of SN 1987A had $20 \mathrm{M}_{\odot} \rightarrow$ need an alternative mechanism to explain more massive ONe

$$
\begin{aligned}
& \text { Total Rinetic energy of Entgoing sheck } \\
& \text { Ekin } \sim 10^{51} \text { hgs } \\
& \text { (ihis is ouly } 1 \% \text { of the energy in energy) } \\
& \text { nenerinos } \\
& \rightarrow \text { Buter material expands a becomes oprically } \\
& \text { thin } \\
& \Rightarrow \text { SN explosion, releasing } \sim 10^{149} \text { ergs } \\
& \text { in photons } \\
& \text { With Lpeak } \sim 10^{43} \text { eygs } s^{-1} \sim 10^{9} \text { Lo } \\
& \text { e.f } L_{\text {milkyway }}
\end{aligned}
$$

Roughly if original mass $<25 \mathrm{Mo}$; can be supported neutron pressure; may survive the explosion \rightarrow a neutron star

If $M>25 \mathrm{MO}_{0} \rightarrow$ collapse to a black hole

Neutrino Trapping
Mean free path $\lambda=1 / n \sigma$
cross section $\sigma=\sigma_{0} \varepsilon^{2}$
For neutrinos, $\sigma_{0} \sim 2 \times 10^{-44}\left[\mathrm{~cm}^{2}\right]$
$\varepsilon=$ relative energy in unit of 0^{-}rest mass

In lead $A=11.34 \mathrm{gam}^{-3}, A=208$
A neutrino of 1 MeV , or $\varepsilon=2, \lambda \sim 3.8 \times 10^{20} \mathrm{am}$

$$
\sim 380 \mathrm{ly}
$$

In a collapsing stellar core

$$
\rho \sim 4 \times 10^{14} \mathrm{gam}^{-3}
$$

Neutrinos have $\sim 150 \mathrm{MeV}$, or $\varepsilon \sim 300$

$$
\rightarrow \lambda=2.2 \mathrm{~cm}
$$

So if $R \sim 10 \mathrm{~km}$, the mean free time, or diffusion time $\tau \sim 5 \mathrm{~s}$

Supernova Observations

$$
L_{\text {peak }} \sim 10^{9}-10^{10} L_{0}
$$

Time before peak (rang time) ~ 2 wis
Shell expamaion v $\sim 5.10 \times 10^{3} \mathrm{kms}^{-1}$
supernova remnant (SNR)

$$
\text { lasting ~ } 10^{3} \mathrm{yrs}
$$

$E_{\text {total }} \sim 10^{51}-10^{53}$ ergs $=E_{\text {photons }}+E_{\text {neutrinos }}+E_{\text {Kinetic }}$
noually minor (~1\%) \predominant
cooling core \longrightarrow a neutron star

$$
\rho \sim 10^{14} \mathrm{gan}^{-3}, M \sim M_{0}
$$

- 1932 Chadwick discovered the neutron.
- Landau thought neutron stars might exist.
- 1934 Baade \& Zwicky suggested neutron stars as remnants of supernova explosions.
- 1939 Oppenheimer \& Volkoff proposed the first model for neutron stars, with estimates of masses and sizes.
- 1967 Hewish \& Bell discovered the pulsar.
- Gold \& Pacini proposed pulsars as fast spinning, highly magnetized neutron stars.

> Mass limit of neutron degenerate stars
> uncertain because of uncertain $\xi_{0} S$ at
> $\rho>\rho_{\text {nuclear, ranging from }} 0.7 \mathrm{M}$ © for
noninteracting neutrons
(Tolman-Oppenheimer- Volkoff hint)
up to $\sim 2.5 \mathrm{M}_{\text {© }}$

$$
R \sim 10 \mathrm{~km}
$$

A pulsar $\left\{\begin{array}{l}B \sim 10^{13} G \\ \text { Spin down from periods } \sim \mathrm{ms}\end{array}\right.$

Some SARs host no pulsars.

- not enough e^{-}, not Strong enough \vec{B} ?
-we are not in the 'light house beam'?
- neutron Star destroyed completely
- neutron Star 'Kicked ont'
some NSs (a pulsars) have space motion $\sim 1000 \mathrm{kms}^{-1}$

Annu. Rev. Astron. Astrophys. 1992. 30:359-89
TYPE Ia SUPERNOVAE AS
STANDARD CANDLES

David Branch

Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019

G. A. Tampan

Astronomisches Institut der Universität Basel, Venusstrasse 7, CH-4102 Binningen, Switzerland, and European Southern Observatory, Karl-Schwarzschild-Str. 2, D-8049 Garching/München, Germany

Figure 2 The standard B light curve (adapted from Cadonau 1987), based on observations of 22 SNe Ia.
Many sky survey projects, e.g., Pan-STARRS (PS), Palomar Transient Factory (PTF), Sky Mapper, Large Synoptic Survey Telescope (LSST), to catch SN early on, for pre-SN characterization

$$
\begin{aligned}
& \text { Type I } \\
& \text { No Him spectra } \\
& \text { Located in spirals or elliptical } \\
& \text { If in spirals, zonally NOT in arms } \\
& \text { but some seen near HI regions on } \\
& \text { arms } \rightarrow I_{b} \\
& \text { Ia Standond model } \\
& \text { A WD close to chandrasekhar limit } \\
& \text { + a mass losing companion } \\
& \rightarrow \text { accretion onto } \omega D \rightarrow R_{\text {wo }} \downarrow \\
& \rightarrow T \uparrow \text {. If heat not married away } \\
& \Rightarrow \text { ignition of } c, 0, \ldots \\
& \text { thermonuclear explosion }
\end{aligned}
$$

Fate of WID depends on accretion rate and M WD

- partial explosion w/ a wi lest behind
- disrupt completely; no Stellar remnant
- NS?

Population II progenitor
SN $I_{a} \sim 80 \%$ of Type II $\quad M_{\text {peak }} \sim-17$ mag
Ale SN Ia lighteurves similar
\rightarrow standard candles
Averaged 1 SNI/100yrs in a spiral

$$
\begin{aligned}
& \text { Type II } M_{\text {peak }} \sim-19 \text { mag } \\
& \text { with hydrogen hies in spectra } \\
& \text { Found in spiral arms on Er. } \\
& \text { If formed in the some arm } \\
& \text { timescale }<10^{7} \text { yr } \Rightarrow M>10 M_{0} \\
& \text { progenitor } \\
& \text { Standard model } \\
& \text { End of masoine star evolution } \\
& \text { gravitational collapse } \\
& \text { Population I progenitor } \\
& \text { Fate } \rightarrow \text { NS, BA }
\end{aligned}
$$

Type II (core collapse) SN progenitors

Fig. 34.7. The chemical composition in the interior of a highly evolved model of a $25 \mathrm{M} \Omega$ star of population I. The mass concentrations of a few important elements are plotted against the mass variable m. Below the abscissa the location of shell sources and typical values of temperature (in K) and density (in $\mathrm{g} \mathrm{cm}^{-3}$) are indicated. (After WOOSLEY, WEAVER, 1986)

THE PHYSICS OF SUPERNOVA EXPLOSIONS ${ }^{1}$

S. E. Woosley

Board of Studies in Astronomy and Astrophysics, Lick Observatory, University of California, Santa Cruz, California 95064

Thomas A. Weaver

Special Studies Group, Lawrence Livermore National Laboratory, Livermore, California 94550
${ }^{1}$ The US Government has the right to retain a nonexclusive royalty-free license in and to any copyright covering this paper.

Table 1 Presupernova models and explosions ${ }^{\text {a }}$

	Helium core mass	Iron core mass	Explosion energy ${ }^{\text {b }}$ ($10^{50} \mathrm{erg}$)	Residual baryon mass ${ }^{\text {b }}$	Neutron star mass ${ }^{\text {b }}$	Heavies ejected $(Z \geq 6)$
11	2.4	- ${ }^{\text {c }}$	3.0	1.42	1.31	~ 0
12	3.1	1.31	3.8	1.35	1.26	0.96
15	4.2	1.33	2.0	1.42	1.31	1.24
20	6.2	1.70	-		-	2.53
25	8.5	2.05	4.0	2.44	1.96	4.31
35	14	1.80	-		-	9.88
50	23	2.45	--	-	.	17.7
75	36	$-^{\text {d }}$	-	-	BH?	30 ?
100	45	$\sim 2.3{ }^{\text {d }}$	$\geqslant 4$	-	BH?	39?

"All masses given in units of M_{\odot}.
${ }^{\text {b }}$ All except for $100 M_{\odot}$ determined by Wilson et al. (1985).
${ }^{\mathrm{c}}$ Never developed iron core in hydrostatic equilibrium.
${ }^{d}$ Pulsational pair instability at oxygen ignition.

Core collapse in free-fall, $\tau_{\mathrm{ff}} \approx(G \bar{\rho})^{-1 / 2} \approx 1 \mathrm{~ms}$, if $\rho=10^{10} \mathrm{~g} \mathrm{~cm}^{-3}$

- Central density and pressure $\uparrow \uparrow$ and becomes subsonic; outer material remains free-fall and supersonic.
- Transition zone = constant speed, force free, relativistic electron degenerate pressure balances gravy \rightarrow Chandrasekhar limit
- Inside $\mathbf{M}_{\mathrm{ch}}, \rho \approx 2.3 \times 10^{14} \mathrm{~g} \mathrm{~cm}^{-3}$ (nuclear), strong force; material incompressible; neutron degeneracy Outside $\mathrm{M}_{\mathrm{ch}} \rightarrow$ supersonic accretion
\rightarrow Shock wave and bounce

Fig. 34.8. Schematic picture of the velocity distribution in a collapsing stellar core originally of $1.4 M_{\odot}$ after numerical calculations (VAN RIPER, 1978). Note the two regimes: on the left $\left|v_{\mathrm{r}}\right|$ (in units of $10^{9} \mathrm{~cm} \mathrm{~s}^{-1}$) increases in the outward direction. It corresponds to a (roughly) homologously collapsing part, while on the right $\left|v_{\mathrm{r}}\right|$ decreases with m . This corresponds to the free-fall regime

Energy released in a core collapse

$R: R_{\omega D}\left(0.01 R_{Q}\right) \rightarrow R_{\text {NS }}(10 \mathrm{~km})$
$\Delta E_{\text {grave }} \sim \frac{G M_{0}^{2}}{R_{N S_{S}}} \sim 3 \times 10^{53} \mathrm{args}$
10% used up by nuclear processes
rest to radiation and ejecting material (luminosity a neutrinos)

> Doggert + Branch (1985
> AJ. 90.2303

UVOIR light curve

Evidence of syn thesis of heavy elements

- During a type II SN explosion, the neutron star reaches $T \approx 10^{11} \sim 10^{12} \mathrm{~K}$, but cools down quickly by neutrinos, to $T \approx 10^{9} \mathrm{~K}$ in a day, $10^{8} \mathrm{~K}$ in 100 years.
- This is cold, $k T \approx 10 \mathrm{keV}$
cf. Fermi energy ($\rho \approx 10^{14} \mathrm{~g} \mathrm{~cm}^{-3}$), $\varepsilon_{F} \approx 1000 \mathrm{MeV}$, so $T_{\text {neutron star }} \rightarrow 0$, and all electrons, protons, and neutrons are at the lowest energy states.
- Neutron beta decay process, $n \rightarrow p+e^{-}+\overline{v_{e}}$, does not take place, because the resultant electron and neutrino are not energetic enough (energy difference between n and p)
- But inverse beta decay $p+e^{-} \rightarrow n+v_{e}$ OK
\rightarrow All neutrons
- So far thousands of SNe have been detected in external galaxies.
- In the Milky Way, a type Ia SN is expected every 36 years, and a type II SN is expected every 44 years. Then each century should see about 5 SNe .

Notable Historical supernovae in the Milky Way			
SN 1006	Lupus	Ia	-7.5 mag, brightest in history
SN 1054	Taurus	II	Chinese SN; Crab Nebula as the SNR
SN 1572	Cassiopeia	Ia	Tycho's Nova
SN 1604	Ophiuchus	Ia	Kepler's Star
SN 1680	Cassiopeia	Ilb	Not observed, Cas A as the SNR

Prediction:

$\checkmark\left[{ }^{4} \mathrm{He} / \mathrm{H}\right] \approx 0.25 \rightarrow$ obs OK
$\checkmark[\mathrm{D} / \mathrm{H}],\left[{ }^{4} \mathrm{He} / \mathrm{H}\right],,\left[{ }^{3} \mathrm{He} / \mathrm{H}\right],[\mathrm{Li} / \mathrm{H}]$ density dependent \rightarrow obs all same densities

WMAP (CMB) obs \rightarrow consistent result

Solar System Abundances

$\mathrm{Z} \uparrow$, Coulomb barrier $\uparrow \uparrow$ for charged particle reactions \rightarrow elements produced by neutron capture

Cosmic abundance and stellar/galaxy evolution (Burbidge, E. M., Burbidge, G. R., Fowler, W. A., \& Hoyle, F. (1957)

$$
\text { Big Bang } \rightarrow \mathrm{H}: \mathrm{He}=10: 1
$$

Stellar Interior

$10^{7} \mathrm{~K} \rightarrow \mathrm{p}-\mathrm{p}, \mathrm{CNO}$ (fusing proton, in a proton rich or neutron poor gas) (p process)
$10^{8} \mathrm{~K} \rightarrow$ triple-alpha to $\mathrm{C} \rightarrow$ continue to fuse α particles \rightarrow mass number multiples of 4 by fusing (α process)
$4 \times 10^{9} \mathrm{~K} \rightarrow$ nuclear equilibrium $\rightarrow \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}$ and elements of the iron group (e process)

Explosive events

Neutron capture rapidly (compared to the competing β decays) \rightarrow neutron-rich isotopes (r process)
e, g., the radioactive elements ${ }^{235} \mathrm{U},{ }^{238} \mathrm{U}$, at the expense of the iron group

Neutron capture slowly (compared to the competing β decays) \rightarrow neutron-rich isotopes (s process)

Fig. 2.2. Abundance ($A=1,64$)

Fig. 2.3. Abundance $(A=50,100)$

- Other than H and He, the rest ('metals') is rare
\because penetration prob. between positively charged nuclei has an exponential dependence $\left(Z_{1} Z_{2}\right)$
e.g., $\mathrm{O}+\mathrm{O} \rightarrow 64$ times stronger than in $\mathrm{H}+\mathrm{H}$
- Even A nuclei are favored; especially for even-even elements, i.e., even Z and even N.
$-Z=N \rightarrow \alpha$ particle nuclei e.g. ${ }^{12} \mathrm{C},{ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne},{ }^{24} \mathrm{Mg},{ }^{28} \mathrm{Si},{ }^{32} \mathrm{~S},{ }^{36} \mathrm{Al},{ }^{40} \mathrm{Ca}$
- First odd- A element is ${ }^{25} \mathrm{Mg}$; placed the $15^{\text {th }}$
- Among the top, only ${ }^{14} \mathrm{~N}$ is not even-even.
- Nuclei, like atoms, have a shell structure; "magic numbers" of protons are particularly tightly bound, e.g., ${ }^{4} \mathrm{He}(\mathrm{Z}=\mathrm{N}=2),{ }^{16} \mathrm{O}(\mathrm{Z}=\mathrm{N}=8)$
- ${ }^{56} \mathrm{Fe}$ not even-even; most tightly bound is ${ }^{56} \mathrm{Ni}$.

SN I and II light curves provide evidence that $\mathrm{Ni} \rightarrow \mathrm{Co} \rightarrow \mathrm{Fe}$ for $A=56 \rightarrow$ Abundance peaks at ${ }^{56} \mathrm{Fe}$

- For $A>60$, via neutron capture
\checkmark r-process: rapid relative to beta-decay
\checkmark s-process: slow nuclei already tightly bound \rightarrow small cross section for neutron capture (slow compare to beta decays) (Burbidge, Burbidge, Fowler, \& Hoyle; see Clayton)

Fig. 2.4. Abundance $(A=90,160)$

Fig. 2.5. Abundance $(A=140,210)$

Stellar Evolutionary Path

$$
\begin{aligned}
& \begin{array}{l}
\text { Star }=(1 . .8) \mathcal{M}_{\odot}
\end{array} \begin{array}{l}
\text { Mass loss } \uparrow \xrightarrow{\text { Stellar wind }} \text { pf } \\
\text { Less mass } \downarrow \longrightarrow \text { Core }>1.4 \mathcal{M}_{\odot} \xrightarrow{\text { detonation? }} \text { No remnant? }
\end{array} \\
& \text { Star > (8 .. 10) } \mathcal{M}_{\odot} \underset{\substack{20 \text { to } 30 \% \\
\text { mass loss }}}{\text { Core collapse }}<\begin{array}{l}
\text { Core }<1.8 \mathcal{M}_{\odot}, \text {, neutron star + SNR } \\
\text { Core }>1.8 \mathcal{M}_{\odot}, \text { black hole (?); a collapsar }
\end{array} \\
& \leftrightarrow \text { gamma-ray bursts }
\end{aligned}
$$

Black Holes predicted by General Relativity spacetime near a mass is warped

To cal solar eclipse
1.7
\cdots (sun
A full tratment of a $B H$ requined $G R$. But for an electrically neutral, non-rotating $B H$, classical derivations give the pare results as with the relativisitic approad.

	Nonrotating $(J=0)$	Rotating $(J>0)$
Uncharged $(Q=0)$	Schwarzschild	Kerr
Charged $(Q \neq 0)$	$\underline{\text { Reissner-Nordström }}$	Kerr-Newman

General BH metric, with M, Jand $Q=$ Kerr-Newman metric.

The two physical relevant surfaces of a Kerr black hole.

Table 1.4
Compact Objects in the Solar Neighborhood ${ }^{a}$

	Mass Range of Parent Star $\left(M_{\odot}\right)$	Integrated Galactic Birth Rate $\left(\mathrm{yr}^{-1}\right)$	Number Density $\left(\mathrm{pc}^{-3}\right)$	$\frac{\rho}{\rho_{T}}$	$\langle d\rangle$ (pc)
Object	$1-4$	0.16	1.5×10^{-2}	0.070	2.5
White dwarfs	$4-10$	0.021	2.0×10^{-3}	0.020	4.9
Neutron stars	>10	0.0085	8.0×10^{-4}	0.22	6.7
Black holes					

${ }^{a}$ These values are obtained from Eqs. (1.3.17)-(1.3.21).
Note: Nearest known white dwarf: Sirius B, 2.7 pc . Nearest known neutron star: PSR $1929+10$, 50 pc . Nearest known black hole candidate: Cygnus X-1, $\sim 2 \mathrm{kpc}$.

$$
\begin{aligned}
& \text { Size of the Universe } \\
& 13.7 \text { billion yrs } \\
& R_{\text {observable }} \sim 137 \times 10^{8} \times 10^{13} \mathrm{~km} \\
& \sim 1.4 \times 10^{23} \mathrm{~km} \\
& M_{\text {obs }} \sim 10^{\prime \prime} \mathrm{Mo} / \mathrm{gal} \cdot 10^{\prime 2} \text { ga! }\left(t_{\text {dark }}\right. \\
& \text { matter } \\
& \text { + ark energy) } \\
& \sim 10^{23} \mathrm{M} \\
& \left(R_{s} \sim 3 \frac{M}{M_{0}}[\mathrm{~km}]\right) \\
& R_{\text {obs }} \sim R_{s} \\
& \text { The whole Universe is a BH, }
\end{aligned}
$$

Hypernovae, Kilonovae

- Black-hole mergers
- White dwarf merger \rightarrow Type I SN
- Neutron-star mergers \rightarrow gravitational wave radiation \rightarrow spiral inwards ; merging \rightarrow a NS or a BH \rightarrow a short GRB + a kilonovae + r-process elements produced and ejected a kilonova: luminosity 100 x of a classical nova
- Hypernova = superluminous supernova a hypernova: luminosity $>10 \mathrm{x}$ of a standard

Quark Stars / Strange stars
kyperthetical type of stars composed of
quark matter a strange matter
currently 6 "flavors" of quarks
up, down, strange, charm, tep, bettem
spin $1 / 2$
When a neutron star is further comprosed
neutrons \rightarrow break down to up and down
quarles \rightarrow break down
strange quarle
dark
matter candidates?
These highly mathematical \& speculative
Smue recent ebservationo, e.g. in some SNe
\rightarrow existeme of quark stars?

Magnetars
Aagnetars \quad neutron star $w /$ an extremely string B
(10^{11} teslas n 10^{15} ganse)

> Earth/sun $\sim 1 G$
> Ap/bp
> WDS $\sim 10^{6} \mathrm{G}$
> NS, $\sim 10^{12} G$

