<section-header>

An iron nucleus is most compact between protons and neutrons \rightarrow further fusion does not release energy

→ iron core collapses (D \sim 3000 km, collapses in \sim 0.1 s)

Stage	Central temperature (K)	Central density (kg/m³)	Duration of stage
Hydrogen fusion	4×10^7	$5 imes 10^3$	$7 imes 10^{6} m yr$
Helium fusion	2×10^{8}	7×10^{5}	5×10^5 yr
Carbon fusion	6×10^8	2×10^8	600 yr
Neon fusion	$1.2 imes 10^9$	4×10^9	1 yr
Oxygen fusion	1.5×10^{9}	$1 imes 10^{10}$	6 mo
Silicon fusion	2.7×10^{9}	3×10^{10}	1 d
Core collapse	5.4×10^{9}	3×10^{12}	0.2 s
Core bounce	$2.3 imes 10^{10}$	4×10^{17}	millisecond
Supernova explosion	about 109	varies	10 second

Iron core collapse \rightarrow 5 billion K \rightarrow photodisintegration by energetic gamma rays

The star spends millions of years on the main sequence, synthesizing simple nuclei such as H and He to iron, then takes less than a second to disintegrate back to protons, neutrons and electrons.

Density of the core \nearrow , reaching 4×10^{17} kg/m³ (cf density of a nucleus) in < 1 s \rightarrow even the electron degenerate pressure cannot support the core $\rightarrow e^- + p^+ \rightarrow n^o + \nu$

Core supported by <u>neutron</u> degenerate pressure \rightarrow a neutron star

Core bounces → supernova explosion + supernova remnant

Gum Nebula is the largest SNR in the sky, originated from a supernova explosion perhaps a Myr ago.

Gum Nebula has a angular extent > 40 deg \rightarrow linear size more than 2300 ly across \rightarrow The closest part from Earth ~300 ly

	Supe	ernov	ae in I	History
• OB assoc	iation in Sco	rpius-(Centau	rus
Solar sys	ced SN explo	50 ly 2	2 Myr a	go; should have
P	Table 10.1 Histor	ical supernov	vae	
	Galaxy: Name	Year	Distance × 3000 ly	
	Milky Way:			
	Lupus	1006	1.4	
	Crab	1054	2.4	
	3C 58	1181(?)	2.6	· · · · ·
A CONTRACTOR OF	Tycho	1572	2.5 <	
	Kepler	1604	4.2	
	Cas A	1658 ± 3	2.8	
and the second se	Andromeda	1885	700	
	LMC: SN1987A	1987	50	
Chandra SN1604				Chandra SN1572

SN 1987A First observed 24 Feb, 1987 not quite SNI pre SN progenitor observed and sp. classified Sanduleak - 69 202 Sp = B 3 I L~1.1×10 LO; Teff~16,000K (M~ 16-22 Mg) Pop I but metal-poor Neutrino evento (kamiokande) detected hours before SN visible

Elements observed m SNI spectra ~ maximum ~ 6 months cubelass o, Mg, Si, S, ca, Fe Fe. Co SNIA O, Ca, Mg SNIL O, Ca, Fe SNIC He, Fe, Ca O. Mg Hansen + Kawaler

- The energy source of the type Ia supernovae comes from nuclear fusion. The explosion produces various radioactive isotopes , e.g., nickel becomes cobalt.
- So far, a few thousands SNe have been detected in external galaxies.
- Applying the statistics, the Milky Way should have occurred one type Ia SN every 36 years, and one type II SN every 44 years.
- Each century, therefore, we should have seen about 5 supernovae. So, what happened?
- Which star is most likely the next? In the solar neighborhood?

Supernovae M > 8 Mo core carbon burning -> 160, 20 N, Na, 12 Mg and 24 Mg ... Eventually 54 Fe, she and 56 N; "iron" core Three critical processes 1) Neutrino cooling Solar neutrino flux At this stage, a lot of 25 $= 7 \times 10^{10} / \text{cm}^2/\text{s}$ Ex. dung Si burning, a 20 Mg Neutrino mass - 20MO ~ 4.4× 10 mg 5' < 0.32 eV for the sum of Lp ~ 3.1× 10 mg 5' masses of 3 known flavors

2) Photodisintegration Energetic photons disintegrate iron nuclei 18 th to & particles and potens This is an endothermic process; i.e. takes energy away and lowers pressure support at the core 56 Fet & -> 13 "He + 4 m "He+x + 2p+ + 2n

3. Neutronization possible inverse & decay pt + e -> nº + v ne 1 => Parg 1 2 escape => cooling => A rapid collapse of the core 方文本作 Note exothermic releasing energy

Outer core/mantle collapses supersonically (free fall) V~ 70,000 Km 5 inner core collape homologously (infall speed a distance to center) Subsonically Inner core collapses until Per 8×10 8 cm 3 This is 3x Prucleus -> nuclear reactions produce rupulsive force (cannot "squeeze "anymore) This sends an outgoing pressure wave through the infalling material

Two possibilities when the shocks propagates through the inner core -> photo disintegration (i) If the iron core is small, shock emerges energetically -> an explosion on the outer material prompt hydrodymemic explosion This can explain the explosion of MS stars with $8 \sim 12 M_{\odot}$, ending with a core < 1.2 M $_{\odot}$. But the progenitor of SN1987A had 20 M $_{\odot}$ \rightarrow need

an alternative mechanism to explain more massive SNe

(ii) If the core is massive , inner shock stalls Perit > 1.5 x 10" gom material becomes so deuse that even Vs accretion cannot escape -> formation of a shock neutrine sphere of protostars of photosphere of a when p > Cerit Thiff > Three fall Thus deposito some energy to the inner shock -> explosion delayed-explosion mechanism

Roughly if original mass <25 Mo, can be supported neutron pressure; may survive the explosion -> a neutron star IL M > 25 Mo -> collapse to a black hole

Neutrino Tropping
Mean free path
$$\lambda = 1/n\sigma$$

Cross section $\sigma = \sigma_0 E^2$
For neutrinos, $\sigma_0 \sim 2 \times 10^{-44} \text{ Lem}^3 \text{ J}$
 $E = relative energy in unit$
 $\sigma_0 = rest mass$
In Read $\rho = 11.344 \text{ gcm}^3$, $A = 208$
A neutrino $\sigma_0 + MeV$, or $E = 2$, $\lambda \sim 3.8 \times 10^{\circ}$ on
 $\sim 380 \text{ Ry}$

In a collapsing Stellar core P~4× 10 4 gom3 Neutrinos have ~ 150 Mev, or E~300 $\rightarrow \lambda = 2.2 \text{ orm}$ So if R~ 10 Km, the mean free time, or diffusion time Tats

Supernova Observationo L peak ~ 10- 10 LO Time before peak (rising time) ~ 2 wks Shell expansion 2 ~ 5-10 × 10 × 10 × ms supernova remnant (SNR) Landing ~ 10 yrs Etotal ~ 10 - 10 Ergs = Ephotono + Encutrinos + Ekinetia usually minor (~1%) predominant cooling core -> a neutron star Prio 4 gamis, Mr Mo

- 1932 Chadwick discovered the neutron.
- Landau thought neutron stars might exist.
- 1934 Baade & Zwicky suggested neutron stars as remnants of supernova explosions.
- 1939 Oppenheimer & Volkoff proposed the first model for neutron stars, with estimates of masses and sizes.
- 1967 Hewish & Bell discovered the pulsar.
- Gold & Pacini proposed pulsars as fast spinning, highly magnetized neutron stars.

Mass limit of neutron degenerate stars uncertain because of uncertain Ees at P > Paulean, ranging from 0.7 Mo for non-interacting neutrons (Tolman - Oppenheimer - Volkoff kunt) up to ~ 2.5 Mo R~ lokm { B ~ 10^{'3}G Spin down from periods ~ ms A pulsar

Some SNRs host no pulsars. - not enough e, not strong enough B? - we are not in the ' light house beam'? - neutron Star destroyed completely neutron Star "Kicked out" some NSs (a pulsars) have space motion ~ 1000 Kms

Annu. Rev. Astron. Astrophys. 1992. 30: 359–89 TYPE Ia SUPERNOVAE AS STANDARD CANDLES

David Branch

Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019

G. A. Tammann

Astronomisches Institut der Universität Basel, Venusstrasse 7, CH-4102 Binningen, Switzerland, and European Southern Observatory, Karl-Schwarzschild-Str. 2, D-8049 Garching/München, Germany

Type I No H im spectra Located in spirals or ellipticals If in spirals, usually NOT in arms but some seen near HE regions or arms -> Ib Ia Standard model A wid close to chandrasekhar limit a mass losing companion + -> accretion onto wD -> Rwo 1 -> T 1. If heat not carried away => ignition of c, o, ... thermonuclear explosion

Fate 56 WD depends on accretion rate and MWD · partial explosion w/ a wed left behind · disrupt completely; no Stellar remnant · NS? Population I progenitor SNIa~ 80% of Type I $M_{peak} \sim -17 mag$ All SNIa lighteurves similar -> standard candles Averaged 1 SNI/100 yrs in a spiral

Type I M_{peak} ~ -19 mag with hydrogen lines in spectra Found in spiral arms on Irr. If formed in the same arm timescale < 10 xr => M>10 Mo progenitor Stondard model End of massive star evolution gravitational collapse Population I progenitor Fate -> NS, BH

Ann. Rev. Astron. Astrophys. 1986. 24: 205-53

THE PHYSICS OF SUPERNOVA EXPLOSIONS¹

S. E. Woosley

Board of Studies in Astronomy and Astrophysics, Lick Observatory, University of California, Santa Cruz, California 95064

Thomas A. Weaver

Special Studies Group, Lawrence Livermore National Laboratory, Livermore, California 94550

¹ The US Government has the right to retain a nonexclusive royalty-free license in and to any copyright covering this paper.

Main sequence mass	Helium core mass	Iron core mass	Explosion energy ^b (10 ⁵⁰ erg)	Residual baryon mass ^b	Neutron star mass ^b	Heavies ejected $(Z \ge 6)$
11	2.4	c	3.0	1.42	1.31	~0
12	3.1	1.31	3.8	1.35	1.26	0.96
15	4.2	1.33	2.0	1.42	1.31	1.24
20	6.2	1.70	_		_	2.53
25	8.5	2.05	4.0	2.44	1.96	4.31
35	14	1.80			—	9.88
50	23	2.45		_		17.7
75	36	d	s		BH?	30?
100	45	~2.3d	≥4		BH?	39?

Table 1	Dragunarnaug	models and	aunional
I able I	Presupernova	models and	explosions ²

^a All masses given in units of M_{\odot} . ^b All except for 100 M_{\odot} determined by Wilson et al. (1985). ^c Never developed iron core in hydrostatic equilibrium. ^d Pulsational pair instability at oxygen ignition.

Woosley & Weaver

Energy released in a core collapse R: RWD(0.01 Ro) -> RNS(10 Km) A Egrav ~ GHO2 ~ 3×10 2 angs 10% used up by nuclear processes rest to radiation and ejecting material (luminosity & neutrinos)

- So far thousands of SNe have been detected in external galaxies.
- In the Milky Way, a type Ia SN is expected every 36 years, and a type II SN is expected every 44 years. Then each century should see about 5 SNe.

Notable Historical supernovae in the Milky Way				
SN 1006 Lupus	Ia	–7.5 mag, brightest in history		
SN 1054 Taurus	Π	Chinese SN; Crab Nebula as the SNR		
SN 1572 Cassiopeia	Ia	Tycho's Nova		
SN 1604 Ophiuchus	Ia	Kepler's Star		
SN 1680 Cassiopeia	IIb	Not observed, Cas A as the SNR		


```
Cosmic abundance and stellar/galaxy evolution (Burbidge, E. M.,
Burbidge, G. R., Fowler, W. A., & Hoyle, F. (1957)
Big Bang \rightarrow H:He=10:1
<u>Stellar Interior</u>
10^7 \text{ K} \rightarrow \text{p-p}, CNO (fusing proton, in a proton rich or neutron
poor gas) (p process)
```

10⁸ K → triple-alpha to C → continue to fuse α particles → mass number multiples of 4 by fusing (α process)

 4×10^9 K \rightarrow nuclear equilibrium \rightarrow V, Cr, Mn and elements of the iron group (e process)

Explosive events

Neutron capture rapidly (compared to the competing β decays) \rightarrow neutron-rich isotopes (r process) e, g., the radioactive elements ²³⁵U, ²³⁸U, at the expense of the iron group

Neutron capture slowly (compared to the competing β decays) \rightarrow neutron-rich isotopes (s process)

Black Holes predicted by General Relativity Spacetime near a mass is warped Total solar eclipse A full tratment of a BH required GR. But for an electrically neutral, non-rotating BH, classical derivations give the pame results as with the relativisitic approach.

Object	Mass Range of Parent Star (M_{\odot})	Integrated Galactic Birth Rate (yr^{-1})	Number Density (pc ⁻³)	$\frac{\rho}{\rho_T}$	(a (p
White dwarfs	1-4	0.16	1.5×10^{-2}	0.070	2
Neutron stars	4-10	0.021	2.0×10^{-3}	0.020	4
Black holes	> 10	0.0085	8.0×10^{-4}	0.22	6.

Size of the Universe 13. 7 billion yrs Robservable ~ 137 × 10 × 10 km ~ 1.4 × 10 23 Km Mobs ~ 10" Mo/gal · 10" gal. (+ dark matter + dark energy ~ 10²³ Mo $\left(R_{s}\sim3\frac{M}{M_{6}}\left[kmj\right]\right)$ Robs ~ Rs The whole Universe is a BH 1

Hypernovae, Kilonovae

- Black-hole mergers
- White dwarf merger \rightarrow Type I SN
- Neutron-star mergers → gravitational wave radiation → spiral inwards; merging → a NS or a BH → a short GRB + a kilonovae + r-process elements produced and ejected a kilonova: luminosity 100 x of a classical nova
- Hypernova = superluminous supernova a hypernova: luminosity > 10 x of a standard

Magnetars Quark Stars / Strange Stars A neutron star w/ an extremely strong B hyperthetical type of Stars composed of (10" testas n 10" games) quark matter on Strange matter Earth/sun ~ 1 G currently 6 "flavors" of quarks AP/Bp ~ 10g up, down, Strange, charm. wDs ~ 10 G top, bettem spin 1/2 NSS ~ 10' 6 when a neutron star is further compressed collapse -> energy sources neutrons -> break down to up and down i) Egrav ~ 0.2 Met ~ 10 Ergs quarks -> break down · 11) Ent ~ 2 2 R ~ 10 295 Igs R Strange quark B links the fast spinning core to the dark matter candidates ? outlying envelopes magnetic breaking These highly mathematical & speculative D ~ 20 km; spin : several times /s Some recent observations , e.g. in some SNe Trim spans short , \$ 10 4 yr B decays -> existence of quark stars ?

