Stellar Formation and Evolution

设量形成办演化

Wen Ping Chen

Table of Contents

1 ．．．Properties of Stars
2 ．．．Star Formation
3 ．．．Stellar Structure
4 ．．．Nuclear Reactions
5 ．．．Main－Sequence Evolution
6 ．．．Post－main Sequence
7 ．．．Compact Objects
8 ．．．Supernovae \＆Others

\checkmark What is a "star"?

\checkmark How hot is the surface of the Sun? How is this known? The Sun is gaseous, so how come it has a "surface"?

\checkmark How hot is the center of the Sun? How is this known?

\checkmark How long can the Sun remain as a shining body? How is this known?

\checkmark Describe the radial structure of the Sun. How is this know?

Stellar Formation and Evolution --- Syllabus

Instructor: Professor Wen-Ping Chen
Office: 906
Class Time: Tuesday evening 5 to 8 scheduled (subject to change)
Class venue: Room 914

This course deals with the time variations of the structures of a star's interior and atmosphere. We will discuss the important physical processes governing the life of a star --- from its birth out of a dense, cold molecular cloud core, to shining with the star's own thermonuclear fuels, to rapid changes in structures when these fuels are no longer available, to the end of a star's life, with matter in extremely compact states.
What it may take for a star billions of years, will take us one semester to cover the following subjects:

- Observational Properties of Stars
- Molecular Clouds and the Interstellar Medium
- Cloud Collapse and Fragmentation
- Stars and Statistical Physics
- Protostars and Jets
- Circumstellar Disks and Planet Formation
- Evolution onto the Main Sequence
- Binaries and Star Clusters
- On the Main Sequence --- Nuclear Reactions
- Effects of Rotation
- Instabilities -.- Thermally, Dynamically and Convectively
- Post-MS Evolution of Low-Mass Stars --- RG, AGB, HB, PNe
- Post-MS Evolution of Massive Stars --- SN and SNR
- Mass Loss, Stellar Pulsation and Cepheid Variables
- Compact Objects --- White Dwarfs, Neutron Stars, and Black holes

Text:
"An Introduction to the Theory of Stellar Structure and Evolution", by Dina Prialnik, Cambridge, $2^{\text {nd }}$ Ed. 2009

References

All the references you have found useful for the course Stellar Atmosphere and Structure will be also of use in this course．The following are the ones I have been using or were published in recent years．
\checkmark Physics of Stellar Evolution and Cosmology，by H．Goldberg \＆Michael Scadron，1982，Gordon and Breach
\checkmark Stellar Structure and Evolution，by R．Kippenhahn \＆W．Weigert，1990，Springer－Verlag
\checkmark Introduction to Stellar Astrophysics，Vol 3 －－－Stellar Structure and Evolution，by Erika Bohm－Vitense，1992，Cambridge
\checkmark Stellar Structure and Evolution，by Huang，R．Q．黄洞乾，Guoshin， 1990
This book，originally in Chinese，has an English version，and has recently been revised．The Chinese version（沍星物理）has also been revised
$\checkmark \quad$ The Physics of Stars，by A．C．Phillips，1994，John Wiley \＆Sons
\checkmark Stellar Evolution，by Amos Harpaz，A K Peters， 1994
\checkmark The Stars－．－Their Structure and Evolution，R．J．Tayler，1994，Cambridge
\checkmark Theoretical Astrophysics，Vol II：Stars and Stellar Systems by Padmanabhan，T．，a hefty，mathematical 3 volume set；comprehensive coverage of basic astrophysical processes in vol．1，stars in vol．2，and galaxies and cosmology in vol．3，2001，Cambridge
\checkmark Evolution of Stars and Stellar Populations，by Maurizio Salaris and Santi，Cassisi，2005，Wiley
\checkmark The Formation of Stars，by Steven W．Stahler \＆Francesco Palla，2004，Wiley
\checkmark From Dust to Stars，by Norbert S．Schulz，2005，Spinger
\checkmark Stellar Physics，2：Stellar Evolution and Stability，by Bisnovatyi－Kogan，2 ${ }^{\text {nd }}$ Ed．，2010，Springer（translated from Russian）

For star formation，the book＂Molecular Clouds and Star Formation＂，edited by Chi Yuan（袁彦）\＆Junhan You（尤峻漠）and published by World Scientific in 1993，should be a good reference．Unfortunately this book is currently out of print，but Prof Yuan kindly donated his editor copy．

In addition to written midterm（ 30% grade）and final（ 30% ）exams，there will be homework assignments，plus in－class exercises or projects（ 35% ）．
For an extensive listing of books on＂stars＂．．．http：／／www．ericweisstein．com／encyclopedias／books／Stars．html

Course Goals

－To know the properties of various phases of the interstellar matter；
－To understand how stars form out of molecular clouds；under what conditions；
－To understand the physical properties of stars，and to know how these properties change with time as a star evolves；
－To understand the basic physics underlying complex stellar evolution models；
－To know how to interpret observational parameters of stars；
－To understand how stars of different masses evolve and what the end products of their evolution are．

Stellar structure: balance of forces
Stellar evolution: (con)sequence of thermonuclear reactions in different parts of a star

Often used fundamental constants

Physical
a radiation density constant $7.55 \times 10^{-16} \mathrm{~J} \mathrm{~m}^{-3} \mathrm{~K}^{-4}$
c velocity of light $\quad 3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$G \quad$ gravitational constant $\quad 6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
h Planck's constant $\quad 6.62 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$k \quad$ Boltzmann's constant $\quad 1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
m_{e} mass of electron
$9.11 \times 10^{-31} \mathrm{~kg}$
m_{H} mass of hydrogen atom $\quad 1.67 \times 10^{-27} \mathrm{~kg}$
$N_{A} \quad$ Avogardo's number $\quad 6.02 \times 10^{23} \mathrm{~mol}^{-1}$
σ Stefan Boltzmann constant $5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$ ($=\mathrm{ac} / 4$)
$R \quad$ gas constant $\left(k / m_{H}\right) \quad 8.26 \times 10^{3} \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$
$e \quad$ charge of electron $\quad 1.60 \times 10^{-19} \mathrm{C}$

Astronomical

L_{\odot}	Solar luminosity	$3.86 \times 10^{26} \mathrm{~W}$
M_{\odot}	Solar mass	$1.99 \times 10^{30} \mathrm{~kg}$
$T_{\text {eff }}$	Solar effective temperature	5780 K
$\mathrm{~T}_{\odot} \odot$	Solar Central temperature	$1.6 \times 10^{7} \mathrm{~K}$ (theoretical)
R_{\odot}	Solar radius	$6.96 \times 10^{8} \mathrm{~m}$
$\mathrm{~m}_{\odot}$	apparent mag of Sun	$-26.7 \mathrm{mag}(\mathrm{V})$
M_{\odot}	absolute mag of Sun	$+4.8 \mathrm{mag}(\mathrm{V})$
θ	apparent size of Sun	32^{\prime}
$<\rho>$	mean density of Sun	1.4 g cm
$(B-V) \odot$	Color of the Sun	$0.6 \mathrm{mag}^{-3}$
Parsec	(unit of distance)	$3.09 \times 10^{16} \mathrm{~m}$

Properties of Stars

Vocabulary

- Luminosity $\left[\mathrm{erg} \mathrm{s}^{-1}\right] L=$ bolometric luminosity $=$ power
- Spectral luminosity $\left[e r g ~ ~ s^{-1} \mu \mathrm{~m}^{-1}\right] \boldsymbol{L}_{\lambda} \quad d \lambda=-\left(c / v^{2}\right) d v$
- flux $\left[\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2}\right] f$
- flux density $\left[\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mu \mathrm{~m}^{-1}\right] \boldsymbol{f}_{\boldsymbol{\lambda}}$ or $\boldsymbol{f}_{\boldsymbol{v}} 1$ Jansky $(\mathrm{Jy})=10^{-23}\left[\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1}\right]$ $f(\mathrm{v}=0)=3640 \mathrm{Jy}$
- Brightness/intensity $\left[\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{sr}^{-1}\right] \boldsymbol{B}$
- Specific intensity $\left[\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{sr}^{-1} \mathrm{~Hz}^{-1}\right] I_{v}$
- Energy density $\left[\mathrm{erg} \mathrm{cm}^{-3}\right] \boldsymbol{u}=(4 \pi / \mathrm{c}) \mathrm{J}$
- Energy density [$\left.\mathrm{erg} \mathrm{cm}^{-3}\right] u=(4 \pi / \mathrm{c}) \mathrm{J}$

$$
S_{v}[\mu \mathrm{Jy}]=10^{(23.9-\mathrm{AB}) / 2.5}
$$

$$
m_{\mathrm{AB}}=-2.5 \log _{10}\left(\frac{f_{v}}{3631 \mathrm{Jy}}\right)
$$

- Magnitude ... apparent, absolute, bolometric, AB

Observable properties of stars

Basic parameters to compare between theories and observations

- Mass (M)
- Luminosity (L)
- Radius (R)
- Effective temperature (T_{e}) $\quad L=4 \pi R^{2} \sigma T_{e}^{4}$
- Distance \rightarrow measured flux $F=L / 4 \pi d^{2}$
M, R, L and T_{e} not independent

$$
-L \text { and } \mathrm{T}_{\text {eff }} \quad \begin{gathered}
\text { Hertzsprung-Russell (HR) diagram or } \\
\text { color-magnitude diagram (CMD) }
\end{gathered}
$$

- L and M mass-luminosity relation

From wikipedia by Richard Powell based on Hipparcos data and Gliese catalog

For (nearby) star databases http://www.projectrho.com/public_html/starmaps/catalogues.php

To measure the stellar distance

- Nearest stars $d>1 \mathrm{pc} \rightarrow p<1$ "
- For a star at $d=100 \mathrm{pc}, p=0.01^{\prime \prime}$
- Ground-based observations angular resolution ~1"; HST has 0.05"
- Hipparcos measured the parallaxes of 10^{5} bright stars with $p \sim 0.001^{\prime \prime} \rightarrow$ reliable distance determinations for stars up to $d=100 \mathrm{pc}$
\rightarrow ~100 stars with good parallax distances
Preliminary Version of the Third Catalogue of Nearby Stars
Gliese \& Jahreiss (1991)

CDS catalog number: V/10A 2964/3803 complete entries

GAIA will measure 10^{9} stars!

In most cases, the distance is estimated

- Stars with the same spectra are assumed to have identical set of physical parameters (spectroscopic parallax). For example, a G2V star should have the same absolute magnitude as the Sun.
- By comparison of the apparent brightness of an object with the known brightness of that particular kind of objects

$$
m_{\lambda}-M_{\lambda}=5 \log d-5+A_{\lambda}
$$

A_{λ} is usually unknown; it depends on the intervening dust grains that scatter and absorb the star light, and also depends on the distance to the object

- Main-sequence fitting; moving-cluster method; Cepheid variables
- Other methods for Galactic molecular clouds, galaxies, etc.

Fig. 1.-Normalized interstellar extinction curves from the far-IR through the UV. Several general features of the curves are noted. The solid and dotted curves are estimates for the case $R \equiv A(V) / E(B-V)=3.1$ derived in the Appendix of this paper and by Cardelli et al. (1989), respectively. The dashed curve shows the average Galactic UV extinction curve from Seaton (1979).

To measure the stellar size

- Angular diameter of sun at 10 pc $=2 R_{\odot} / 10 \mathrm{pc}=5 \times 10^{-9}$ radians $=10^{-3} \operatorname{arcsec}$
- Even the $\operatorname{HST}\left(0.05^{\prime \prime}\right)$ barely capable of measuring directly the sizes of stars, except for the nearest supergiants

- Radii of ~ 600 stars measured with techniques such as interferometry, (lunar) occultation or for eclipsing binaries

To measure the stellar temperature

\bullet What is $T_{\text {eff }}$? What is the "surface" of a star?

- What is Tanyway? Temperature is often defined by other physical quantities through an equation ("law") (by radiation or by particles) blackbody, radiation, color, excitation, ionization, kinetic, electron, conductive ...
- Only in thermal equilibrium are all these temperatures the same.
- Photometry (spectral energy distribution) gives a rough estimate of T, e.g., fluxes/magnitudes measured at different wavelengths, such as the "standard" Johnson system UBVRI
- There are many photometric systems,

Band	U	B	V	R	I
λ / nm	365	445	551	658	806
$\Delta \lambda / n m$	66	94	88	138	149

Solar Radiation Spectrum

Running (slope) between B and V bands, i.e., the ($B-V$) color (index) \rightarrow photospheric temperature

The larger the value of $(B-V)$, the redder (cooler) the star.

Figure 1.8 Theoretical monochromatic flux emerging form an A type star with $T_{\text {eff }}=8000 \mathrm{~K}$. The first four Balmer absorption lines, as well as the Balmer jump, are identified in this figure. Thousands of other absorption atomic lines can also be seen. This theoretical flux was obtained with the Phoenix stellar atmosphere code (Hauschildt, P.H., Allard, F. and Baron, E., The Astrophysical Journal, 512, 377 (1999)) while using the elemental abundances found in the Sun. The flux at the surface of a blackbody with $T=8000 \mathrm{~K}$ (dotted curve) is also shown.

- Calibration for $B-V=f\left(T_{e}\right)$
- The observed $(B-V)$ must be corrected for interstellar extinction in order to derive the stellar intrinsic $(B-V) 0$
- More accurate determination of T by spectra and stellar atmosphere models, e.g., the Kurucz's model

Color Excess
 $$
E_{B-V}=(B-V)_{\mathrm{obs}}-(B-V)_{\mathrm{int}}
$$

$$
(B-V)_{\odot}=0.656 \pm 0.005
$$

Sloan Digital Sky Survey

Different temperature, elements (at different excitation and ionization levels) \rightarrow different set of spectral lines

[^0]
Line ratios \rightarrow Temperature

I --- neutral atoms; II --- ionized once; III --- ionized twice; ...
e.g., $\mathrm{HI}=\mathrm{H}^{0}$... $\mathrm{HII}=\mathrm{H}^{+}$... He III $=\mathrm{He}^{+2}$... Fe XXVI $=\mathrm{Fe}^{+25}$

Hot stars --- peaked at short wavelengths (UV); mainly He lines, some H lines

Warm stars --- peaked in the visible wavelengths; H lines prominent

Cool stars --- peaked at long wavelengths (IR); molecular lines/bands

Brown dwarfs and Planetary Objects

L, T and Y types

Brown dwarfs and Planetary Objects

[^1]

Using imaging photometry (time saving) to trace spectral features

One of the SDSS color-color diagrams

Figure 16.15 Near-infrared color-color plot of M dwarfs (filled circles), L dwarfs (open circles) and T dwarfs (filled triangles). The objects are from a variety of regions. Note that the typical measurement errors for the L - and T-dwarfs are quite large, about 0.13 mag.

To measure the stellar luminosity

Absolute Magnitude M defined as apparent magnitude of a star if it were placed at a distance of 10 pc

$$
m_{\lambda}-M_{\lambda}=5 \log \left(d_{\mathrm{pc}}\right)-5
$$

But there is extinction $\ldots m_{\lambda}-M_{\lambda}=5 \log \left(d_{\mathrm{pc}}\right)-5+A_{\lambda}$
Bolometric magnitude - the absolute magnitude integrated over all wavelengths. We define the bolometric correction
Bolometric Correction $\quad B C=M_{\text {bol }}-M_{v}$

$$
M_{b o l}^{\odot}=+4.74
$$

is a function of the spectral type (min at the F type, why?) and luminosity of a star.
That is, we can apply BC (always negative, why?) to a star to estimate its luminosity (from the photosphere).

Apparent Magnitude $m=-2.5 \log$ (Flux) + ZeroPoint

- The Vega system: 0.0 mag (latest $\sim 0.3 \mathrm{mag}$) at every Johnson band
- Gunn system: no Vega; use of F subdwarfs as standards (metal poor so smooth spectra), e.g., BD +174708
- The AB system: $\mathrm{AB}_{v}=-2.5 \log _{10} f_{v}-48.60$
- STMAG system: used for HST photometry

$$
\text { STMAG }_{\lambda}=-2.5 \log _{10} f_{\lambda}-21.1
$$

Table 15.7. Calibration of MK spectral types.							
$S p$	$M(V)$	$B-V$	$U-B$	$V-R$	$R-I$	$T_{\text {eff }}$	BC
MAIN SEQUENCE, V							
O5	-5.7	-0.33	-1.19	-0.15	-0.32	42000	-4.40
O9	-4.5	-0.31	-1.12	-0.15	-0.32	34000	-3.33
B0	-4.0	-0.30	-1.08	-0.13	-0.29	30000	-3.16
B2	-2.45	-0.24	-0.84	-0.10	-0.22	20900	-2.35
B5	-1.2	-0.17	-0.58	-0.06	-0.16	15200	-1.46
B8	-0.25	-0.11	-0.34	-0.02	-0.10	11400	-0.80
A0	+0.65	-0.02	-0.02	0.02	-0.02	9790	-0.30
A2	+1.3	+0.05	+0.05	0.08	0.01	9000	-0.20
A5	+1.95	+0.15	+0.10	0.16	0.06	8180	-0.15
F0	+2.7	+0.30	+0.03	0.30	0.17	7300	-0.09
F2	+3.6	+0.35	0.00	0.35	0.20	7000	-0.11
F5	+3.5	+0.44	-0.02	0.40	0.24	6650	-0.14
F8	+4.0	+0.52	+0.02	0.47	0.29	6250	-0.16
G0,	+4.4	+0.58	+0.06	0.50	0.31	5940	-0.18
G2	+4.7	+0.63	+0.12	0.53	0.33	5790	-0.20
G5	+5.1	+0.68	+0.20	0.54	0.35	5560	-0.21
G8	+5.5	+0.74	+0.30	0.58	0.38	5310	-0.40
K0	+5.9	+0.81	+0.45	0.64	0.42	5150	-0.31
K2	+6.4	+0.91	+0.64	0.74	0.48	4830	-0.42
K5	+7.35	+1.15	+1.08	0.99	0.63	4410	-0.72
M0	+8.8	+1.40	+1.22	1.28	0.91	3840	-1.38
M2	+9.9	+1.49	+1.18	1.50	1.19	3520	-1.89
M5	+12.3	+1.64	+1.24	1.80	1.67	3170	-2.73
GIANTS, $1 I I$							
G5	+0.9	+0.86	+0.56	0.69	0.48	5050	-0.34
G8	+0.8	+0.94	+0.70	0.70	0.48	4800	-0.42
K0	+0.7	+1.00	+0.84	0.77	0.53	4660	-0.50
K2	+0.5	+1.16	+1.16	0.84	0.58	4390	-0.61
K5	-0.2	+1.50	+1.81	1.20	0.90	4050	-1.02
M0	-0.4	+1.56	+1.87	1.23	0.94	3690	-1.25
M2	-0.6	+1.60	+1.89	1.34	1.10	3540	-1.62
M5	-0.3	+1.63	+1.58	2.18	1.96	3380	-2.48

Table 15.7. (Continued.)							
$S p$	$M(V)$	$B-V$	$U-B$	$V-R$	$R-I$	$T_{\text {eff }}$	BC
SUPERGIANTS, I							
O9	-6.5	-0.27	-1.13	-0.15	-0.32	32000	-3.18
B2	-6.4	-0.17	-0.93	-0.05	-0.15	17600	-1.58
B5	-6.2	-0.10	-0.72	0.02	-0.07	13600	-0.95
B8	-6.2	-0.03	-0.55	0.02	0.00	11100	-0.66
A0	-6.3	-0.01	-0.38	0.03	0.05	9980	-0.41
A2	-6.5	+0.03	-0.25	0.07	0.07	9380	-0.28
A5	-6.6	+0.09	-0.08	0.12	0.13	8610	-0.13
F0	-6.6	+0.17	+0.15	0.21	0.20	7460	-0.01
F2	-6.6	+0.23	+0.18	0.26	0.21	7030	-0.00
F5	-6.6	+0.32	+0.27	0.35	0.23	6370	-0.03
F8	-6.5	+0.56	+0.41	0.45	0.27	5750	-0.09
G0	-6.4	+0.76	+0.52	0.51	0.33	5370	-0.15
G2	-6.3	+0.87	+0.63	0.58	0.40	5190	-0.21
G5	-6.2	+1.02	+0.83	0.67	0.44	4930	-0.33
G8	-6.1	+1.14	+1.07	0.69	0.46	4700	-0.42
K0	-6.0	+1.25	+1.17	0.76	0.48	4550	-0.50
K2	-5.9	+1.36	+1.32	0.85	0.55	4310	-0.61
K5	-5.8	+1.60	+1.80	1.20	0.90	3990	-1.01
M0	-5.6	+1.67	+1.90	1.23	0.94	3620	-1.29
M2	-5.6	+1.71	+1.95	1.34	1.10	3370	-1.62
M5	-5.6	+1.80	$+1.60:$	2.18	1.96	2880	-3.47

Table 15.8. Calibration of MK spectral types. ${ }^{a}$									
$S p$	$\mathcal{M} / \mathcal{M}_{\odot}$	R / R_{\odot}	$\log (g / g \odot)$	$\log \left(\bar{\rho} / \bar{\rho}_{\odot}\right)$	$v_{\text {rot }}\left(\mathrm{km} \mathrm{s}^{-1}\right)$				
MAIN SEQUENCE, V									
O3	120	15	-0.3	-1.5					
O5	60	12	-0.4	-1.5					
O6	37	10	-0.45	-1.45					
O8	23	8.5	-0.5	-1.4	200				
B0	17.5	7.4	-0.5	-1.4	170				
B3	7.6	4.8	-0.5	-1.15	190				
B5	5.9	3.9	-0.4	-1.00	240				
B8	3.8	3.0	-0.4	-0.85	220				
A0	2.9	2.4	-0.3	-0.7	180				
A5	2.0	1.7	-0.15	-0.4	170				
F0	1.6	1.5	-0.1	-0.3	100				
F5	1.4	1.3	-0.1	-0.2	30				
G0	1.05	1.1	-0.05	-0.1	10				
G5	0.92	0.92	+0.05	-0.1	<10				
K0	0.79	0.85	+0.05	+0.1	<10				
K5	0.67	0.72	+0.1	+0.25	<10				
M0	0.51	0.60	+0.15	+0.35					
M2	0.40	0.50	+0.2	+0.8	.				
M5	0.21	0.27	+0.5	+1.0					
M8	0.06	0.10	+0.5	+1.2					

Sp	$\mathcal{M} / \mathcal{M}_{\odot}$	R / R_{\odot}	$\log \left(g / g_{\odot}\right)$	$\log \left(\bar{\rho} / \bar{\rho}_{\odot}\right)$	$v_{\text {rot }}\left(\mathrm{km} \mathrm{s}^{-1}\right)$
GIANTS, III					
B0	20	15	-1.1	-2.2	120
B5	7	8	-0.95	-1.8	130
A0	4	5		-1.5	100
G0	1.0	6	-1.5	-2.4	30
G5	1.1	10	-1.9	-3.0	<20
K0	1.1	15	-2.3	-3.5	<20
K5	1.2	25	-2.7	-4.1	<20
M0	1.2	40	-3.1	-4.7	
SUPERGIANTS, I					
O5	70	30:	-1.1	-2.6	
06	40	25:	-1.2	-2.6	
08	28	20	-1.2	-2.5	125
B0	25	30	-1.6	-3.0	102
B5	20	50	-2.0	-3.8	40
A0	16	60	-2.3	-4.1	40
A5	13	60	-2.4	-4.2	38
F0	12	80	-2.7	-4.6	30
F5	10	100	-3.0	-5.0	<25
G0	10	120	-3.1	-5.2	<25
G5	12	150	-3.3	-5.3	<25
K0	13	200	-3.5	-5.8	<25
K5	13	400	-4.1	-6.7	<25
M0	13	500	-4.3	-7.0	
M2	19	800	-4.5	-7.4	
Note					
${ }^{a}$ A colon indicates an uncertain value.				Qul	en's Astrop

Table 15.9. Zero-age main sequence.

$(B-V)_{0}$	$(U-B)_{0}$	M_{v}	$(B-V)_{0}$	$(U-B)_{0}$	M_{v}
$-0 \mathrm{~m}_{33}$	$-1 \mathrm{~m}_{20}$	$-5^{\mathrm{m}_{2}}$	+0.40	-0.01	+3.4
-0.305	-1.10	-3.6	+0.50	0.00	+4.1
-0.30	-1.08	-3.25	+0.60	+0.08	+4.7
-0.28	-1.00	-2.6	+0.70	+0.23	+5.2
-0.25	-0.90	-2.1	+0.80	+0.42	+5.8
-0.22	-0.80	-1.5	+0.90	+0.63	+6.3
-0.20	-0.69	-1.1	+1.00	+0.86	+6.7
-0.15	-0.50	-0.2	+1.10	+1.03	+7.1
-0.10	-0.30	+0.6	+1.20	+1.13	+7.5
-0.05	-0.10	+1.1	+1.30	+1.20	+8.0
0.00	+0.01	+1.5	+1.40	+1.22	+8.8
+0.05	+0.05	+1.7	+1.50	+1.17	+10.3
+0.10	+0.08	+1.9	+1.60	+1.20	+12.0
$(B-V)_{0}$	$(U-B)_{0}$	M_{v}	$(B-V)_{0}$	$(U-B)_{0}$	M_{v}
+0.15	+0.09	+2.1	+1.70	+1.32	+13.2
+0.20	+0.10	+2.4	+1.80	+1.43	+14.2
+0.25	+0.07	+2.55	+1.90	+1.53	+15.5
+0.30	+0.03	+2.8	+2.00	+1.64	+16.7
+0.35	0.00	+3.1			

Allen's Astrophysical Quantities (4 ${ }^{\text {th }}$ edition)

Main-Sequence Stars (Luminosity Class V)									
Sp. Type	$\begin{gathered} T_{e} \\ (K) \\ \hline \end{gathered}$	L / L_{\odot}	R / R_{\odot}	M / M_{\odot}	$M_{\text {bol }}$	$B C$	M_{V}	$U-B$	$B-V$
O5	42000	499000	13.4	60	-9.51	-4.40	-5.1	-1.19	-0.33
O6	39500	324000	12.2	37	-9.04	-3.93	-5.1	-1.17	-0.33
07	37500	216000	11.0	-	-8.60	-3.68	-4.9	-1.15	-0.32
O8	35800	147000	10.0	23	-8.18	-3.54	-4.6	-1.14	-0.32
B0	30000	32500	6.7	17.5	-6.54	-3.16	-3.4	-1.08	-0.30
B1	25400	9950	5.2	-	-5.26	-2.70	-2.6	-0.95	-0.26
B2	20900	2920	4.1	-	-3.92	-2.35	-1.6	-0.84	-0.24
B3	18800	1580	3.8	7.6	-3.26	-1.94	-1.3	-0.71	-0.20
B5	15200	480	3.2	5.9	-1.96	-1.46	-0.5	-0.58	-0.17
B6	13700	272	2.9	-	-1.35	-1.21	-0.1	-0.50	-0.15
B7	12500	160	2.7	-	-0.77	-1.02	$+0.3$	-0.43	-0.13
B8	11400	96.7	2.5	3.8	-0.22	-0.80	$+0.6$	-0.34	-0.11
B9	10500	60.7	2.3	-	$+0.28$	-0.51	$+0.8$	-0.20	-0.07
A0	9800	39.4	2.2	2.9	+0.75	-0.30	$+1.1$	-0.02	-0.02
A1	9400	30.3	2.1	-	$+1.04$	-0.23	+1.3	$+0.02$	+0.01
A2	9020	23.6	2.0	-	$+1.31$	-0.20	$+1.5$	+0.05	+0.05
A5	8190	12.3	1.8	2.0	+2.02	-0.15	$+2.2$	$+0.10$	+0.15
A8	7600	7.13	1.5	-	+2.61	-0.10	$+2.7$	+0.09	+0.25
F0	7300	5.21	1.4	1.6	$+2.95$	-0.09	$+3.0$	+0.03	$+0.30$
F2	7050	3.89	1.3	-	+3.27	-0.11	+3.4	$+0.00$	+0.35
F5	6650	2.56	1.2	1.4	+3.72	-0.14	+3.9	-0.02	+0.44
F8	6250	1.68	1.1	-	+4.18	-0.16	+4.3	+0.02	+0.52

	Main-Sequence Stars (Luminosity Class V)								
Sp.	T_{e}								
Type	(K)	L / L_{\odot}	R / R_{\odot}	M / M_{\odot}	$M_{\text {bol }}$	$B C$	M_{V}	$U-B$	$B-V$
G0	5940	1.25	1.06	1.05	+4.50	-0.18	+4.7	+0.06	+0.58
G2	5790	1.07	1.03	-	+4.66	-0.20	+4.9	+0.12	+0.63
Sun a	5777	1.00	1.00	1.00	+4.74	-0.08	+4.82	+0.195	+0.650
G8	5310	0.656	0.96	-	+5.20	-0.40	+5.6	+0.30	+0.74
K0	5150	0.552	0.93	0.79	+5.39	-0.31	+5.7	+0.45	+0.81
K1	4990	0.461	0.91	-	+5.58	-0.37	+6.0	+0.54	+0.86
K3	4690	0.318	0.86	-	+5.98	-0.50	+6.5	+0.80	+0.96
K4	4540	0.263	0.83	-	+6.19	-0.55	+6.7	-	+1.05
K5	4410	0.216	0.80	0.67	+6.40	-0.72	+7.1	+0.98	+1.15
K7	4150	0.145	0.74	-	+6.84	-1.01	+7.8	+1.21	+1.33
M0	3840	0.077	0.63	0.51	+7.52	-1.38	+8.9	+1.22	+1.40
M1	3660	0.050	0.56	-	+7.99	-1.62	+9.6	+1.21	+1.46
M2	3520	0.032	0.48	0.40	+8.47	-1.89	+10.4	+1.18	+1.49
M3	3400	0.020	0.41	-	+8.97	-2.15	+11.1	+1.16	+1.51
M4	3290	0.013	0.35	-	+9.49	-2.38	+11.9	+1.15	+1.54
M5	3170	0.0076	0.29	0.21	+10.1	-2.73	+12.8	+1.24	+1.64
M6	3030	0.0044	0.24	-	+10.6	-3.21	+13.8	+1.32	+1.73
M7	2860	0.0025	0.20	-	+11.3	-3.46	+14.7	+1.40	+1.80

Carroll \& Ostelie

Giant Stars (Luminosity Class III)									
Sp. Type	$\begin{gathered} T_{e} \\ (K) \end{gathered}$	L / L_{\odot}	R / R_{\odot}	M / M_{\odot}	$M_{\text {bol }}$	$B C$	M_{V}	$U-B$	$B-V$
O5	39400	741000	18.5	-	-9.94	-4.05	-5.9	-1.18	-0.32
O6	37800	519000	16.8	-	-9.55	-3.80	-5.7	-1.17	-0.32
07	36500	375000	15.4	-	-9.20	-3.58	-5.6	-1.14	-0.32
O8	35000	277000	14.3	-	-8.87	-3.39	-5.5	-1.13	-0.31
B0	29200	84700	11.4	20	-7.58	-2.88	-4.7	-1.08	-0.29
B1	24500	32200	10.0	-	-6.53	-2.43	-4.1	-0.97	-0.26
B2	20200	11100	8.6	-	-5.38	-2.02	-3.4	-0.91	-0.24
B3	18300	6400	8.0	-	-4.78	-1.60	-3.2	-0.74	-0.20
B5	15100	2080	6.7	7	-3.56	-1.30	-2.3	-0.58	-0.17
B6	13800	1200	6.1	-	-2.96	-1.13	-1.8	-0.51	-0.15
B7	12700	710	5.5	-	-2.38	-0.97	-1.4	-0.44	-0.13
B8	11700	425	5.0	-	-1.83	-0.82	-1.0	-0.37	-0.11
B9	10900	263	4.5	-	-1.31	-0.71	-0.6	-0.20	-0.07
A0	10200	169	4.1	4	-0.83	-0.42	-0.4	-0.07	-0.03
A1	9820	129	3.9	-	-0.53	-0.29	-0.2	+0.07	+0.01
A2	9460	100	3.7	-	-0.26	-0.20	-0.1	+0.06	+0.05
A5	8550	52	3.3	-	+0.44	-0.14	+0.6	+0.11	+0.15
A8	7830	33	3.1	-	$+0.95$	-0.10	+1.0	+0.10	$+0.25$

F0	7400	27	3.2	-	+1.17	-0.11	+1.3	+0.08	+0.30
F2	7000	24	3.3	-	+1.31	-0.11	+1.4	+0.08	+0.35
F5	6410	22	3.8	-	+1.37	-0.14	+1.5	+0.09	+0.43
G0	5470	29	6.0	1.0	+1.10	-0.20	+1.3	+0.21	+0.65
G2	5300	31	6.7	-	+1.00	-0.27	+1.3	+0.39	+0.77
G8	4800	44	9.6	-	+0.63	-0.42	+1.0	+0.70	+0.94
K0	4660	50	10.9	1.1	+0.48	-0.50	+1.0	+0.84	+1.00
K1	4510	58	12.5	-	+0.32	-0.55	+0.9	+1.01	+1.07
K3	4260	79	16.4	-	-0.01	-0.76	+0.8	+1.39	+1.27
K4	4150	93	18.7	-	-0.18	-0.94	+0.8	-	+1.38
K5	4050	110	21.4	1.2	-0.36	-1.02	+0.7	+1.81	+1.50
K7	3870	154	27.6	-	-0.73	-1.17	+0.4	+1.83	+1.53
M0	3690	256	39.3	1.2	-1.28	-1.25	+0.0	+1.87	+1.56
M1	3600	355	48.6	-	-1.64	-1.44	-0.2	+1.88	+1.58
M2	3540	483	58.5	1.3	-1.97	-1.62	-0.4	+1.89	+1.60
M3	3480	643	69.7	-	-2.28	-1.87	-0.4	+1.88	+1.61
M4	3440	841	82.0	-	-2.57	-2.22	-0.4	+1.73	+1.62
M5	3380	1100	96.7	-	-2.86	-2.48	-0.4	+1.58	+1.63
M6	3330	1470	116	-	-3.18	-2.73	-0.4	+1.16	+1.52

Supergiant Stars (Luminosity Class Approximately Iab)										
Sp. Type	$\begin{gathered} T_{e} \\ (K) \end{gathered}$	L / L_{\odot}	R / R_{\odot}	M / M_{\odot}	$M_{\text {bol }}$	BC	M_{V}	$U-B$	$B-V$	
O5	40900	1140000	21.2	70	-10.40	-3.87	-6.5	-1.17	-0.31	
06	38500	998000	22.4	40	-10.26	-3.74	-6.5	-1.16	-0.31	
07	36200	877000	23.8	-	-10.12	-3.48	-6.6	-1.14	-0.31	
O8	34000	769000	25.3	28	-9.98	-3.35	-6.6	-1.13	-0.29	
B0	26200	429000	31.7	25	-9.34	-2.49	-6.9	-1.06	-0.23	
B1	21400	261000	37.3	-	-8.80	-1.87	-6.9	-1.00	-0.19	
B2	17600	157000	42.8	-	-8.25	-1.58	-6.7	-0.94	-0.17	
B3	16000	123000	45.8	-	-7.99	-1.26	-6.7	-0.83	-0.13	
B5	13600	79100	51.1	20	-7.51	-0.95	-6.6	-0.72	-0.10	
B6	12600	65200	53.8	-	-7.30	-0.88	-6.4	-0.69	-0.08	
B7	11800	54800	56.4	-	-7.11	-0.78	-6.3	-0.64	-0.05	
B8	11100	47200	58.9	-	-6.95	-0.66	-6.3	-0.56	-0.03	
B9	10500	41600	61.8	-	-6.81	-0.52	-6.3	-0.50	-0.02	
A0	9980	37500	64.9	16	-6.70	-0.41	-6.3	-0.38	-0.01	
A1	9660	35400	67.3	-	-6.63	-0.32	-6.3	-0.29	+0.02	
A2	9380	33700	69.7	-	-6.58	-0.28	-6.3	-0.25	+0.03	
A5	8610	30500	78.6	13	-6.47	-0.13	-6.3	-0.07	+0.09	
A8	7910	29100	91.1	-	-6.42	-0.03	-6.4	+0.11	+0.14	Carroll \& Ostelie

F0	7460	28800	102	12	-6.41	-0.01	-6.4	+0.15	$+0.17$
F2	7030	28700	114	-	-6.41	0.00	-6.4	+0.18	+0.23
F5	6370	29100	140	10	-6.42	-0.03	-6.4	$+0.27$	+0.32
F8	5750	29700	174	-	-6.44	-0.09	-6.4	+0.41	$+0.56$
G0	5370	30300	202	10	-6.47	-0.15	-6.3	+0.52	+0.76
G2	5190	30800	218	-	-6.48	-0.21	-6.3	$+0.63$	$+0.87$
G8	4700	32400	272	-	-6.54	-0.42	-6.1	+1.07	+1.15
K0	4550	33100	293	13	-6.56	-0.50	-6.1	+1.17	+1.24
K1	4430	34000	314	-	-6.59	-0.56	-6.0	+1.28	+1.30
K3	4190	36100	362	-	-6.66	-0.75	-5.9	$+1.60$	+1.46
K4	4090	37500	386	-	-6.70	-0.90	-5.8	-	$+1.53$
K5	3990	39200	415	13	-6.74	-1.01	-5.7	+1.80	$+1.60$
K7	3830	43200	473	-	-6.85	-1.20	-5.6	+1.84	+1.63
M0	3620	51900	579	13	-7.05	-1.29	-5.8	+1.90	+1.67
M1	3490	60300	672	-	-7.21	-1.38	-5.8	+1.90	+1.69
M2	3370	72100	791	19	-7.41	-1.62	-5.8	+1.95	+1.71
M3	3210	89500	967	-	-7.64	-2.13	-5.5	+1.95	+1.69
M4	3060	117000	1220	-	-7.93	-2.75	-5.2	+2.00	+1.76
M5	2880	165000	1640	24	-8.31	-3.47	-4.8	+1.60	+1.80
M6	2710	264000	2340	-	-8.82	-3.90	-4.9	-	-

TABLE II Adopted calibration of MK spectral types in absolute magnitudes M_{V}									TABLE III Adopted temperatures and bolometric corrections for MK spectral types																		
$\mathrm{Sp}^{\text {p }}$	zams	v	IV	III	II	${ }^{\text {Ib }}$	${ }^{\text {Iab }}$	Ia										Sp	${ }^{\log \text { Teft }}$				Bol. Correction				
									v		III	I-II	v		III	I-II											
O5	${ }_{-4.6}^{-4.6}$	-5.6	${ }_{\text {c-5.8 }}^{5.5}$	-6.0. ${ }_{-59}$	-6.3.	-6.6 ${ }_{\text {-6, }}^{\text {-6, }}$	${ }^{-6.9}$	${ }_{-7.2}^{-7.2}$	05		4.626		4.148		-4.15		-3.80										
-	${ }_{-3.9}^{-3.9}$	-5.4	-5.7	-5.9	-6.3	${ }^{-6.5}$	-6.9 -6.8	-7.2 -7.2 -72	06 07 07		+ $\begin{aligned} & 4.453 \\ & 4.568\end{aligned}$		4.585 4.556		-3.90												
- 08	-3.7 -3.5	-4.9	-5.2 -4.9	- -5.6	-6.19	-6.4 ${ }_{-6.3}$	-6.7 -6.6	${ }_{-7.2}^{-7.2}$	O8		4.550		${ }_{4.535}$		-3.40 -3.40		-3.15										
в0	${ }^{-3.1}$	${ }_{-4.0}$	-4.4	-4.9	-5.6	${ }_{-6.1}$	${ }_{-6.5}{ }^{-6.6}$	${ }_{-7.2}$	${ }_{\text {O }}^{09}$		${ }_{4}^{4.425}$		${ }_{4}^{4.512}$		-3.15 -295 -2.5		-2.95 -250 -20										
${ }^{\text {B1 }}$	-2.3	-3.3	${ }^{-3.9}$	-4.5	-5.2	-5.9	-6.4	-7.2	${ }_{\text {B1 }}^{\text {B0 }}$		4.4.423		${ }_{4.371}^{4.431}$		${ }_{-2.60}$		${ }_{-2.15}^{-2.50}$										
${ }^{\text {B2 }}$	${ }^{-1.6}$	-2.5	${ }^{-3.1}$	-3.7	-5.0	-5.9	-6.4	-7.2	${ }_{\text {B2 }}$		4.362		4.307		- 2.20		${ }_{-1.75}$										
${ }_{\text {B5 }}$	${ }_{-0.1}^{-1.0}$	-1.7 -0.8	${ }_{-1.2}^{-2.3}$	-3.0 -1.7	- ${ }_{-4.6}$	-5.9	${ }_{-6.4}^{-6.4}$	${ }_{-7.2}^{-7.2}$	${ }_{\text {B3 }}$		4.286		4.243		-1.85		-1.40										
${ }^{\text {B6 }}$	0.3	-0.5	${ }^{-0.9}$	-1.3	-4.4	-5.8	${ }^{-6.4}$	${ }_{-7.2}$	${ }_{\text {c }}^{\text {B6 }}$		4.188		${ }_{4}^{4.1137}$		-1.30 -1.05		- ${ }_{-0.90}^{-0.75}$										
- ${ }_{\text {B7 }}^{\text {B7 }}$	0.6 1.0	-0.2 0.1	${ }_{-0.3}^{-0.6}$	${ }_{-1.0}^{-1.0}$	-4.2 -3.9	-5.8 ${ }_{-5.8}$	-6.4 ${ }_{-6.4}^{-6.4}$	-7.2 -7.2	${ }_{\text {B7 }}^{\text {B7 }}$		4.107		4.068		-0.80		${ }^{-0.60}$										
${ }_{\text {B9 }}$	1.4	0.5	0.1	-0.4	-3.6	-5.7	${ }^{-6.4}$	${ }_{-7.2}$	${ }_{\text {c }}^{\text {B8 }}$		${ }_{4}^{4.0617}$		${ }_{4.013}^{4.041}$		${ }_{-}^{-0.35}$		- ${ }_{-0.45}^{-0.45}$										
A0 A1	1.7	${ }_{1.1}^{0.8}$	${ }_{0}^{0.4}$	-0.1 0.2	-3.4	-5.5 -5.5	--6.4 -6.4	${ }_{-7.2}$	${ }^{\text {AO }}$		3.982		${ }^{3} .991$		-0.25		-0.25										
${ }_{\text {A2 }}$	1.8	1.1	${ }_{0}^{0.9}$	0.4	-	-5.3	${ }_{-6.4}^{-6.4}$	${ }_{-7.3}$	${ }_{\text {A1 }}{ }_{\text {A2 }}$		-3.973 3.961		(${ }^{-0.16}{ }_{-0.10}$		- ${ }_{-0.10}^{-0.16}$										
$\begin{array}{r}\text { A3 } \\ \hline \text { A }\end{array}$	1.9 128	1.5	1.0	0.5	-3.0.	-5.1 $\begin{aligned} & -5.0 \\ & -5.0\end{aligned} 0$	${ }_{-6.4}^{-6.4}$	${ }_{\text {- }}^{-7.3}$	${ }_{\text {A }}$		3,949		3.949		-0.03		-0.03										
${ }_{\text {A }}{ }_{\text {A }}$	2.3 2.6	1.9 2.3 1	1.4 1.7 1	0.8 1.1	-2.9 -2.8	-5.0 -5.0	${ }_{-6.9}^{-6.9}$	${ }_{-7.9}$	${ }^{\text {A5 }}$		3.924		3.919		0.02		${ }^{0.05}$										
${ }_{\text {F0 }}$	${ }_{3.0}^{2.6}$	2.8	2.2	1.5	${ }_{-2.7}$	-5.0	${ }^{-6.9}$	${ }_{-7.9}$	${ }_{\text {A }}^{\text {F }}$		3.903 3.863		(3.897 3.89 .89		${ }_{0}^{0.02}$		0.09 0.13										
${ }_{\text {F }}^{\text {F2 }}$	3.2	3.1 3.6	2.4	1.8	-2.6	-4.9	-7.0	${ }^{-8.0}$	${ }_{\text {F2 }}^{\text {F2 }}$		${ }_{3}^{3.845}$		${ }^{3.851}$		${ }^{0.01}$		0.11										
+ ${ }_{\text {F8 }}^{\text {F5 }}$	3.7 4.2	3.6 4.1	${ }_{2.8}^{2.6}$	2.0	${ }_{-2.5}^{-2.6}$	${ }_{-4.7}^{-4.8}$	${ }_{-7.2}^{-7.1}$	-8.0 -8.1	${ }_{\text {F8 }}^{\text {FS }}$		3.813		(-0.02		${ }_{0.03}^{0.08}$										
G0	4.5	4.4	2.9		-2.4	${ }^{-4.6}$	-7.2	${ }_{-8.2}$	G_{60}	3.774		${ }_{3.763}$	${ }_{3.736}$		${ }_{-0.05}$		${ }_{0}^{0.00}$										
${ }_{62}{ }^{\text {a }}$		4.7	3.0	1.1:1:	-2.4	-4.5	-7.2	-8.2	${ }^{\text {G2 }}$	3.763		${ }^{3.740}$	${ }^{3} 7732$		-0.07		${ }^{-0.05}$										
- ${ }_{\text {GS }}$		${ }_{5}^{5.1}$	3.1	1.0	-2.4	${ }^{-4.4}$	-7.2	-8.2	${ }_{6}{ }^{\text {G }}$	${ }_{3}^{3.740}$		${ }_{\substack{3.712 \\ 3.695}}^{\text {d, }}$	${ }_{3}^{3.699}$	${ }^{-0.09}$		${ }^{-0.22}$	${ }^{-0.13}$										
- ${ }_{\text {G88 }}^{\text {K8 }}$		5.6 6.0	${ }_{3.2}^{3.2}$	0.9 0.8	${ }_{-2.5}^{-2.5}$	${ }_{-4.3}^{-4.3}$	-7.0 -6.8 -8.	-8.1 -7.9	${ }_{\text {K0 }}^{\text {G8 }}$	${ }_{\substack{3.720 \\ 3.703}}$		${ }_{\substack{3.695 \\ 3.681}}$	${ }_{\text {3,643 }}^{\substack{\text { 3.663 }}}$	${ }_{-0.19}^{-0.13}$		${ }_{-0.37}^{-0.28}$	${ }_{-0.29}^{-0.22}$										
${ }_{\text {K1 }}$		6.2	3.2	0.8	-2.5	-4.3	-6.7	-7.7	${ }^{\text {K1 }}$	${ }^{3.695}$		${ }_{3}^{3.663}$	${ }^{3.633}$			${ }^{-0.43}$	-0.35										
${ }_{\text {K2 }}$		6.5		${ }_{0}^{0.7}$	${ }_{-25}^{-2.5}$	${ }_{-4.3}^{-4.3}$	${ }_{-6.6}^{-6.6}$	${ }_{-7.6}$	${ }_{\text {K2 }}$	${ }^{3.686}$			${ }_{\substack{3.623 \\ 3.613}}$	${ }^{-0.30}$		${ }^{-0.49}$	${ }_{-0.07}^{-0.42}$										
${ }_{\text {K4 }}$		${ }_{7.0}^{6.7}$		${ }_{0.5}^{0.6}$	${ }_{-2.6}^{-2.5}$	${ }_{-4.4}^{-4.3}$	${ }^{-6.5}$	${ }^{-7.5}$	${ }_{\text {K4 }}$	${ }_{3}^{3.663}$		3.628 3.613	3.613			- ${ }_{-0.86}^{-0.06}$	${ }_{-0.75}^{-0.57}$										
${ }_{\text {K5 }}$		7.3		0.3	${ }_{-2.6}$	-4.4	${ }^{-6.2}$	-7.2	K5 K7	${ }_{\substack{3.643 \\ 3.602}}^{\substack{\text { a }}}$		3.602	${ }^{3.585}$	${ }^{-0.62}$		${ }^{-1.15}$	-1.17										
K7 M0		${ }_{89}^{8.1}$		${ }_{-0.0}^{0.0}$	${ }_{-28}^{-2.7}$	-4.5	- ${ }_{-5.0}^{-6.0}$	${ }^{-7.0}{ }_{-69}$	M0	${ }^{3.602}$		3.591		${ }^{-0.89}{ }_{-1.17}$		-1.25	${ }_{-1.25}$										
${ }^{\text {M1 }}$		9.4		-0.8	${ }_{-2.9}$	${ }^{-4.6}$	${ }_{-5.8}^{5.8}$	${ }_{-6.8}$	${ }^{\text {M1 }}$			3,3.880 3.574	${ }_{\substack{3.565 \\ 3 \\ 3}}$	${ }^{-1.45}$		${ }^{-1.45}$	${ }^{-1.40}$										
${ }_{\text {M2 }}^{\text {M }}$		10.0 10.5 10.5		-0.9 -1.0	-3.0 -3.0	-4.7 -4.7	-5.8 ${ }_{-5.8}^{-5.8}$	${ }_{-6.7}^{-6.7}$	${ }_{\text {M }}$	${ }_{3}^{3.531}$		${ }_{3}^{3.562}$	${ }_{3.518}^{3.544}$	${ }_{-1.92}^{-1.17}$		${ }^{-1.1 .95}$	${ }_{-2.0}^{-1.60}$										
M4		11.5		-0.6 -0.0	${ }_{-3.1}$	${ }_{-4.7}$	${ }_{-5.8}^{-5.8}$	${ }^{-6.7}$	${ }_{\text {M }} \times$	${ }_{\text {3, }}^{3.512}$		(3.550 3.531	${ }_{\substack{3.491 \\ 3.470}}$	${ }_{\text {- }}^{-2.24}$		- $\begin{aligned} & -2.4 \\ & -3.1 \\ & -3\end{aligned}$	-2.6 -3.3	Kurilize									
M5		13.5		-0.1	-3.1	-4.7	-5.8	-6.7	M6			3.512		${ }_{-4.4}$		-4.0		Kuriliene (1981)									

TABLE IVBolometric absolute magitues Mot for MK spectral types									TABLE VIStellar masses log $\mathrm{My} / \mathrm{M}_{0}$ for different MK spectral tyees derived from the evolutionary tracks									
S_{p}	zams	v	iv	III	II	Ib	Iab	Ia	Sp_{p}	zams	v	Iv	III	II	Ib	Iab	Ia	
O5	-8.7 -8.0 -8	$\stackrel{-9.8}{-9.8}$	-10.0 -9.6	-10.2 -98	-10.3	-10.4	-10.7	${ }^{-11.0}$	${ }^{0}$	${ }^{1.60}$	1.81	${ }^{1.85}$	${ }^{1.89}$	1.90	1.92	1.99		
- ${ }^{06}$	${ }^{-8.0}$	-9.3 -8.8	-9.6 -9.1	-9.8 -9.3	-9.9 -9.5	-10.2 -9.8	-10.4 -10.1	-10.8 -10.5	${ }^{06}$	${ }_{1.40}^{1.48}$	${ }_{1.59}^{1.70}$	${ }_{1.65}^{1.76}$	1.80 1.68	1.80 1.71	${ }_{1}^{1.787} 1$	1.91 1.83	2.00 1.92	
${ }^{08}$	-7.2	-8.3	-8.6	-8.9	-9.2	-9.6	-9.8	-10.4	${ }^{08}$	${ }^{1.34}$	1.48	1.54	1.150	1.65	1.72	1.76	1.90	
-	${ }_{-6.2}^{-6.7}$	-7.6 -7.0	-8.1 -7.4 -5.3	-8.4 -7.9	-8.9	-9.3 -8.6	-9.6 -9.0	-10.2 -9.7	${ }^{\text {O90 }}$	${ }_{1.20}^{1.28}$	1.38 1.30 1.0	1.45 1.34 1.4	1.49 1.40 1.4	1.58 1.40 1.18	1.66 1.48	1.72 1.56	1.83 1.70 1	
B1	-4.9	-5.8	${ }_{-6.3}$	${ }_{-6.8}$	${ }^{-7.4}$	-8.0.	-8.6	-9.4	B1	1.04	1.11	1.18	1.23	1.28	1.38	1.46	1.64	
${ }^{\text {B2 }}$	-4.0	-4.7	-5.3	-5.9	${ }^{-6.8}$	-7.6	-8.2	-9.0	${ }^{\text {B2 }}$	0.92	0.99	1.04	1.08	1.18	1.30	1.38	1.54	
${ }_{\text {B }}{ }_{\text {B }}$	${ }_{-1.4}^{-2.8}$	-3.6 -2.1	${ }_{-2.5}^{-4.1}$	-4.7 -3.0	${ }_{-5.4}^{-6.2}$	-7.3 -6.8	-7.8 -7.3	-8.6 -8.1 -8.0	${ }_{\text {B5 }}{ }_{\text {B3 }}$	0.78 0.62	0.84 0.68 0	0.88 0.72	0.94 0.75	1.11 1.00	1.23 1.18 1.8	1.32 1.26	1.45 1.40 1.4	
B6	-0.9	-1.6	${ }_{-2.0}$	-2.4	${ }_{-5.2}$	-6.6	-7.2	-	${ }^{\text {B6 }}$	0.56	0.61	${ }_{0} .64$	0.68	0.94	1.15	1.26	1.38	
${ }^{\text {B7 }}$	-0.2	-1.0	-1.4	${ }^{-1.8}$	-4.8	-6.4	-7.0	-7.8	${ }^{\text {B7 }}$	${ }^{0.49}$	${ }^{0.53}$	0.57	0.60	0.91	1.111	1.23	1.36	
${ }_{\text {c }}^{\text {B8 }}$	0.4 1.0	-0.4 0.1	-0.8 -0.2	-1.2 -0.8	-4.4 -4.0	${ }_{-6.0}^{-6.2}$	- -6.9	${ }_{-7.5}^{-7.6}$	${ }_{89}^{\text {B8 }}$	0.43 0.36	${ }^{0.48}$	${ }_{0}^{0.45}$	0.52 0.49	0.88 0.85	${ }_{1.04}^{1.08}$	${ }_{1}^{1.20}$	1.34 1.32 1.	
${ }^{\text {A }}$	1.4	0.7	0.2	-0.3	${ }^{-3.6}$	-5.7	-6.6	${ }_{-7.4}$	${ }^{\text {A }}$ (${ }_{0}^{0.32}$	${ }^{0.35}$	${ }^{0.39}$	0.43	0.81	1.04	1.18	1.30 1.30	
${ }^{\text {A1 }}$	${ }_{1.7}^{1.6}$	${ }^{0.9}$	0.5	-0.1	${ }_{-3.3}$	-5.5	-6.6	-7.4	${ }_{\text {A2 }}$	0.31 0.29	0.34 0.32	${ }_{0}^{0.34}$	0.41 0.39	0.78 0.75	1.00 0.98 0	1.18 1.15 1.15	1.30 1.30	
${ }_{\text {A3 }}$	1.9	1.5	0.7 1.0	${ }_{0}^{0.4}$	-3.1 -3.0	-5.3 -5.2	-6.9	-7.4 -7.4	${ }_{\text {A3 }}$	0.27	0.30	0.32	${ }_{0} .36$	0.75	0.97	1.11	1.30	
${ }^{\text {A5 }}$	2.3	1.9	1.4	0.8	-2.8	-5.0	-6.4	-7.4	${ }^{\text {A }}$	${ }^{0.23}$	${ }_{0}^{0.22}$	0.29	${ }^{0.33}$	0.74	0.95	1.111	${ }^{1.30}$	
A 7 F0	${ }_{3.0}^{2.6}$	2.3 29	1.8 2.2	1.1 1.6	-2.7 -2.6	-4.9 -4.8	-6.5 -6.7	-7.6 -7.8	A ${ }_{\text {A }}$	- $\begin{aligned} & 0.20 \\ & 0.16\end{aligned}$	${ }_{0}^{0.22}$	${ }_{0}^{0.26}$	0.30 0.23	0.73 0.72	0.94 0.93	${ }_{1.20}^{1.15}$	1.32 1.38 1.8	
${ }^{\text {F2 }}$	3.2	3.1	2.4	1.8	${ }_{-2.5}$	${ }_{-4.8}$	-6.8	-7.9	${ }_{\text {F2 }}^{\text {F2 }}$	${ }^{0.13}$	${ }^{0.13}$	${ }^{0.16}$	0.20	0.72	0.93	1.20	1.40	
F5 F8 F8	${ }_{4.2}^{3.7}$	${ }_{4.6}^{3.6}$	${ }^{2.6}$	2.0	-2.5	-4.7	-7.0	-7.9	${ }_{\text {F8 }}$	0.04	0.08 0.04	${ }_{0}^{0.11}$	0.18	${ }_{0}^{0.72}$	0.93 0.93	1.26 1.28	${ }_{1.41}^{1.40}$	
	${ }_{4}^{4.4}$	4.4	${ }_{2.9}^{2.8}$		-2.4	-4.6 -4.6	-7.1 -7.2	-8.0 -8.1 8.8	${ }^{\text {co }}$	0.02	0.02	0.10		0.72	0.93	1.30	1.43	
G^{2}	4.6	4.6	2.9	1.0	${ }^{2.4}$	-4.6	-7.2	${ }_{-8.2}$	${ }_{65}^{62}$	${ }^{0.00}$	${ }^{0.000}$	${ }^{0.10}$	${ }_{0}^{0.33}$	0.72	0.93	${ }^{1.30}$	1.45	
${ }_{\text {G8 }}^{68}$		${ }_{5.5}^{5.1}$	${ }_{3}^{3.0}$	${ }_{0.6}^{0.8}$	${ }_{-}^{-2.5}$	-4.5 -4.5	-7.3 -7.2	${ }^{-8.3}$	${ }_{68}$		${ }_{-0.04}^{-0.02}$	${ }_{0} 0.08$	0.42	0.76	${ }_{0}^{0.94}$	1.32 1.32	1.46 1.46 1.4	
ко		5.8	${ }_{3.0}^{3.1}$	${ }_{0.5}^{0.6}$	${ }_{-2.8}$	${ }_{-4.6}$	${ }_{-7.1}$	${ }_{-8.2}$	${ }_{1}{ }_{1}$		-0.07	0.11	0.46	0.78	0.96	1.30	1.45	
${ }_{\text {K1 }}$		5.9	3.0	0.4	-2.9	-4.6	-7.1	-8.1	${ }_{\text {K1 }}^{\text {K2 }}$		${ }^{-0.10}$	${ }^{0.13}$	0.46 0.45	${ }_{0}^{0.78}$	${ }_{0}^{0.96}$	1.30 1.28	${ }_{1}^{1.45}$	
K3		6.2		-0.1	-3.0 -3.1	-4.9 -4.9	-7.0 -7.0	-8.0 -8.0	K3		${ }_{-0.12}$		0.38	0.80	1.00	${ }_{1}^{1.30}$	${ }_{1.43}$	
${ }_{\text {K4 }}$		6.4		${ }^{-0.4}$					${ }_{\text {K4 }}$		-0.15		${ }_{0}^{0.36}$	083	1.8	130	145	
K7		${ }_{7.3}$		-0.9	-3.7	-5.4	-7.0	-8.0	K7		-0.22							
${ }_{\text {M1 }}$		7.9		-1.8	-4.0 -4.3	-5.8 -6.0	-7.0	${ }^{-8.1}$	${ }_{\text {M1 }}$		${ }_{-0.30}^{-0.26}$		0.48 0.54	0.83 0.83	1.15 1.18	1.32 1.34 1	1.46 1.48	
M2		888		-2.6	-4.5	-6.2	-7.4	${ }^{-8.2}$	${ }_{\text {M }}$		-0.35		0.54	0.81	1.18	${ }^{1.36}$	1.50	
${ }_{\text {M }}$		8.8 9.3			-5.1 -5.7	-6.7 -7.3	-7.8 -8.4 8.4	-8.7 -9.3	M4		-		${ }_{0.51}$	0.84	1.20	1.38		
M5 M6		11.0			-6.3	-8.0	-9.1	-10.0	${ }_{\text {M }}$		(-0.82)		${ }_{\text {(0.40) }}^{(0.41)}$					Kuriliene (1981)

TABLE VIICalibration of MK spectral types in surface gravities ($\log \mathrm{g}$)									TABLE VIIIStellar radii $\log R / R_{\odot}$ for different MK spectral types									
Sp	zams	v	Iv	III	II	Ib	Iab	Ia	Sp	ZAMS	v	IV	III	II	Ib	Iab	Ia	
05	4.13	3.90	3.86	3.82	3.76	3.74	3.69		05	0.95	1.17	1.21	1.25	1.28	1.30	1.36		
06	4.16	3.86	3.80	3.76	3.69	3.64	3.60	3.53	${ }^{06}$	${ }^{0.87}$	1.13	1.19	1.23	1.27	1.33	1.37	1.45	
07	4.18	3.85	3.80	3.74	3.64	3.57	3.52	3.45	\bigcirc	0.82	1.08	1.14	1.18	1.25	1.31	1.37	1.45	
${ }_{08} 8$	4.17	3.87 3.95	3.81 3.82	3.75 3.74 3	3.62 3.58	3.53 3.50 3	3.49 3.44	3.39 3.31	08 09 09	$\begin{aligned} & 0.80 \\ & 0.75 \end{aligned}$	1.02 0.93	1.08 1.03	1.14 1.09	1.23 1.22	1.31 1.30	1.35 1.36	1.47 1.48	
${ }_{\text {B0 }}$	4.22	3.95 4.00	3.82 3.88	3.74 3.74	3.38 3.39	3.27	3.44 3.19	3.05 3.05	в0	0.70	0.86	0.94	1.04	1.20	1.32	1.40	1.54	
B1	4.28	4.00	3.86	3.71	3.31	3.17	3.01	2.87	${ }^{\text {B1 }}$	0.59	0.77	0.87	0.97	1.20	1.32	1.44	1.60	
B2	4.28	4.06	3.88	3.68	3.19	3.00	2.84	2.68	${ }^{\text {B2 }}$	0.54	0.68	0.80	0.92	1.21	1.37	1.49	1.65	
B3	4.31	4.06	3.89	3.71	3.12	2.79	2.68	2.49	${ }^{\text {B3 }}$	0.45	0.61	0.71	0.83	1.21	1.43	1.53	1.69	
B5	4.32	4.10	3.98	3.81	2.90	2.52	2.40	2.22	B5	0.36	0.50	0.58	0.68	1.27	1.55	1.65	1.81	
B6	4.32	4.09	3.96	3.84	2.77	2.42	2.29	2.13	${ }^{\text {B6 }}$	0.34	0.48	0.56	0.64	1.30	1.58	1.70	1.84	
B7	4.35	4.07	3.95	3.82	2.77	2.33	2.21	2.02	B7	0.29	0.45	0.53	0.61	1.28	1.60	1.72	1.88	
B8	4.34	4.07	3.92	3.79	2.79	2.27	2.11	1.97	B8	0.26	0.42	0.50	0.58	1.26	1.62	1.76	1.90	
B9	4.34	4.03	3.94	3.75	2.81	2.20	2.04	1.88	B9	0.23	0.41	0.47	0.59	1.23	1.63	1.79	1.93	
A0	4.32	4.07	3.91	3.75	2.85	2.23	2.01	1.81	A0	0.22	0.36	0.46	0.56	1.20	1.62	1.80	1.96	
A1	4.35	4.10	3.96	3.78	2.88	2.22	1.96	1.76	A1	0.19	0.33	0.41	0.53	1.16	1.60	1.82	1.98	
A2	4.32	4.16	3.98	3.78	2.87	2.23	1.92	1.71	A^{2}	0.20	0.30	0.40	0.52	1.15	1.59	1.83	2.01	
A3	4.34	4.20	4.03	3.83	2.85	2.20	1.86	1.65	A3	0.18	0.26	0.36	0.48	1.16	1.60	1.84	2.04	
A5	4.36	4.22	4.06	3.86	2.81	2.14	1.74	1.53	A5	0.15	0.23	0.33	0.45	1.18	1.62	1.90	2.10	
A7	4.36	4.26	4.10	3.86	2.75	2.08	1.65	1.38	A7	0.13	0.19	0.29	0.43	1.21	1.65	1.97	2.19	
F0	4.32	4.28	4.05	3.83	2.67	2.00	1.51	1.25	F0	0.13	0.15	0.29	0.41	1.24	1.68	2.06	2.28	
F2	4.30	4.26	4.01	3.81	2.63	1.92	1.39	1.15	F2	0.13	0.15	0.29	0.41	1.26	1.72	2.12	2.34	
F5	4.32	4.28	3.93	3.74	2.48	1.81	1.22	1.00	F5	0.09	0.11	0.31	0.43	1.30	1.77	2.23	2.41	
F8	4.39	4.35	3.89		2.38	1.71	1.06	0.83	F8	0.04	0.06	0.33		1.38	1.82	2.32	2.50	
G0	4.39	4.39	3.84		2.29	1.62	0.95	0.72	G0	0.03	0.03	0.34		1.43	1.87	2.39	2.57	
G2	4.40	4.40	3.77	3.20	2.20	1.53	0.86	0.61	G2	0.01	0.01	0.38	0.78	1.48	1.92	2.44	2.64	
G5		4.49	3.71	3.07	2.04	1.45	0.71	0.45	G5		-0.04	0.41	0.88	1.56	1.96	2.52	2.72	
G8		4.55	3.64	2.95	1.84	1.30	0.60	0.30	G8		-0.08	0.43	0.95	1.67	2.03	2.57	2.79	
K0		4.57	3.57 3.55	${ }^{2.89}$	1.74	1.20	0.54	${ }^{0.25}$	K0		-0.11	0.48	1.00	1.73	2.09	2.59	2.81	
K1		4.55	3.55	2.78	1.66	1.16	0.54	0.25	K1		-0.11	0.50	1.05	1.77	2.11	2.61	2.81	
K2		4.55		2.63	1.59	${ }_{1}^{1.10}$	0.48	${ }_{0}^{0.23}$	K2		-0.11		1.12	1.81	2.15	2.61	2.81	
K3		4.56		2.36	1.52	1.00	0.46	0.19	K3		-0.12		1.22	1.85	2.21	2.63	2.83	
K4 K5		4.57 4.57		2.16 1.93	120				K4		-0.15		1.31					
K7		4.62		1.93	1.20	0.77	0.35	0.10	K5 K7		-0.17 -0.20		1.44	2.03	2.37	2.69	2.89	
M0		4.61		1.63	1.01	0.61	0.30	0.00	M0		${ }_{-0.22}$						2.92	
M1		4.67 4.69		1.41 1.31	${ }^{0.84}$	${ }_{0}^{0.51}$	${ }_{0}^{0.19}$	${ }^{-0.07}$	M1		${ }_{-0.27}$		1.78	${ }_{2.21}$	${ }_{2.55}^{2.48}$	2.78	${ }_{2} .99$	
M2		4.69		1.31	0.70	${ }_{0}^{0.39}$	${ }^{0.09}$	${ }^{-0.13}$	M2		-0.30		1.83	2.27	2.61	2.85	3.03	
M3		4.71 4.77		1.12 0.98	0.38	0.10	-0.16	-0.34	M3		-0.36		1.92	2.44	2.76	2.98	3.16	
M5		5.06		${ }^{(0.76)}$					M54		-0.42 -0.72		${ }_{(2.94)}^{1.98}$					
M6				(0.52)					M6				(2.16)					Kuriliene (1981)

Table 7.5. Filter wavelengths, bandwidths, and flux densities for Vega. ${ }^{a}$

Filter name	$\lambda_{\text {iso }}{ }^{b}$ $(\mu \mathrm{~m})$	$\Delta \lambda^{c}$ $(\mu \mathrm{~m})$	F_{λ} $\left(\mathrm{W} \mathrm{m}^{-2} \mu^{-1}\right)$	F_{ν} (Jy)	N_{ϕ} $($ photons s $\left.{ }^{-1} \mathrm{~m}^{-2} \mu \mathrm{~m}^{-1}\right)$
V	0.5556^{d}	\ldots	3.44×10^{-8}	3540	9.60×10^{10}
J	1.215	0.26	3.31×10^{-9}	1630	2.02×10^{10}
H	1.654	0.29	1.15×10^{-9}	1050	9.56×10^{9}
K_{s}	2.157	0.32	4.30×10^{-10}	667	4.66×10^{9}
K	2.179	0.41	4.14×10^{-10}	655	4.53×10^{9}
L	3.547	0.57	6.59×10^{-11}	276	1.17×10^{9}
L^{\prime}	3.761	0.65	5.26×10^{-11}	248	9.94×10^{8}
M	4.769	0.45	2.11×10^{-11}	160	5.06×10^{8}
8.7	8.756	1.2	1.96×10^{-12}	50.0	8.62×10^{7}
N	10.472	5.19	9.63×10^{-13}	35.2	5.07×10^{7}
11.7	11.653	1.2	6.31×10^{-13}	28.6	3.69×10^{7}
Q	20.130	7.8	7.18×10^{-14}	9.70	7.26×10^{6}

$$
\begin{aligned}
1 \text { Jansky } & =10^{-23} \mathrm{erg} \mathrm{~s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \\
& =1.51 \times 10^{7} \text { photons s}
\end{aligned}
$$

Allen's Astrophysical Quantities (4 $4^{\text {th }}$ edition)

Band	λ_{0}	$d \lambda / \lambda$	$f_{v}(m=0)$	Reference
	$\mu \mathrm{m}$	Jy		
U	0.36	0.15	1810	Bessel (1979)
B	0.44	0.22	4260	Bessel (1979)
V	0.55	0.16	3640	Bessel (1979)
R	0.64	0.23	3080	Bessel (1979)
I	0.79	0.19	2550	Bessel (1979)
J	1.26	0.16	1600	Campins, Reike, \& Lebovsky (1985)
H	1.60	0.23	1080	Campins, Reike, \& Lebovsky (1985)
K	2.22	0.23	670	Campins, Reike, \& Lebovsky (1985)
g	0.52	0.14	3730	Schneider, Gunn, \& Hoessel (1983)
r	0.67	0.14	4490	Schneider, Gunn, \& Hoessel (1983)
i	0.79	0.16	4760	Schneider, Gunn, \& Hoessel (1983)
z	0.91	0.13	4810	Schneider, Gunn, \& Hoessel (1983)

Notes
 ${ }^{a}$ Cohen et al. [1] recommend the use of Sirius rather than Vega as the photometric standard for $\lambda>20 \mu \mathrm{~m}$ because of the infrared excess of Vega at these wavelengths. The magnitude of Vega depends on the photometric system used, and it is either assumed to be 0.0 mag or assumed to be 0.02 or 0.03 mag for consistency with the visual magnitude.
 ${ }^{b}$ The infrared isophotal wavelengths and flux densities (except for K_{s}) are taken from Table 1 of [1], and they are based on the UKIRT filter set and the atmospheric absorption at Mauna Kea. See Table 2 of [1] for the case of the atmospheric absorption at Kitt Peak. The isophotal wavelength is defined by $F\left(\lambda_{\text {iso }}\right)=\int F(\lambda) S(\lambda) d \lambda / \int S(\lambda) d \lambda$, where $F(\lambda)$ is the flux density of Vega and $S(\lambda)$ is the (detector quantum efficiency) \times (filter transmission) \times (optical efficiency) \times (atmospheric transmission) [2]. $\lambda_{\text {iso }}$ depends on the spectral shape of the source and a correction must be applied for broadband photometry of sources that deviate from the spectral shape of the standard star [3]. The flux density and $\lambda_{\text {iso }}$ for K_{s} were calculated here. For another filter, K^{\prime}, at $2.11 \mu \mathrm{~m}$, see [4].
 ${ }^{c}$ The filter full width at half maximum.
 ${ }^{d}$ The wavelength at V is a monochromatic wavelength; see [5].

References

1. Cohen, M. et al. 1992, AJ, 104, 1650
2. Golay, M. 1974, Introduction to Astronomical Photometry (Reidel, Dordrecht), p. 40
3. Hanner, M.S., et al. 1984, AJ, 89, 162
4. Wainscoat, R.J., \& Cowie, L.L. 1992, AJ, 103, 332
5. Hayes, D.S. 1985, in Calibration of Fundamental Stellar Quantities, edited by D.S. Hayes, et al., Proc. IAU Symp. No. 111 (Reidel, Dordrecht), p. 225

Exercise

Sirius, the brightest star in the night sky, has been measured $m_{B}=-1.47, m_{V}=-1.47$. The star has an annual parallax of $0.379^{\prime \prime} / \mathrm{yr}$.

1. What is its distance in parsec?
2. What is its absolute V-band magnitude?
3. From the absolute magnitude, what spectral type can be inferred for Sirius?
4. From the observed (B-V) color, what spectral type can be inferred?
5. What kinds of uncertainties/assumptions are associated with the above estimations?

SIMBAD Astronomical Database

To measure the stellar mass

- Stellar mass difficult to measure, direct measurements, except the Sun, only by binary systems
(but uncertain even for these, why?)
- Then one gets the mass-Iuminosity relation $L \propto M^{\alpha}$ where the slope $\alpha=3$ to 5 , depending on the mass range
- The main-sequence (MS) is a sequence of stellar mass under hydrostatic equilibrium
- Why are lower mass stars cooler on the surface and fainter in luminosity?

$M_{\text {max }} \sim 120 M_{\odot}$
$M_{\min } \sim 0.008 M_{\odot}$
$L_{\text {max }} \sim 10^{+6} L_{\odot}$
$L_{\text {min }} \sim 10^{-4} L_{\odot}$

Luminosity versus mass for a selection of stars in binaries

Luminosity class and surface gravity

$$
\log g=\log \mathrm{GM} / \mathrm{R}^{2}
$$

- Betelgeuse ... (M2 I) $\log g \approx-0.6$ [cgs]
- Jupiter ... $\log g=3.4$
- Sun (G2 V) ... $\log g=4.44$
- Gl229B ... (T6.5) $\log g \approx 5$
- Sirius B... (WD) $\log g \approx 8$

Exercise

1. What is the spectral type of Alpha Scorpii?
2. What is its apparent magnitude? Expected absolute magnitude? Bolometric luminosity?
3. What is its distance estimated from its apparent magnitude? Measured directly by parallax? Why do these differ?
4. What is the expected diameter of the star in km , in R_{\odot} and in AU? What is then the expected angular diameter seen from Earth? Can it be resolved by the HST?
(Always show your work clearly, and cite the references.)

To measure the stellar abundance

- By spectroscopy

- Stellar composition $X, Y, Z=$ mass fraction of H, He and all other elements ("metals") Z: metallicity $\quad X+Y+Z=1$
- Solar abundance: $X_{\odot}=0.747 ; Y_{\odot}=0.236 ; Z_{\odot}=0.017$
- One often compares the iron abundance of a star to that of the sun. Iron is not the most abundant (only 0.001), but easy to measure in spectra. Why?

$$
\begin{aligned}
& {[\mathrm{Fe} / \mathrm{H}]=\log _{10}\left(\frac{N_{\mathrm{Fe}}}{N_{\mathrm{H}}}\right)_{\mathrm{star}}-\log _{10}\left(\frac{\mathrm{~N}_{\mathrm{Fe}}}{N_{\mathrm{H}}}\right)_{\odot}} \\
& \log \left(\frac{N_{\mathrm{Fe}}}{N_{H}}\right)_{\odot}=-4.33 \\
& \text { i.e., } 1 \text { iron atom for } 20,000 \mathrm{H} \text { atoms }
\end{aligned}
$$

$$
[M / H] \approx \log \left(Z / Z_{\odot}\right)
$$

Younger stars tend to be more metal-rich. Stars older than 10 Gyr almost all have $[\mathrm{Fe} / \mathrm{H}] \lesssim-0.5$; stars younger than 5 Gyr have $[\mathrm{Fe} / \mathrm{H}] \gtrsim-0.5$.

Cosmic element factories --- the Big Bang, stellar nucleosynthesis, supernova explosions, and compact mergers

To measure the stellar age

- Very tricky. Often one relies on measurements of $M \mathrm{v}, \mathrm{Teff}$, $[\mathrm{Fe} / \mathrm{H}]$, and then uses some kind of theoretically computed isochrones to interpolate the age (and mass)
- Crude diagnostics include
\checkmark Lithium absorption line, e.g., 6707A
\checkmark Chromospheric activities, e.g., X-ray or Ca II emission
\checkmark Evolving off the main sequence
- ... hence subject to large uncertainties

References:

Edvardsson et al., 1993, A\&A, 275, 101
Nordström et al., 2004, A\&A, 418, 989

Figure 16.9 Lithium absorption in a pre-main-sequence star. Shown is a portion of the optical spectrum of BP Tau, a T Tauri star of spectral type K7, corresponding to an effective temperature of 4000 K . Also shown, for comparison, is a main-sequence star of the same spectral type, 61 Cyg B. Only in the first star do we see the Li I absorption line at $6708 \AA$. Both objects also have a strong line due to neutral calcium.

Fig. 1. Kurucz's (1991a) new model for Vega compared with a series of independen+ ivi nomtinol manaum ments, specifically those by Hayes \& Latham (1985) and by Tug et al. (1977). Cohen+92

Check out Aumann+84 for discovery of debris materials by IRAS.

Pre-main sequence evolutionary models (tracks)

Stellar populations

- Population I \qquad Stars in the Galactic disk; like the Sun; metal rich
\diamond Population II Stars like those in the globular clusters; metal poor
- Population III Stars formed in the early universe; perhaps very hot and luminous; metal free
 in Milky Way

Figure 2 (a) The radial abundance gradient in the galactic disk. Mean metallicities from DDO and $U B V$ photometry from Janes (1979) (triangles) are plotted versus galactocentric distance relative to the Sun. Also shown are results from Washington photometry of classical Cepheids by Harris (1981) (solid circles) and high-dispersion abundance analysis of G to M supergiants by Luck \& Bond (1980) (open circles); (b) The relation between age and metallicity for the open cluster samples of Janes (1979, Table 8). Ages are taken from McClure \& Twarog (1978), Jennens \& Helfer (1975), Cannon (1970), and sources quoted by Janes. (Reliable ages were not found for $\& ~ H e l f e r ~(1975), ~ C a n n o n ~(1970), ~ a n d ~ s o u r c e s ~ q u o t e d ~ b y ~ J a n e s . ~(R e l i a b l e ~ a g e s ~ w e r e ~ n o t ~ f o u n d ~ f o r ~$
six clusters.) Open circles distinguish clusters with galactocentric radius larger than the solar value six clusters.) Open circles distinguish clusters with galactocentric radius larger than the solar
by more than 1 kpc . No correction has been made for any vertical abundance gradient.

Star clusters are good laboratories to study stellar evolution, because member stars in a star cluster

- are (almost) of the same age;
- are (almost) at the same distance;
- evolve in the same Galactic environments;
- have the same chemical composition;
- are dynamical bound.

Two distinct classes:
\checkmark globular clusters ($100+$ in the MW)
\checkmark open clusters (a few 10^{3} known in the MW)
How do these two classes differ in terms of shape, size, spatial distribution, number of member stars, and stellar population?

Open Clusters

10^{2} to 10^{3} member stars; ~ 10 pc across; loosely bound; open shape; young population I;
located mainly in spiral arms;
>1000 open clusters known in the MW

Globular Clusters

10^{5} to 10^{6} member stars; up to 100 pc across; tightly bound;
centrally concentrated;
spherical shape; old population II;
located in the Galactic halo;
200 globular clusters known in the MW

Stars in M80 are mostly old, metal poor members of Population II.

Globular Clusters in M31

Molecular Clouds and Star Formation

Stars are formed in molecular cloud cores, whereas planets are formed, contemporaneously, in young circumstellardisks.
http://www.astro.ncu.edu.tw/~wchen/Courses/Stars/Lada1995summerschool.pdf

A THEORY OF THE INTERSTELLAR MEDIUM: THREE COMPONENTS REGULATED BY SUPERNOVA EXPLOSIONS IN AN INHOMOGENEOUS SUBSTRATE
 Christopher F. McKee
 Departments of Physics and Astronomy, University of California, Berkeley
 and
 Jeremiah P. Ostriker
 Princeton University Observatory
 Received 1977 February 3; accepted 1977 May 2
 ABSTRACT

Supernova explosions in a cloudy interstellar medium produce a three-component medium in which a large fraction of the volume is filled with hot, tenuous gas. In the disk of the galaxy the evolution of supernova remnants is altered by evaporation of cool clouds embedded in the hot medium. Radiative losses are enhanced by the resulting increase in density and by radiation from the conductive interfaces between clouds and hot gas. Mass balance (cloud evaporation rate $=$ dense shell formation rate) and energy balance (supernova shock input $=$ radiation loss) determine the density and temperature of the hot medium with $(n, T)=\left(10^{-2.5}, 10^{5.7}\right)$ being representative values. Very small clouds will be rapidly evaporated or swept up. The outer edges of "standard" clouds ionized by the diffuse UV and soft X-ray backgrounds provide the warm ($\sim 10^{4} \mathrm{~K}$) ionized and neutral components. A self-consistent model of the interstellar medium developed herein accounts for the observed pressure of interstellar clouds, the galactic soft X-ray background, the O vi absorption line observations, the ionization and heating of much of the interstellar medium, and the motions of the clouds. In the halo of the galaxy, where the clouds are relatively unimportant, we estimate $(n, T)=\left(10^{-3.3}, 10^{6.0}\right)$ below one pressure scale height. Energy input from halo supernovae is probably adequate to drive a galactic wind.

Interstellar Medium (ISM)

- Gas, dust + radiation, magnetic fields, cosmic rays (i.e., charged particles)
- Very sparse ---
[star-star distance] / [stellar diameter] ~ $1 \mathrm{pc} / 10^{11} \mathrm{~cm} \sim 3 \times 10^{7}: 1$ or $\sim 1: 10^{22}$ in terms of volume (space)
- Mass: 99% mass in gas, 1% in dust $\sim 15 \%$ of total MW visible matter
- Of the gas, $90 \%, \mathrm{H} ; 10 \% \mathrm{He}$
- Hydrogen: mainly H I (atomic), H II (ionized), and H_{2} (molecular)
- Studies of ISM ---
- Beginning of evolution of baryonic matter "recombination"
- Stars form out of ISM
- Important ingredient of a galaxy

Material Constituents of the ISM

Component	$\mathbf{T}(\mathbf{K})$	$\mathbf{n}\left(\mathbf{c m}^{-3}\right)$	Properties
Hot, intercloud and coronal gas	10^{6}	10^{-4}	
Warm intercloud gas	10^{4}	0.1	
Diffuse cloud (H I)	10^{2}	0.1	Mostly H I; $\mathrm{n}_{\mathrm{e}} / \mathrm{n}_{0}=10^{-4}$
H II regions	10^{4}	>10	
Dark Molecular Clouds	10	$>10^{3}$	Mostly H_{2} mol. and dust
Supernova Remnants	$10^{4} \sim 10^{7}$	>1	
Planetary Nebulae			

Energy Density in the Local ISM

Component	$\mathbf{u}\left(\mathrm{eV} / \mathbf{c m}^{-3}\right)$	Properties
Cosmic microwave background	0.265	
FIR radiation from dust	0.31	
Starlight	0.54	
Thermal kinetic energy	0.49	0.22
Turbulent kinetic energy	0.89	
Magnetic field	1.39	
Cosmic rays		

There seems to be equi-partition between these energies. Why? Read Draine's book, page 10

$$
\begin{aligned}
& \text { A "standard" HI cloud } \\
& \quad D \sim 5 \mathrm{pc} \\
& M \sim 50 \mathrm{M}_{\odot} ; \\
& d_{\text {intercloud }} \sim 100 \mathrm{pc} \\
& V_{\text {cloud }} \sim 10 \mathrm{kms}^{-1}
\end{aligned}
$$

Clouds are patchy \rightarrow extinction depends greatly on the sightline
Extinction $=$ absorption + scattering
Extinction versus reddening $\quad \mathrm{Av}=30$ toward the Galactic center In the Galactic plane, $\mathrm{Av} \sim 0.7-1 \mathrm{mag}_{\mathrm{kpc}}{ }^{-1}$
Extinction $\leftrightarrow \rightarrow$ amounts of dust grains along the line of sight
Reddening $\longleftrightarrow \rightarrow$ grain properties (size, shape, composition, structure)

The 'normalized' extinction (extinction law)

The 'normalized' extinction (extinction law)
$F(\lambda)=\frac{A_{\lambda}-A_{V}}{A_{B}-A_{V}}=\frac{E_{\lambda-V}}{E_{B-V}}$
$F(V)=0$
$F(B)=+1$

$$
A_{\lambda}=-2.5 \log \left(e^{-\tau_{\lambda}}\right) \equiv 1.086 \tau_{\lambda} \equiv 1.086 N_{d} \sigma_{\lambda} Q_{e x t}
$$

Fiter	Al/AV
U	1.581
\boldsymbol{B}	1.824
V	1.000
\boldsymbol{R}	0.748
\boldsymbol{I}	0.482
7	0.282
H	0.175
K	0.112
\boldsymbol{L}	0.058
M	0.028
\boldsymbol{N}	0.052

$$
A_{K} \approx 0.1 A_{V}
$$

Figure 1. Solid line: The extinction cross-section normalized per H -atom of the diffuse neutral (95% HI, $5 \% \mathrm{HII}, 10 \% \mathrm{HeI}$) interstellar medium from the far-infrared to the X-rays. Dotted lines: The UV extinction on the lines of sight in two extreme cases, HD 204827 (upper curve) and HD 37023 (θ_{1} given in the text.

Gas and dust coexist.

A gas-to-dust ratio ~100 (by mass) seems universal.

Fig. 3. Visual extinction vs. equivalent hydrogen column density. The fit (dotted line) does not contain GX 17+2 and LMC X-1. It yields $N_{H}=1.79 \pm 0.03 A_{V}[\mathrm{mag}] \times 10^{21}\left[\mathrm{~cm}^{-2}\right]$

$$
\frac{N_{H}}{A_{V}} \approx 1.8 \times 10^{21} \text { atoms } \mathrm{cm}^{-2} \mathrm{mag}^{-1}
$$

Exercise

1. The star Vega is used to define the zeroth magnitude in all the classical (Vega) photometric systems, e.g., Johnson.
2. Plot its spectral energy distribution (SED) from UV to IR.
3. What is the spectral type of Vega? What is its effective temperature?
4. Compare this in a plot with a blackbody curve of the temperature.
5. It was surprising hence when IRAS data revealed IR excess of Vega. What are the flux densities observed by IRAS? Given the age of Vega, why is this discovery significant?
http://www.astro.utoronto.ca/~patton/astro/mags.html\#conversions

| Band | lambda_c | dlambda/lambda | Flux at $\mathbf{m}=\mathbf{0}$ | Reference |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathbf{u m}$ | | Jy | |
| U | 0.36 | 0.15 | 1810 | Bessel (1979) |
| B | 0.44 | 0.22 | 4260 | Bessel (1979) |
| V | 0.55 | 0.16 | 3640 | Bessel (1979) |
| R | 0.64 | 0.23 | 3080 | Bessel (1979) |
| I | 0.79 | 0.19 | 2550 | Bessel (1979) |
| J | 1.26 | 0.16 | 1600 | Campins, Reike, \& Lebovsky (1985) |
| H | 1.60 | 0.23 | 1080 | Campins, Reike, \& Lebovsky (1985) |
| K | 2.22 | 0.23 | 670 | Campins, Reike, \& Lebovsky (1985) |

Filamentary Molecular Clouds

Molecular clumps/ clouds/condensations $\left\lvert\, \begin{aligned} & n \sim 10^{3} \mathrm{~cm}^{-3}, \\ & M \sim 10^{3} \mathrm{M}^{2}\end{aligned}\right., 5 \mathrm{pc}$, $M \sim 10^{3} \mathrm{M}_{\odot}$
Dense molecular cores
$n \geq 10^{4} \mathrm{~cm}^{-3}, \mathrm{D} \sim 0.1 \mathrm{pc}$, $M \sim 1-2 \mathrm{M}_{\odot}$

Giant Molecular Clouds
$\mathrm{D}=20 \sim 100 \mathrm{pc}$
$\mathcal{M}=10^{5} \sim 10^{6} \mathcal{M}_{\odot}$
$\rho \approx 10 \sim 300 \mathrm{~cm}^{-3}$
$T \approx 10 \sim 30 \mathrm{~K}$
$\Delta v \approx 5 \sim 15 \mathrm{~km}^{-1}$

Nearby Examples

Massive Star-Forming Region

- Per OB2 (350 pc)
- Orion OB Association (350-400 pc) ... rich

Low-Mass Star-Forming Regions

- Taurus Molecular Cloud (TMC-1) (140 pc)
- Rho Ophiuchi cloud (130 pc)
- Lupus (140 pc)
- Chamaeleon (160 pc)
- Corona Australis (130 pc)

The Gould Belt, a (partial) ring in the sky, $\sim 1 \mathrm{kpc}$ across, centered on a point 100 pc from the Sun and tilted about 20 deg to the Galactic plane, containing star-forming molecular clouds and OB stars
= local spiral arm
Origin unknown (dark matter induced star formation?)

http://www.jach.hawaii.edu/JCMT/surveys/gb/ Gould's Belt superimposed on to an IRAS 100 micron emission map

The Local Bubble, a cavity of sparse, hot gas, $\sim 100 \mathrm{pc}$ across, in the interstellar medium, with H density of $0.05 \mathrm{~cm}^{-3}$, an order less than typical in the Milky Way.

Likely caused by a (or multiple) supernova explosion (10-30 Myr ago).

Where is the supernova (remnant)?
Check out the Orion-Eridanus Superbubble

Barnard 72 in Ophiuchus

Massive Star-Forming Regions ---- OB associations

Trapezium Cluster • Orion Nebula WFPC2 • Hubble Space Telescope • NICMOS

NASA and K. Luhman (Harvard-Smithsonian Centor tor Astrophysies) - STSel-PRC00-19
(Bok) Globules silhouetted against emission nebulosity

$+A-C^{-}$
© Anglo-Australian Observatory
Photograph by David Malin

A dark cloud core seen against a star field

Frerking et al. (2987)

Molecules in space

H_{2} molecules

- the main constituent of cold clouds, but lacking a permanent electric dipole moment, so is very difficult to detect. A rotationally excited molecule would radiate through a relatively slow electric quadrupole transition.
- Only in a hot medium, where stellar radiation or stellar wind excites vibrational and electronic states which then decay relatively quickly.
$\mathrm{O}=\mathrm{C}=\mathrm{O}$ $\xrightarrow[\text { Hiespm }]{\text { (}}$

Zero electric dipole moment

Refer to the slides for WPC's ISM course http://www.astro.ncu.edu.tw/~wchen/Courses/ISM/index.htm

Figure 5.4 Rotational levels of H_{2} for the first two vibrational states. Within the $v=0$ state, the $J=2 \rightarrow 0$ transition at $28.2 \mu \mathrm{~m}$ is displayed. Also shown is the transition giving the $1-0 \mathrm{~S}(1)$ rovibrational line at $2.12 \mu \mathrm{~m}$. Note that two different energy scales are used.

CO molecules

- simple and abundant. Strong binding energy E=11.1 eV self-shielding against UV field
- with a permanent electric dipole moment; radiating strongly at radio frequencies.
- ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ easiest to detect; isotopes ${ }^{13} \mathrm{C}^{16} \mathrm{O},{ }^{12} \mathrm{C}{ }^{18} \mathrm{O},{ }^{12} \mathrm{C}^{17} \mathrm{O},{ }^{13} \mathrm{C}^{18} \mathrm{O}$ also useful
- Excitation of CO to the $\rho=1$ level mainly through collisions with ambient $\mathrm{H}_{2} X_{C O}=2 \times 10^{20} \mathrm{~cm}^{-2}[\mathrm{~K} \mathrm{~km} / \mathrm{s}]^{-1}$ (Bolatto et al. 2013, ARAA)
- At low densities, each excitation is followed by emission of a photon. At high densities, the excited CO transfers the energy by collision to another H_{2} molecule; $n_{\text {crit }} \approx 3 \times 10^{3} \mathrm{~cm}^{-3}$. Low critical density $\rightarrow \mathrm{CO}$ to study large-scale distribution of clouds, as a tracer of H_{2}
- ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ almost always optical thick; same line from other rare isotopes usually not. $N_{H}=10^{6} N_{13}$ co
$2.6 \mathrm{~mm}=115 \mathrm{GHz}$

Figure 5.6 Rotational levels of ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ within the ground $(v=0)$ vibrational state. The astrophysically important $J=1 \rightarrow 0$ transition at 2.60 mm is shown.

Gaballe \& Persson (1987)
Fic. 2 .- - pectra of those sources in which CO band head emission was
detected. Linear baselines have been subtracted from each spectrum. The posidetected. Linear baselines have been subtracted from each spectrum. The posi-
tions of the band heads are indicated at the top of the figure. Vertical scale marks are separated by $2 \times 10^{-17} \mathrm{~W} \mathrm{~cm}^{-2} \mu \mathrm{~m}^{-1}$. Noise levels are indicated
on the short wavelength data points.

CO band heads in the Becklin-Neugebauer (BN) object --- an infrared-emitting, embedded, massive protostar

Figure 5.8 Near-infrared spectrum of the BN object in Orion, shown at three different observing times. The relative flux is ploted against the wave number k, defined here as $1 / \lambda$.

Figure 5.9 High-resolution near-infrared spectrum of the embedded stellar source SSV 13. The structure of the $v=2 \rightarrow 0$ band head in ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ is evident. The smooth curve is from a theoretical model that employs an isothermal slab at 3500 K . Note that the spectrum here represents only a portion of the R-branch.
\qquad

Each species has a different set of excitation conditions (density, temperature; cf. Boltzmann equation)

Different molecules/isotopes serve as tracers of these conditions, e.g., C180 traces denser parts of a cloud than 12CO does; NH3 maps the dense cores where protostars are located.

Myers et al. 1991

$\bigcirc=$

Frerking et al. (3B987)

Star formation is not an isolated event. Massive stars in particular may trigger the birth of next-generation stars \rightarrow triggered star formation
... also possible by stellar jets, Galactic density waves, cloud-cloud collisions ...

Luminous stars \rightarrow photoionization of a nearby cloud

\rightarrow Radiative driven implosion

Figure 2. An illustration of a massive star to trigger star formation in a nearby molecular cloud.

Luminous stars \rightarrow photoionization/winds on a surrounding cloud \rightarrow Collect and collapse

Size Scales for Star Formation.

Object	log size scale [cm]
Galactic spiral arm	22
Giant molecular cloud	20
Molecular dense core	17
Protostellar accretion disk	15
Protostar	11

Mass Inventory in a Star-Forming Galaxy

Component	$\log \mathrm{M}\left[\mathrm{M}_{\odot}\right]$
Molecular clouds	9
H_{2}	9
He	8
CO	7
Young stars	5

Properties of Giant Molecular Clouds

Diameter $[\mathrm{pc}]$	Mass $\left[\mathrm{M}_{\odot}\right]$	Density $\left[\mathrm{cm}^{-3}\right]$	T $[\mathrm{K}]$	Velocity Width $[\mathrm{km} / \mathrm{s}]$
$20-100$	$10^{5}-10^{6}$	$10-300$	$10-30$	$5-15$

Myers in You \& Yuan (1995), p. 47

Exercise

1. What is the BN object (why is it called an "object")? What is its brightness, distance, luminosity, and mass (how are these known)?
2. Answer the same for the KL object. What is the relation between the two?
3. There is a class of objects called the "Herbig-Haro objects". What are they?
4. "Quasi-Stellar Objects (QSOs)

Cloud Stability --- The Virial Theorem

Moment of Inertia $\quad I=\int r^{2} d m=\sum_{i} m_{i} r_{i}^{2}$

$$
\begin{aligned}
\frac{d^{2} I}{d t^{2}} & =\frac{d^{2}}{d t^{2}}\left(m r^{2}\right) \cdots(\text { if } \dot{m}=0) \cdots \\
& =2 m \frac{d}{d t}(r \dot{r})=2 m\left(\dot{r}^{2}+r \dot{r}\right)
\end{aligned}
$$

To be stable, $\mathrm{LHS}=0$

$$
2 E_{K}+E_{P}=0 \longleftarrow 2(1 / 2) m v^{2}=G M / r
$$

Virial Mass

MASS, LUMINOSITY, AND LINE WIDTH RELATIONS OF GALACTIC MOLECULAR CLOUDS

We present measurements of the velocity line width, size, virial mass, and CO luminosity for 273 molecular clouds in the Galactic disk between longitudes of 8° and 90°. These are obtained from three-dimensional data in the Massachusetts-Stony Brook CO Galactic Plane Survey. From an analysis of these measurements we show that the molecular clouds are in or near virial equilibrium and are not confined by pressure equilibrium with a warm or hot phase of interstellar matter. The velocity line width is shown to be proportional to the 0.5 power of the size, $\sigma_{v} \propto S^{0.5}$. Combined with virial equilibrium, this shows that the clouds are characterized by a constant mean surface density of $170 M_{\odot} \mathrm{pc}^{-2}$ and have a mass $M \propto \sigma_{v}^{4}$. A tight relationship, over four orders of magnitude, is found between the cloud dynamical mass, as measured by the virial theorem, and the CO luminosity $M \propto\left(L_{C o}\right)^{0.81}$. This relationship establishes a calibration for measuring the total molecular cloud mass from CO luminosity for individual clouds and for the Galactic disk. The cloud CO luminosity is $L_{\mathrm{CO}} \propto \sigma_{v}^{5}$, which is the molecular cloud analog of the Tully-Fisher or Faber-Jackson law for galaxies
The mass-luminosity law is accounted for by a cloud moder consisting of a large number of optically thick clumps in virial equilibrium, each with a thermal internal velocity dispersion, bs is of clouds effectively optically thin at a fixed velocity along the line of sight. The typical clump mass is of order a stellar mass and approximately equal to the Jeans mass at the clump density and thermal velocity dispersion

$$
\text { TABLE } 1
$$

Galactic First Quadrant Molecular Cloud Catalog

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
No.	$T_{\min }-I$	l_{p}	b_{p}	v_{p}	T_{p}	R	D	z	σ_{ℓ}	σ_{b}	σ_{v}	$L_{c o} / 10^{4}$	$M_{v x} / 10^{4}$	Flag

	(K)	(Deg.)	(Deg.)	$\left(\mathrm{km} \cdot \mathrm{s}^{-1}\right)$	(K)	(kpc)	(kpc)		(Deg.)	(Deg.)	$\left(\mathrm{km} \cdot \mathrm{s}^{-1}\right.$	$\left(\mathrm{K} \cdot \mathrm{km} \cdot \mathrm{s}^{-1} \cdot \mathrm{pc}^{2}\right)$	$\left(\mathrm{M}_{\odot}\right)$	
1	4-3	8.00	-0.50	128.	5.7	1.4	10.1	-89.	0.06	0.07	4.4	7.27	44.4	T
2	5-3	8.20	0.20	20.	10.2	6.2	15.9	56.	0.17	0.21	4.1	140.2	176.3	F,V
3	4-4	8.30	0.00	3.	5.7	4.0	6.2	0.	0.40	0.11	3.8	22.6	65.4	X
4	4-5	8.30	-0.10	48.	8.2	3.6	13.2	-23.	0.05	0.05	2.2	5.02	11.1	F,U
5	5-6	8.40	-0.30	37.	17.0	4.4	5.7	-30.	0.32	0.15	3.9	23.3	66.5	N,H

FIG. 1.-Molecular cloud velocity dispersion $\sigma(v)$ as a function of size S (defined in text) for 273 clouds in the Galaxy. The solid circles are calibrator clouds with known distances and the open circles are for clouds with the near-far distance ambiguity resolved by the method discussed in the text. The fitted line is $\sigma(v)=S^{0.5} \mathrm{~km}$ s^{-1}. For virial equilibrium the 0.5 power law requires clouds of constant average surface density.

$$
\begin{gathered}
\text { LHS }=0 \rightarrow \text { stable } \\
\text { LHS }<0 \rightarrow \text { collapsing } \\
\text { LHS }>0 \rightarrow \text { expanding } \\
\mathrm{E}_{\mathrm{K}}
\end{gathered}
$$

- Kinetic energy of molecules
- Bulk motion of clouds
- Rotation
...
,

$$
\mathrm{E}_{\text {total }}=\mathrm{E}_{\mathrm{K}}+\mathrm{E}_{\mathrm{P}}
$$

- Gravitation
- Magnetic field
- Electrical field
- ...

$$
\mathrm{E}_{\text {total }}=\mathrm{E}_{\mathrm{K}}+\Omega \text { (mostly) }
$$

Cloud of mass M, radius R, rotating at ω

$$
E_{\text {rot }}=\frac{1}{2} I \omega^{2} \quad I=\frac{2}{5} M R^{2} \quad \Omega=-\frac{3}{5} \frac{G M^{2}}{R}
$$

Generalized virial theorem

$$
\left.\frac{1}{2} \frac{d^{2} I}{d t^{2}}=2<E_{K}\right\rangle+\int \vec{r} \cdot \vec{F} d m+3 \int P d V-\oint P \vec{r} \cdot d \vec{s}
$$

If $\omega=0$, and $P_{\text {ext }}=0 \quad 2 \cdot \frac{3}{2} \frac{M}{\mu m_{H}} k T-\frac{3}{5} \frac{G M^{2}}{R}=0$
$R_{J}=\frac{1}{5} \frac{G M \mu m_{H}}{k T}$ This is the Jeans length.
$\mu \approx 2.37$ for solar abundance with H_{2}

Jeans length $=$ critical spatial wavelength
If perturbation length scale is longer
\rightarrow Medium is decoupled from self-gravity \rightarrow stable

$$
\begin{gathered}
M_{J}=\frac{4}{3} \pi R_{J}^{3} \rho \\
R_{J}=\left(\frac{15}{4 \pi} \frac{k T}{\mu m_{H} G \rho}\right)^{1 / 2} \sim \sqrt{\frac{T}{\rho}} \\
M_{J}=\left(\frac{\pi k T}{4 \mu m_{H} G}\right)^{3 / 2} \sqrt{\frac{1}{\rho}} \sim \frac{T^{3 / 2}}{\rho^{1 / 2}}
\end{gathered}
$$

This is the Jeans mass ... the critical mass for onset of gravitational collapse
If cloud mass $M>M_{\text {Jeans }} \rightarrow$ cloud collapse Note the above does not consider external pressure, or other internal supporting mechanisms.

A non-magnetic, isothermal cloud in equilibrium with external pressure \rightarrow a Bonnor-Ebert sphere (Bonnor 1956, Ebert 1955)

$$
2 E_{K}+E_{P}-3 P_{\mathrm{ext}} V=0
$$

The potential term can include, other than the gravitational force, also rotation, magnetic field, etc.

At first, the cloud is optically thin.
Contraction \rightarrow density $\uparrow \rightarrow$ collisions more frequent \rightarrow molecules excited and radiated \rightarrow radiation escapes
\rightarrow cooling \rightarrow less resistance to the contraction
\rightarrow collapse (free fall)
$R_{J} \approx c_{S} \tau_{\mathrm{ff}}=[$ isothermal sound speed $] *[$ free fall time $]$

A spherical symmetric gas cloud with temperature T and external pressure P
For one particle, $\quad F_{i}=m_{i} \ddot{r}_{i} \leftarrow \frac{\partial}{\partial r}$

$$
\begin{aligned}
m_{i} r_{i} \cdot \ddot{r}_{i} & =m_{i} \frac{d}{d t}\left(\dot{r}_{i} \cdot r_{i}\right)-m_{i} \dot{r}_{i} \cdot \dot{r}_{i} \\
& =\frac{1}{2} m_{i} \frac{d^{2}}{d t^{2}}\left(r_{i}^{2}\right)-m \dot{r}_{i}^{2}
\end{aligned}
$$

Summing over all particles

$$
\frac{1}{2} \frac{d^{2}}{d t^{2}}\left[\sum_{i} m_{i} r_{i}^{2}\right]-2 \sum_{i} \frac{1}{2} m_{i} \dot{r}_{i}^{2}=\sum_{i} r_{i} F_{i}
$$

Moment of inertial

> Kinetic energy

To maintain $2 E_{K}+E_{P}=0$, the total energy $E_{t}=E_{K}+E_{P}$ must change. The gravitational energy

$$
\Omega \sim-\frac{G M^{2}}{r} \rightarrow d \Omega \sim \frac{d r}{r^{2}}
$$

For contraction, $\mathrm{d} r<0$, so $\mathrm{d} \Omega<0 \rightarrow$ Then $\mathrm{d} E_{t}=\mathrm{d} E_{K}+\mathrm{d} \Omega=1 / 2 \Omega=L \Delta t$

This means to maintain quasistatic contraction, half of the gravitation energy from the contraction is radiated away.

Eventually the cloud becomes dense enough (i.e., optically thick) and contraction leads to temperature increase.

The cloud's temperature increases while energy is taken away \rightarrow negative heat capacity

- H I clouds
$R_{\mathrm{J}} \approx 25 \mathrm{pc} ; M_{\mathrm{J}} \approx 120 \mathrm{M}_{\odot}>M_{\mathrm{obs}}$
So H I clouds are not collapsing.
- Dark molecular clouds
$M_{\mathrm{obs}} \approx 100-1000 \mathrm{M}_{\odot}>M_{\mathrm{J}} \approx 10 \mathrm{M}_{\odot}$
So H_{2} clouds should be collapsing. But observations show that most are not.
\rightarrow There is additional support other than the thermal pressure, e.g., rotation, magnetic field, turbulence, etc.

Roughly, the requirement for a cloud to be gravitational stable is

$$
\left|E_{\text {grav }}\right|>E_{\text {th }}+E_{\text {rot }}+E_{\text {turb }}+E_{\text {mag }}+\ldots
$$

For a spherical cloud, $E_{\text {grav }}=-C_{\text {grav }} G M^{2} / R$, where $C_{\text {grav }}$ is a constant depending on the mass distribution ($=3 / 5$ for uniform density).
The thermal energy, $E_{\text {th }}=\frac{3}{2} \frac{m}{\mu m_{H}} k_{B} T$, where μ is the mean molecular weight of the gas in atomic mass units.

The rotational energy $E_{\text {rot }}=C_{\text {rot }} M R^{2} \omega^{2}$, where $C_{\text {rot }}$ depends on the mass distribution and is $1 / 5$ for uniform density; ω is the (assumed) uniform angular velocity.
The turbulent kinetic energy $E_{\text {turb }}=\frac{1}{2} M \sigma^{2}$, where σ is the mean turbulent velocity.
The magnetic energy $E_{\text {mag }}=\frac{1}{8} \int B^{2} \mathrm{~d} V \approx \frac{1}{6} B^{2} R^{3}$, where B is the uniform magnetic field.

For rotational support to be important,

$$
\frac{3}{5} \frac{G M}{R}=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{2}{5} M R^{2}\right)\left(\frac{v_{\text {crit }}}{R}\right)^{2}=\frac{1}{5} M v_{\text {crit }}^{2}
$$

So $v_{\text {crit }}=(3 G M / R)^{1 / 2}$, where $v_{\text {crit }}$ is the critical rotation velocity at the equator.

Numerically, $v_{\text {crit }}=0.11\left[\frac{M}{M_{\odot}} \frac{\mathrm{pc}}{R}\right]^{1 / 2}[\mathrm{~km} / \mathrm{s}]$
For HI clouds, $v_{\text {crit }}=0.11\left[\frac{50}{2.5}\right]^{1 / 2} \approx 0.5[\mathrm{~km} / \mathrm{s}]$
Typically, $\omega \approx 10^{-16} \mathrm{~s}^{-1}$, so $v \approx 0.01$ to $0.1[\mathrm{~km} / \mathrm{s}]$
Clouds are generally not rotationally supported.

Measuring the ISM Magnetic Fields

Method	Medium	Info	
Polarization of starlight	Dust	B_{\perp}	
Zeeman effect	Neutral hydrogen; a few mol. lines	$B_{\\|}$	
Synchrotron radiation	Relativistic electrons	B_{\perp}	
Faraday rotation	Thermal electrons	$B_{\\|}$	

The Zeeman effect is the only technique for direct measurements of magnetic field strengths.

Polarization of Starlight

Crutcher RM. 2012.
Annu. Rev. Astron. Astrophys. 50:29-63

Organized magnetic field morphology in the Taurus darkcloud complex superposed on a ${ }^{13} \mathrm{CO}$ map (Chapman et al. 2011). Blue lines show polarization measured at optical wavelengths and red lines show near-IR (Hband and I-band) polarization.

Dichroic extinction by dust (optical and near-IR) $\vec{P} \| \vec{B}$

Interstellar Polarization

Mathewson \& Ford (1970)

Fig. 6.-HERTZ polarization map of M17 at $350 \mu \mathrm{~m}$. All of the polarization vectors shown have a polarization level and error such that $P>3 \sigma_{P}$. Circles indicate cases where $P+2 \sigma_{P}<1 \%$. The contours delineate the total continuum flux (from 10% to 90% with a maximum flux of $\approx 700 \mathrm{Jy}$), whereas the underlying gray scale gives the polarized flux according to the scale on the right. The beam width $\left(\simeq 20^{\prime}\right)$ is shown in the lower left corner and the origin of the map is at R.A. $=18^{\mathrm{h}} 17^{\mathrm{m}} 31 \leqslant 4$, decl. $=$ $-16^{\circ} 14^{\prime} 25^{\prime \prime} 0$ (B1950.0).

Fig. 11.- Orientation of the magnetic field in M17. The orientation of the projection of the magnetic field in the plane of the sky is shown by the vectors and the viewing angle is given by the length of the vectors (using the
scale shown in the bottom right corner). The contours and the gray scale delineate the total continuum flux. The beam width $\left(\approx 20^{\circ}\right)$ is shown in the lower left corner, and the origin of the map is at R.A. $=18^{\mathrm{h}} 17^{\mathrm{m}} 3154$, decl. $=-16^{\circ} 1425 \%($ B1950.0 $)$

Thermal emission by dust (far-IR, and smm) $\vec{P} \perp \vec{B}$

$\Delta v_{\mathrm{B}}[\mathrm{Hz}]=1.40 \times 10^{10} \mathrm{~g} \mathrm{~B}[\mathrm{~T}]$
$\Delta \lambda_{\mathrm{B}}[\mathrm{nm}]=4.67 \times 10^{-8} g\left(\lambda_{0}[\mathrm{~nm}]\right)^{2} \mathrm{~B}[\mathrm{~T}]$
g : Landé or g factor $(L, S, J) \sim 1$
Ex: B = 0.1 T (1 kG) for a typical sunspot, at $500 \mathrm{~nm}, g=1$
\rightarrow wavelength shift $0.001 \mathrm{~nm} \approx$ natural line width
\rightarrow difficult to measure

Astron. Astrophys. 125, L 23-L 26 (1983)

Letter to the Editor

The magnetic field of the NGC 2024 molecular cloud: detection of $\mathbf{O H}$ line Zeeman splitting

Richard M. Crutcher ${ }^{1,2}$ and Ilya Kazès ${ }^{1}$
${ }^{1}$ Department de Radioastronomie, Observatoire de Paris-Meudon, F-92195 Meudon, France
${ }^{2}$ Department of Astronomy, University of Illinois, Urbana, IL 61801, USA

Zeeman splitting of the main lines of OH in absorption has been detected for the first time. The derived magnetic field for a clump in the NGC 2024 molecular cloud is -38 ± 1 microgauss.

Faraday Rotation --- rotation of the plane of polarization when light passes through a magnetic field

Circularly polarized light $\rightarrow E$ field rotates \rightarrow force on the charged particles to make circular motion \rightarrow creating its own B field, either parallel or in opposite direction to the external field \rightarrow phase difference \rightarrow Change of position angle of the linear polarization

Faraday rotation angle $\beta=R M \lambda^{2}$ where the rotation measure (RM) is $\mathrm{RM}=\frac{e^{3}}{2 \pi m^{2} c^{4}} \int_{0}^{d} n_{e}(s) B_{\|}(s) \mathrm{d} s$

Galactic Longitude
Figure 3. A smoothed representation of 2257 Faraday rotation measures in Galactic coordinates with the Galactic center at (0,0). (Kronberg \& Newton-McGee, [3]). Blue and red circles represent positive and negative RM's respectively, and the circle size is proportional to RM strength.
http://ned.ipac.caltech.edu/level5/Sept10/Kronberg/Figures/figure3.jpg

For magnetic support to be important,

$$
\frac{3}{5} \frac{G M^{2}}{R}=\frac{B^{2}}{8 \pi}\left(\frac{4}{3} \pi R^{3}\right)=\frac{1}{6} B^{2} R^{3}
$$

So, $M \propto B R^{2}$, and since $M \propto \rho R^{3}$, we get $\mathrm{R} \propto \frac{B}{\rho}$
The magnetic Jeans mass becomes

$$
M_{\text {Jeans }}^{B} \propto B R^{2} \propto B^{3} / \rho^{2}
$$

Numerically, $M_{\text {Jeans }}^{B} \approx 2.4 \times 10^{4} B_{\mu \mathrm{G}}^{3} n_{H}^{-2}\left[M_{\odot}\right]$
and $B_{\text {crit }}=0.1 \frac{M}{M_{\odot}}\left(\frac{\mathrm{pc}}{R}\right)^{2}[\mu \mathrm{G}]$

If the magnetic flux is conserved, $\boldsymbol{B} \propto \frac{1}{R^{2}}$
Because $M \propto R^{3} \rho=$ constant, the frozen-in (i.e., flux conservation) condition would have led to $\boldsymbol{B} \propto R^{-2} \sim \rho^{2 / 3}$

If flux is conserved, \boldsymbol{B}_{0} (ISM) $\sim 10^{-6}$ [G]

$$
R_{0} \approx 0.1[\mathrm{pc}] \rightarrow R=R_{\odot} \rightarrow \boldsymbol{B} \approx 10^{7}[\mathrm{G}]
$$

But what has been actually observed is

$$
\boldsymbol{B} \propto \rho^{1 / 3} \text { to } \rho^{1 / 2}
$$

Implying magnetic flux loss.

We present an updated compilation of observational data concerning the relationship between the interstellar magnetic field strength and the gas density. Pulsar and Zeeman-effect data provide the only reliable stellar magnetic field strength and the gas density. Pulsar and Zeeman-effect data provide the only reliable Field strengths show no evidence of increase over the density range $0.1-\sim 100 \mathrm{~cm}^{-3}$. At higher densities, a Field strengths show no evidence of increase over the density range $0.1-\sim 100 \mathrm{~cm}$. At higher densities, a
modest increase in field strength is observed in some regions, in line with theoretical expectations for selfmodest increase in field strength is observed in some regions, in line with theoretical expectations for self-
gravitating clouds. In two regions of the interstellar medium, the magnetic field is unusually high; however gravitating clouds. In two regions of the interstellar medium, the magnetic field is unusually high; however,
these are not locales where self-gravitation is important. Despite the consistency between observations and these are not locales where self-gravitation is important. Despite the consistency between observations and
theory, questions still exist about how the magnetic field strength remains constant for densities up to $\sim 100 \mathrm{~cm}^{-3}$. Further Zeeman effect studies and a better theoretical understanding of the formation of interstellar clouds and complexes will be necessary to answer these questions.


```
A&A 484, 773-781 (2008)
DOI: 10.1051/0004-6361:200809447
```

A new probe of magnetic fields during high-mass star formation
Zeeman splitting of 6.7 GHz methanol masers ${ }^{\text {* }}$
W. H. T. Vlemmings

Argelander Institute for Astronomy, University of Bonn, Auf dem Hagel 71, 53121 Bonn, Germany
Received 24 January 2008 / Accepted 30 March 2008
Abstract
Context. The role of magnetic fields during high-mass star formation is a matter of fierce debate, yet only a few direct probes of magnetic field strengths are available.
fims. The magnetic field is detected in a number of massive star-forming regions through polarization occurving during high-mass star formation, most magnetic field measurements in the high-density gas currently come from OH and $\mathrm{H}_{2} \mathrm{O}$ maser observations.
Methods. The $100-\mathrm{m}$ Effelsberg telescope was used to measure the Zeeman splitting of 6.7 GHz methanol masers for the first time. The observations were performed on a sample of 24 bright northem maser sources Results. Significant Zeeman splitting is detected in 17 of the sources with an average magnitude of $0.56 \mathrm{~m} \mathrm{~s}^{-1}$ Using the current best estimate of the 6.7 GHz methanol maser Zeeman splitting coefficient and a geometrical correction, this corresponds to an absolute magnetic field strength of 23 mG in the methanol maser region: Conclusions. The magnetic field is dynamically important in the dense maser regions. No clear relation is found with the available OH maser magnetic field measurements. The general sense of direction of the magnetic field is consistent with other Galactic magnetic field measurements, although a few of the masers display a change of splittion provides the erent maser features. Due to the abundance or methan masers, measuring their Zeen forming regions.
\vec{B} confines motion of charged particles.
Molecular clouds \rightarrow most neutral with only a tiny fraction of particles; ionized by cosmic rays or by natural radioactivity

$=$ decoupling of neutral particles from plasma in the initial stage of star formation

\rightarrow 1. leakage of \vec{B}

2. charged particles escaped from magnetic poles (ampipolar diffusion=plasma drift)

$$
\left.\begin{array}{l}
\text { If } \boldsymbol{\mathcal { M }}_{\text {cloud }}>\boldsymbol{\mathcal { M }}_{\text {crit }} \rightarrow \underline{\text { supercritical }} \rightarrow \\
\\
\text { If } \boldsymbol{\mathcal { M }}_{\text {cloud }}<\boldsymbol{\mathcal { M }}_{\text {crit }} \rightarrow \underline{\text { Cloud will collapse dynamically }} \\
\\
\rightarrow \text { Massive star formation }
\end{array}\right] \text { Cloud collapses, if ever, quasi-statically }
$$

Clouds tend to condense with $\mathcal{M} \sim 10^{4} M_{\odot}$, but observed stellar mass ranges $0.05 \leq \mathcal{M} / M_{\odot} \leq 100$

Why is there a lower mass limit and an upper mass limit for stars?
Cloud collapse \rightarrow (local) density increase \rightarrow (local) M_{J} decrease \rightarrow easier to satisfy $M>M_{\mathrm{J}}$, i.e., cloud becomes more unstable
\rightarrow fragmentation
Formation of a cluster of stars $\sim \sim$

Recall Jeans mass $M_{J} \approx 1.2 \times 10^{5}\left(\frac{T}{100 K}\right)^{3 / 2}\left(\frac{\rho_{0}}{10^{-24} \mathrm{~g} \mathrm{~cm}^{-3}}\right)^{-1 / 2} \frac{1}{\mu^{3 / 2}}\left[M_{\odot}\right]$

$$
\propto T^{2 / 3} /_{\rho^{1 / 2}}
$$

If during collapse, $M_{J} \downarrow \rightarrow$ subregions become unstable and continue to collapse to smaller and smaller scales (fragmentation).

Since during collapse ρ always \uparrow, the behavior of M_{J} depends on T. If gravitational energy is radiated away, i.e., $\tau_{\text {cooling }} \ll \tau_{\mathrm{ff}}$ and collapse is isothermal, $T=$ const, so $M_{J} \propto \rho^{-1 / 2} \rightarrow$ collapse continues

However, once the isothermal condition is no longer valid, e.g., when the cloud becomes optically thick, the collapse is adiabatical.

$$
T \propto P^{2 / 5} \propto \rho^{2 / 3}
$$

So $M_{J} \propto \frac{\rho}{\rho^{1 / 2}}=\rho^{1 / 2}$, i.e., grows with time (ever more difficult to overcome/collapse), so the collapse halts

For a monatomic idea gas, the adabatic index

$$
\begin{aligned}
& \gamma \equiv c_{p} / c_{v}=\frac{f+2}{f}=5 / 2 / 3 / 2=5 / 3 \\
& \mathrm{P} V^{\gamma}=\text { const; } \mathrm{T}^{\gamma-1}=\text { const } ;
\end{aligned}
$$

Equation of motion for a spherical surface at r is

$$
\frac{d^{2} r}{d t^{2}}=-\frac{G m}{r^{2}}
$$

with initial condition $r(0)=r_{0}, \frac{d r}{d t}(0)=0, m=4 \pi r_{0}{ }^{3} \rho_{0} / 3$.
Multiplying both sides by $d r / d t$, and since $\frac{d}{d t}\left(\frac{d r}{d t}\right)^{2}=2 \frac{d r}{d t} \frac{d^{2} r}{d t^{2}}$,

$$
\frac{d}{d t}\left(\frac{d r}{d t}\right)^{2}=-\frac{2 G m}{r^{2}} \frac{d r}{d t}
$$

Integrating both sides, we get

$$
\left(\frac{d r}{d t}\right)^{2}=2 G m\left(\frac{1}{r}-\frac{1}{r_{0}}\right)
$$

Substituting m, we get

$$
\frac{d r}{d t}=-\left[\frac{8 \pi G \rho_{0} r_{0}^{2}}{3}\left(\frac{r_{0}}{r}-1\right)\right]^{\frac{1}{2}}
$$

Define a new variable θ, so that $r(t)=r_{0} \cos ^{2} \theta,(\theta=0$ at $t=0)$ then

$$
\frac{d \theta}{d t} \cos ^{2} \theta=\frac{1}{2}\left(\frac{8 \pi G \rho_{0}}{3}\right)^{1 / 2}
$$

Integrating this, we obtain $\theta+\frac{1}{2} \sin 2 \theta=\left(\frac{8 \pi G \rho_{0}}{3}\right)^{1 / 2} t$
The free-fall time is when $\theta=\pi / 2, \quad t_{\mathrm{ff}}=\left(\frac{3 \pi}{32 G \rho_{0}}\right)^{\frac{1}{2}}=\frac{3.4 \times 10^{7}}{\sqrt{n_{0}}}[\mathrm{yr}]$
Bodenheimer p. $34 \quad$... when density becomes ∞ for all m.

Figure 12.5 The ratio of the radius relative to its initial value as a function of time for the homologous collapse of a molecular cloud. The collapse is assumed to be isothermal, beginning with a density of $\rho_{0}=2 \times 10^{-16} \mathrm{~g} \mathrm{~cm}^{-3}$.

Figure 12.6 The ratio of the cloud's density relative to its initial value as a function of time for the isothermal, homologous collapse of a molecular cloud with an initial density of $\rho_{0}=2 \times 10^{-16} \mathrm{~g} \mathrm{~cm}^{-3}$.

Note that $t_{\mathrm{ff}} \propto \frac{1}{\sqrt{G \rho_{0}}}$ has no dependence on r_{0}.
If ρ_{0} is uniform, all m collapse to the center at the same time
\rightarrow homologous collapse

If ρ_{0} is somewhat centrally condensed, as observed, e.g., $\rho_{0} \propto r^{-1}$ to r^{-2}, inner region (small r), $t_{\text {ff }} \downarrow \downarrow$
\rightarrow inside-out collapse

$$
\begin{aligned}
& \text { Gravitational energy a available } E_{G} \sim \frac{G M^{2}}{\beta} \\
& \text { which is released during the orntraction } \\
& 08 \text { made } M \text { from } \infty \text { to } P \\
& t_{K H} \sim \frac{G H^{2}}{R} / \angle \sim R^{-3}\left(\because \angle \sim R^{2} T_{1}^{4}\right) \\
& t_{f f} \sim \frac{1}{\sqrt{G p}} \sim R^{3 / 2} \quad \text { cons } \\
& \text { For an object already on the main sequence } \\
& t_{f f} \ll t_{\mathrm{KH}} \\
& \text { Ex. For } 1 \mathrm{Mo}_{0}, 1 \angle 0 \quad t_{f f} \sim 10^{4} \mathrm{rr} \\
& t_{\mathrm{KH}} \sim 2 \times 10^{7} \text { yr } \quad \mathrm{t}_{\mathrm{ff}} \ll \mathrm{t}_{\mathrm{KH}} \\
& \therefore \text { When } R \geqslant 300 R_{0} t_{f f} \gtrsim t_{\mathrm{KH}} \\
& \Rightarrow \text { protostellan collapse is a dynamical process. } \\
& \tau_{\mathrm{ff}} \sim 66120 / \sqrt{\rho}_{\mathrm{MKS}} \sim 35 / \sqrt{\rho}_{\text {cis }}[\mathrm{min}]
\end{aligned}
$$

Free-Fall Collapse

$$
m \frac{d^{2} r}{d t^{2}}=\frac{G M m}{r^{2}}
$$

Dimension analysis

$$
\begin{aligned}
& \frac{\frac{R}{t^{2}} \sim \frac{G M}{R^{2}} \Rightarrow t_{f f} \sim \frac{1}{\sqrt{G \rho}}}{\text { or }} \frac{4.3 \times 10^{7}}{\sqrt{n_{N_{0}}}}\left[\begin{array}{rrr}
\\
2 E_{K}+E_{P}=\cdots & <0
\end{array}\right. \\
& t_{s}=\frac{R}{v_{\text {sound }}} \sim \frac{1}{\sqrt{G \rho}}, \quad v_{s} \sim \sqrt{\frac{R T}{\mu}} \\
& \begin{array}{l}
\text { 1.9. } \rho \sim 10^{3} \times 1.6 \times 10^{-24}, \quad t_{f f} \sim \frac{1}{\sqrt{6.6 \times 10^{-8} \times 10^{-21}}} \sim 3 \times 10^{6} \times r \\
\text { In reality }
\end{array} \\
& \text { In reality, } \rho \uparrow \text { as } r \notin \text { (iss., density concentration } \\
& \therefore t_{f f} \text { shorter for smaller } r \\
& \Rightarrow \text { collapse proceeds in an inside-out fashion. }
\end{aligned}
$$

Recall the relation between a circular motion and a simple harmonic motion.

Acceleration to the center
Time scale $=1 / 4$ period

Applications:

- Gas in a collapsing cloud
- Stars in a globular cluster
- Galaxies in a galaxy cluster

Exercise

1. For a the sun, i.e., a mass $\mathcal{M}=1 \mathcal{M}_{\odot}$, a luminosity $\mathcal{L}=1 \mathcal{L}_{\odot}$, and a radius $\mathcal{R}=1 \mathcal{R}_{\odot}$, compute the free-fall time scale τ_{ff} and the KevinHelmholtz time scale $\tau_{\mathrm{KH}} \approx G \mathcal{M}^{2} / R L$. Which time scale is longer?
2. Note that both time scales have different dependence on the size scale. At what size, do the two time scales equal?

Ann. Rev. Astron. Astrophys. 1987. 25: 23-81
STAR FORMATION IN
$\stackrel{\sim}{\subsetneq}$ MOLECULAR CLOUDS: OBSERVATION AND THEORY

Frank H. Shu, Fred C. Adams, and Susana Lizano
Astronomy Department, University of California, Berkeley, California 94720

Figure 7 The four stages of star formation. (a) Cores form within molecular clouds as
magnetic and turbulent support is lost through ambipolar diffusion. (b) A protostar with a
surrounding nebular disk forms at the center of a cloud core collapsing from inside-out. (c) A stellar wind breaks out along the rotational axis of the system, creating a bipolar flow

A TWO MICRON POLARIZATION SURVEY OF T TAURI STARS
Motohide TAMURA ${ }^{\text {a }}$
Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606, Japan
Department of Astronomy, University of Massachusetts, Amherst, Massachusetts 01003
Shul Sate
National Astronomical Observatory, Mitaka, Tokyo 181, Japan
Received 30 September 1988; revised 23 May 1989

Fig. 2. Polarization map at optical (thin vectors) and at infrared (thick vectors) towards background stars in the Taurus dark cloud complex, compiled from the data in the literature (Monet et al. 1984; Hsu 1984; Hexer et al. 1987; Tamera et al. 1987).

Evolution from a circumstellar toroid (geometrically thick) to a disk; opening angle of the outflow widened

[^2]
Data cube

 (sky position and frequency)

FiG. 5.-A schematic picture of the stellar wind driven shock model for L1551, indicating the CO line profiles which would be expected at different positions across the source. The Herbig-Haro objects are not necessarily located inside the shell; because of their high veloc
ities, they may have been ejected through the shell and into the surrounding medium.

Figure 4 Superposition of a gray-scaled image of the HH 211 jet taken in the $\mathrm{H}_{2} v=1-0 \mathrm{~S}(1)$ line at $2.122 \mu \mathrm{~m}$ (from McCaughrean et al 1994) with a $\mathrm{NH}_{3}(1,1)$ image obtained with the VLA at its D configuration (6 angular resolution) (R Bachiller \& M Tafalla 1995, unpublished data). The star marks the position of the jet source HH $211-\mathrm{mm}$ (see also Table 1),

Molecular Hydrogen Objects (MHOs) 1000+ now known

Infrared image of molecular bow shocks (MHO 27) associated with bipolar outflows in Orion. Credit: UKIRT/Joint Astronomy Centre

Spectral Energy Distribution

SED for 2MASS 08093547-4913033, with that of an M5 star (Young et al. 2004, ApJS, 154, 428)
\Rightarrow clear line-of-sight \Rightarrow disk or thin shell

Exciting source of an
HH object = protostar

Fig. 6. The energy distribution of the infrared source of HH83 based on nearand far-infrared photometry. Error bars are shown for the near-infrared data points where the errors are larger than the extent of the crosses. No error bars are given for the far-infrared IRAS data

Accretion Disks

- Found in YSOs, supermassive BHs in AGB, binaries, Saturnian rings
- Turbulent viscosity important
- generating heat
- transporting angular momentum outwards
- transporting matter inwards

Fact: The Sun has $>99 \%$ of the total mass in the solar system, but accounts for $\sim 3 \%$ of the total angular momentum (rotation), whereas Jupiter's orbital angular moment accounts for 60%.
Fact: Outer planets rotate fast (thus are flattened.)

Exercise

1. Compare the angular momenta of the Sun, Jupiter, and Earth.
2. What is the specific angular momentum of the Earth versus Jupiter?
3. How round (or flat) is the shape of the Earth, of Jupiter, and of the Sun?
http://www.zipcon.net/~swhite/docs/astronomy/Angular_Momentum.html

Water and carbon dioxide in solid form
\rightarrow cold materials near the protostar

T Tauri stars (= PMS sun-like stars) are seen against dark nebulosity and characterized by emission-line spectra.

Figure 2 Medium resolution spectrograms covering the spectral range $3200-8800 \AA$ of four late-K or early-M T Tauri stars, shown in order of increasing emission levels. The relative intensity is displayed in wavelength units.

(

Fie. 3a. Spectrum of T Tau and of \& Tau, a standard star of the same temperature.

P Cygni profile \rightarrow A spectral profile showing an expanding envelope

T Tauri stars also show infrared excess in the SEDs.

... and also UV excess
\rightarrow spectral "veiling"

Figure 3 Observed spectral energy distributions from $3600 \AA$ to $100 \mu \mathrm{~m}$ of the stars whose spectra are shown in Figure 2. The energy distribution of the K7V WTTS TAP 57, shown
spectra are shown in Figure 2. The energy distribution of the K7V WTTS TAP 57, shown
as a solid line, has been displaced downward by 0.3 dex. The filled symbols are simultaneous
(for DN Tau and DF Tau) or averaged (for DR Tau) photometric data (ef. Bertout et al.
1988) supplemented by IRAS data (Rucinski 1985). When available, observed variability is
indicated by error bars. When compared with WTTSs such as TAP 57, CTTSs display
prominent ultraviolet and infrared excesses. Excess continuum fux and optical emission-line
activity are often correlated.

Appenzeller (1g83) RMAA

CS Cha K4Ve CTTS

Figure 2. CS Cha SED. The ISO measurements are shown by stars. The two arrows denote upper limits from ISO observations. Filled ments at 60 and 100 . photosphere; the dotted curve the model prediction for a standard reprocessing disk seen face-on.

Spectral index useful to classify a young stellar object (YSO)

$$
\begin{array}{ll}
\alpha=\frac{d \log \left(\lambda F_{\lambda}\right)}{d \log (\lambda)} & \text { Where } \lambda=\text { wavelength, between } \\
2.2 \text { and } 20 \mu \mathrm{~m} ; \mathrm{F}_{\lambda}=\text { flux density }
\end{array}
$$

Class 0 sources --- undetectable at $\lambda<20 \mu \mathrm{~m}$
Class I sources --- $\alpha>0.3$
Flat spectrum sources --- $0.3>\alpha>-0.3$
Class II sources --- $0.3>\alpha>-1.6$
Class III sources --- $\alpha<-1.6$
\rightarrow Evolutionary sequence in decreasing amounts of circumstellar material (disk clearing)

T Tauri stars are PMS objects, contracting toward the zero-age main sequence (ZAMS).

Figure f Position in the Hertusprung-Russell diagram of all CTTSs and WTTSs with known
$v \sin i$. WTTSs are represented by open circles, and CTTSs by dark circles. In both cases, the
circle area is proportional to the stellar $v \sin i$. Approximate pre-main-sequence quasi-static
evolutionary tracks for various masses are also plotted together with the zero-age mai
sequence (dashed line).

One half of stars lose disks within 3 Myr
Disk disposed in $\sim 6 \mathrm{Myr}$:
planet formation timescale

Fig. 3. Projected equatorial velocities, averaged over all possible inclinations, as a function of spectral type. On the main sequence (luminosity class V), early-type stars have rotational velocities that reach and even exceed $200 \mathrm{~km} / \mathrm{s}$; these velocities drop to a few km/s for late-type stars, such as the Sun (type G2) (Slettebak [20]; courtesy Gordon \& Breach)

\square Early-type stars are fast rotators
 \square Stars later than \sim F5 rotate very slowly
 \square Disk/planet formation?

Figure 1 Schematic picture of FU Ori objects. FU Ori outbursts are caused by disk accretion
increasing from $\sim 10^{-7} M_{\circ} \mathrm{yr}^{-1}$ to $\sim 10^{-4} M_{\circ} \mathrm{yr}^{-1}$, adding $\sim 10^{-2} M_{\circ}$ to the central T Tauri increasing from $\sim 10^{-7} M_{\odot} \mathrm{yr}^{-1}$ to $\sim 10^{-4} M_{\odot} \mathrm{yr}^{-1}$, adding $\sim 10^{-2} M_{\odot}$ to the central T Tauri
tar during the event. Mass is fed into the disk by the remanant collapsing protostellar envelope star during the event. Mass is fed into the disk by the remanant collapsing protostellar envelope
with an infall rate $\lesssim 10^{-5} M_{\odot} \mathrm{yr}^{-1}$; the disk ejects roughly 10% of the accreted material in a with an infall rate

MASS OUTFLOW

Fig. 1. Illustration of the regions which have been proposed as the origin of the permitted hydrogen recombination line emission observed towards HAeBe stars (this sketch is not to scale; read Sect. I for details about the individual mechanisms).

Figure 13 Schematic views of the (a) meridional plane and (b) equatorial plane of the configuration modeled by Shuet al (1994a,b) for the origin of bipolar outflows. The circumstellar disk is truncated at a distance R_{X} from the star. Both energetic outflows and funnel flows emerge from the disk truncation region. Gas accreting from the disk onto the star in a funnel flow drags the stellar field into a trailing spiral pattern. (From Najita 1995.)

Figure 6. A schematic drawing of the magnetohydrodynamical model.

Inside-out collapse (Shu 1977) isothermal sound speed \rightarrow constant accretion rate

Collision

Gas (hydrogen atoms) root-mean-squared speed

$$
m_{\mathrm{H}} \sqrt{<v^{2}>}=3 k T
$$

For H I regions,

$$
\begin{aligned}
& T \sim 100 \mathrm{~K},\langle v\rangle_{\mathrm{HI}} \sim 1 \mathrm{~km} \mathrm{~s}^{-1} \\
& \text { For } e^{-},\left\langle v>_{e^{-}} \sim 50 \mathrm{~km} \mathrm{~s}^{-1}\right.
\end{aligned}
$$

Cross sections σ

- Hard sphere OK for neutral atoms,
i.e., 'physical' cross section

$$
\sigma=\pi\left(a_{1}+a_{2}\right)^{2}
$$

$\sigma_{\mathrm{HI}, \mathrm{HI}} \leftarrow a \sim 5.6 \times 10^{-9} \mathrm{~cm}$
c.f., Bohr radius (first orbit) $=5.3 \times 10^{-9} \mathrm{~cm}$

Cross sections σ

- For free $\mathrm{e}^{-}, \mathrm{p}^{+}$

$$
\begin{aligned}
& \sigma \gg \sigma_{\text {physical }} \text { because of Coulomb force, need QM } \\
& \quad a \sim \frac{2.5 \times 10^{-2}}{v^{2}} \mathrm{~cm}(v \text { in km }) \\
& \text { If } v_{e^{-}} \sim 50 \mathrm{~km} \mathrm{~s}^{-1}, a \sim 10^{-5} \mathrm{~cm} \text { for } e^{--} e^{-} \text {collision } \\
& T=3 \times 10^{4} \mathrm{~K},<v>\sim 10^{3} \mathrm{~km} \mathrm{~s}^{-1} \\
& \quad \begin{array}{l}
\quad a \sim 2.5 \times 10^{-8} \mathrm{~cm}
\end{array} \\
& \quad \text { c.f., classical electron radius } \sim 2.8 \times 10^{-13} \mathrm{~cm} \\
& \qquad \begin{array}{l}
\frac{e^{2}}{r_{0}}=m c^{2} \\
r_{0}=\frac{e^{2}}{m c^{2}} \sim 2.8 \times 10^{-13} \mathrm{~cm}
\end{array}
\end{aligned}
$$

Conventional unit for cross section

$$
\begin{aligned}
& 1 \mathrm{barn}=10^{-24} \mathrm{~cm}^{2} \\
& \sigma_{\mathrm{HI}, \mathrm{HI}}=\sim 10^{8} \text { barns }\left(\sim 10^{-16} \mathrm{~cm}^{2}\right)
\end{aligned}
$$

Collision

\# of collisions = \# of particles in the (moving) volume

$$
N=n \sigma v t
$$

\# of collisions per unit time $=N / t=n \sigma v$

Time (mean-free time) between 2
consecutive collisions $(\mathrm{N}=1)=t_{\text {collision }}=\frac{1}{n \sigma v}$

Mean-free path $\quad \ell=v t_{\text {col }}$, i.e., $\ell=\frac{1}{N \sigma}$

Ex 1 between hydrogen atoms in an H I region

$$
\begin{aligned}
& n_{\mathrm{HI}} \sim 10 \mathrm{~cm}^{-3} ; v_{\mathrm{HI}} \sim 1 \mathrm{~km} \mathrm{~s}^{-1} ; \sigma_{\mathrm{HI}, \mathrm{HI}} \sim 10^{-16} \mathrm{~cm}^{2} \\
& t_{\mathrm{HI}, \mathrm{HI}} \sim 10^{10} \mathrm{~s} \sim 300 \text { years } \\
& \ell \sim 10^{15} \mathrm{~cm} \sim 100 \mathrm{AU}
\end{aligned}
$$

\therefore Collisions are indeed very rare.

Ex 2 between a hydrogen atom and an electron

$$
\begin{aligned}
& \sigma_{\mathrm{e}^{-}, \mathrm{HI}} \sim 10^{-15} \mathrm{~cm}^{2} \quad(\text { polarization }) \\
& t_{\mathrm{e}^{-}, \mathrm{HI}} \sim \frac{1}{10 \times 10^{-15} \times 10^{5}} \sim 30 \text { years }
\end{aligned}
$$

Ex 3 between electrons

$$
\begin{aligned}
& \sigma_{\mathrm{e}^{-}, \mathrm{e}^{-}} \sim 10^{-12} \mathrm{~cm}^{2} ; n_{e} \sim 0.2 \mathrm{~cm}^{-3} \\
& t_{\mathrm{e}^{-}, \mathrm{e}^{-}} \sim \frac{1}{0.2 \times 10^{-12} \times 50 \times 10^{5}} \sim 10 \text { days }
\end{aligned}
$$

Stellar Structure

Structure Equations

What does each of these equations means?
$\frac{d P}{d r}=-\frac{G m(r) \rho}{r^{2}} \quad$ Hydrostatic equilibrium $\frac{d m}{d r}=4 \pi r^{2} \rho \quad$ Mass continuity (distribution)
$\frac{d L}{d r}=4 \pi r^{2} \rho q \quad$ Energy generation
$\frac{d T}{d r}=\frac{-3 \kappa \rho L}{4 a c 4 \pi r^{2} T^{3}}$
$\left.\frac{d T}{d r}=\left(\frac{\gamma-1}{\gamma}\right) \frac{T}{P} \frac{d P}{d r}\right]$
by radiation
Energy transport
by convection

$P=P(\rho, T, \mu)$
Equation of state
$\kappa=\kappa(\rho, T, \mu)$
Opacity
$q=q(\rho, T, \mu)$
Nuclear reaction rate

Variables (7): m, ρ, T, P, κ, L, and q

Vogt-Russell theorem

the structure of a star is uniquely determined by its mass and the chemical abundance.

In fact, ... by any two variables above, cf. the HRD. It is not really a "theorem" in the mathematical sense, i.e., not strictly valid. It is a "rule of thumb".

In general, the equation of motion is

$$
\ddot{r}=-\frac{G m}{r^{2}}-\frac{1}{\rho} \frac{\partial P}{\partial r}=-\frac{G m}{r^{2}}-4 \pi r^{2} \frac{\partial P}{\partial m}
$$

Mean molecular weight

In a fully ionized gas (in stellar interior),
$\mu=1 / 2(\mathrm{H}) . . .2$ particles per m_{H}
$=4 / 3(\mathrm{He}) . . .3$ particles per $4 m_{H}$
$\cong 2$ (metals) ... 2 particles per m_{H}
$\mu=4 /(6 X+Y+2)$ for a fully ionized gas
Adopting the solar composition,

$$
\begin{aligned}
& X_{\odot}=0.747, Y_{\odot}=0.236, Z_{\odot}=0.017 \\
& \rightarrow \mu \simeq 0.6
\end{aligned}
$$

Note recent revision $Z_{\odot}=0.0152$ (Caffau +11)

At the center of a star in hydrostatic equilibrium

$$
\frac{d P}{d m}=-\frac{G m}{4 \pi r^{4}}
$$

Integrating from the center to the surface

$$
P(M)-P(0)=-\int_{0}^{M} \frac{G m d m}{4 \pi r^{4}}
$$

With the boundary conditions,

$$
P(M) \approx 0 \quad P(0)=P_{c}
$$

Thus,

$$
P_{c}=\int_{0}^{M} \frac{G m d m}{4 \pi r^{4}}>\int_{0}^{M} \frac{G m d m}{4 \pi R^{4}}=\frac{G M^{2}}{8 \pi R^{4}}=4.4 \times 10^{13}\left(\frac{M}{M_{\odot}}\right)^{2}\left(\frac{R_{\odot}}{R}\right)^{4} \mathrm{~N} \mathrm{~m}^{-2}
$$

Hydrostatic equilibrium

$$
\frac{d P}{d r}=-\frac{G m(r)}{r^{2}} \rho, \text { so } \frac{P}{R}=\frac{G M}{R^{2}} \frac{M}{R^{3}} \rightarrow P=\frac{G M^{2}}{R^{4}}
$$

Ideal gas law $\quad P=\frac{\rho}{\mu m_{H}} k T ; \rho=\frac{M}{R^{3}}$

$$
\text { So } P=\frac{M}{R^{3}} \frac{T}{\mu} \text {, and } T \sim \frac{\mu G M}{R}
$$

This should be valid at the star's center, thus

$$
T_{*} \sim \frac{\mu G M_{*}}{R_{*}}
$$

Luminosity

$$
\begin{aligned}
& \text { Ohm's law in circuit } I=V / R \text {, hydraulic analogy } \\
& \text { [flow] } \propto \text { [pressure gradient] / [resistance] } \\
& \text { (unit) Pressure }=\text { [energy] } /[\text { volume }] \\
& L \sim 4 \pi R^{2} \frac{d\left(\frac{1}{3} a T^{4}\right) / d r}{\kappa \rho} \\
& \sim 4 \pi R^{2} \frac{4}{3} \frac{a T^{3}}{\kappa \rho} \frac{d T}{d r} \\
& \sim \frac{R^{2} T^{3}}{\kappa \rho} \frac{d T}{d r} \\
& \text { Blackbody radiation } \\
& \text { Energy density } \quad u=a T^{4} \\
& \text { Radiation pressure } P=(1 / 3) u
\end{aligned}
$$

Exercise: Derive Ohm's law.

For a given structure,

$$
\begin{aligned}
& T \sim T_{c}, \frac{d T}{d r} \sim \frac{T_{c}}{R}, T_{c} \sim \frac{\mu G M}{R} . \\
& L \sim \frac{R^{2} T^{4} / R}{\kappa\left(M / R^{3}\right)} \sim \frac{R^{4} T^{4}}{\kappa M} \sim \frac{R^{4}}{\kappa M}\left(\frac{\mu G M}{R}\right)^{4} \\
& L \sim \frac{\mu^{4} G^{4} M^{3}}{\kappa}
\end{aligned}
$$

The opacity $\kappa=\kappa(\rho, T, \mu)$
\square For solar composision, Kramers opacity

$$
L \sim \frac{\mu^{4} G^{4} M^{3}}{\kappa}
$$

$$
\kappa \sim \rho T^{-3.5} \quad \text { valid for } 10^{4}-10^{6} \mathrm{~K}
$$

$$
\text { So } \kappa \sim \mu^{-3.5} G^{-3.5} M^{-2.5} R^{0.5} \quad T \sim \frac{\mu G M}{R}
$$

and

$$
L \sim \mu^{7.5} G^{7.5} M^{5.5} R^{-0.5}
$$

\square For high-mass stars, i.e., high temperature and low density, opacity by electron scattering

$$
\begin{aligned}
& \kappa=0.2(1+X) \mathrm{cm}^{2} \mathrm{~g}^{-1}=\text { const. } \\
& \text { and } L \sim \mu^{4} G^{4} M^{3}
\end{aligned}
$$

Figure 1.6 The mass-luminosity relation for main-sequence stars. Symbols denote ordinary binary stars (squares); eclipsing variables (triangles); Cepheids (pentagons); doublestar statistics (stars).

Opacity

- Bound-bound absorption Excitation of an electron of an atom to a higher energy state by the absorption of a photon. The excited atom then will be de-excited spontaneously, emitting a photon, or by collision with another particle.
- Bound-free absorption Photoionization of an electron from an atom (ion) by the absorption of a photon. The inverse process is radiative recombination.
- Free-free absorption Transition of a free electron to a higher energy state, via interaction of a nucleus or ion, by the absorption of a photon. The inverse process is bremsstrahlung.
- Electron scattering Scattering of a photon by a free electron, also known as Thomson (common in stellar interior) or Compton (if relativistic) scattering.
- \underline{H}^{-}absorption Important when $<10^{4} \mathrm{~K}$, i.e., dominant in the outer layer of low-mass stars (such as the Sun)
- Bound-bound, bound-free, and free-free opacities are collectively called Kramers opacity, named after the Dutch physicist H. A. Kramers (1894-1952).
- All have similar dependence $\kappa \propto \rho T^{-3.5}$.
- Kramers opacity is the main source of opacity in gases of temperature $10^{4} \sim 10^{6} \mathrm{~K}$, i.e., in the interior of stars up to $\sim 1 \mathrm{M}_{\odot}$.
- In a star much more massive, the electron scattering process dominates the opacity, and the Kramers opacity is important only in the surface layer.

Data from Iglesias \& Rogers (1996)

Opacity κ in $\mathrm{cm}^{2} \mathrm{~g}^{-2}$

$$
\kappa \rho=\Sigma_{i} n_{i} \sigma_{i}
$$

$\int \kappa \rho d s$ gives the optical depth
The Rossland mean opacity

$$
\frac{1}{<\kappa>}=\frac{1}{B} \int_{0}^{\infty} \frac{B_{\nu}}{\kappa_{\nu}} d \nu
$$

For Kramers opacity

$$
\kappa_{K r} \approx 4 \times 10^{25}(1+X)(Z+0.001) \rho T^{-3.5}\left[\mathrm{~cm}^{2} \mathrm{~g}^{-1}\right]
$$

For Thomson scattering,

$$
\kappa_{v}=\frac{8 \pi}{3} \frac{r_{e}^{2}}{\mu_{e} m}=0.20(1+X)\left[\mathrm{cm}^{2} \mathrm{~g}^{-1}\right]
$$

is frequency independent, so is the Rossland mean.

$$
\kappa_{e s}=0.20(1+X)\left[\mathrm{cm}^{2} \mathrm{~g}^{-1}\right]
$$

Here r_{e} is the electron classical radius, X is the H mass fraction, and $\mu_{e}=2 /(1+X)$

$$
\text { the electron cross section } \sigma=0.665 \times 10^{-24}\left[\mathrm{~cm}^{2}\right]
$$

- For H^{-}opacity, $E_{\text {ion }}=0.754 \mathrm{eV}$ important for $4 \times 10^{3}<T<8 \times 10^{3} \mathrm{~K}$

$$
\kappa_{H^{-}} \approx 2.5 \times 10^{-31}\left(\frac{Z}{0.02}\right) \rho^{0.5} T^{9}\left[\mathrm{~cm}^{2} \mathrm{~g}^{-1}\right]
$$

is temperature and metallicity (providing electrons) dependent.

ㅁ For $T>10^{4} \mathrm{~K}, H^{-}$is ionized.

ㅁ At $T<3500 \mathrm{~K}$, molecular opacity dominates.

Main sequence $=$ a mass sequence defined by hydrogen fusion at the center of a star
Radius does not vary much; but the luminosity does.

$\log L \propto \log T$

$$
T_{c} \approx \frac{\mu G M}{R}
$$

So for a given $\left.\begin{array}{rl}T_{C}, M & \rightarrow R \\ & \rightarrow L\end{array}\right\} L\left(\propto R^{2} T^{4}\right)$ and T

Main sequence is a run of L and T_{c} as a function of stellar mass, with T_{c} nearly constant.

$$
\begin{aligned}
& \text { Why } T_{c} \approx \text { constant? } \\
& \text { Because } \mathrm{H} \text { burning at } \sim 10^{7} \mathrm{~K} \\
& \text { regardless of the stellar mass }
\end{aligned}
$$

Gas Thermodynamics

Heat capacity: heat supplied to increase one degree in temperature; C_{P} and C_{V}

Specific heat capacity (=per unit mass), c_{P} and c_{V}

$$
\begin{aligned}
& c_{P}-c_{V}=k_{B} \\
& c_{P} / c_{V}=\gamma
\end{aligned}
$$

γ : the adiabatic index or heat capacity ratio e.g., dry air, $=1.403\left(0^{\circ} \mathrm{C}\right),=1.400\left(20^{\circ} \mathrm{C}\right)$

$$
\mathrm{O}_{2},=1.400\left(20^{\circ} \mathrm{C}\right),=1.397\left(200^{\circ} \mathrm{C}\right)
$$

$$
\mathrm{H}_{2} \mathrm{O},=1.330\left(20^{\circ} \mathrm{C}\right),=1.310\left(200^{\circ} \mathrm{C}\right)
$$

To Determine γ of a Star
For an ideal gas, $u_{i}=\frac{1}{2} k T$ per degree of freedom
Equipartition of energy $\rightarrow u=\Sigma u_{i}=\frac{n}{2} k T$ for n dof

$$
\text { Since } c_{V}=\left(\frac{\partial u}{\partial T}\right)_{V}=\frac{n}{2} k \text {, and } \frac{c_{P}}{c_{V}} \equiv \gamma=\frac{n k / 2+k}{n k / 2}=1+\frac{2}{n}
$$

For an ideal gas, $n=3, \gamma=5 / 3$
For a photon gas, $n=6, \gamma=4 / 3$
(3 propagation directions, each with 2 polarizations)
For a monatomic gas, dof $=3 \rightarrow \gamma=5 / 3=1.67$
For a diatomic gas, dof $=5 \rightarrow \gamma=7 / 5=1.4$

Equation of State
Stability of a star: $2 E_{K}+E_{P}=0$

$$
\begin{aligned}
E_{\text {thermal }} & =\frac{3}{2} k T=\frac{3}{2}\left(c_{P}-c_{V}\right) T \\
& =\frac{3}{2}(\gamma-1) c_{V} T \\
& =\frac{3}{2}(\gamma-1) U \\
E_{P}=\Omega &
\end{aligned}
$$

So, $3(\gamma-1) U+\Omega=0$
$E_{\text {total }}=U+\Omega=\left[\frac{-1}{3(\gamma-1)}+1\right] \Omega=\frac{3 \gamma-4}{3(\gamma-1)} \Omega$

Because $\Omega<0$, in order to be stable, $E_{\text {total }}<0 \rightarrow \gamma>4 / 3$

In general, for a stable star with a mixture of gas and radiation,

$$
\frac{4}{3} \leq \gamma \leq \frac{5}{3}
$$

$\gamma \rightarrow 4 / 3$, radiation pressure dominates.
$\gamma \rightarrow 5 / 3$, gas pressure dominates.

For an ideal gas, $P=\frac{N}{V} k T=\frac{\rho}{\mu m_{H}} k T$

$$
\frac{d P}{P}=\frac{d \rho}{\rho}+\frac{d T}{T} \text { and } P d V+V d P=N k d T
$$

First law of thermodynamics (conservation of energy)

$$
d Q=d U+P d V
$$

For constant $V, c_{V}=\left(\frac{d Q}{d T}\right)_{V}=\frac{d U}{d T}$

$$
d Q=d U+N k d T-V d P=\left(\frac{d U}{d T}+N k\right) d T-V d P
$$

So for constant $P, c_{P}=\left(\frac{d Q}{d T}\right)_{P}=\frac{d U}{d T}+N k=c_{V}+N k$
Hence $c_{P}=c_{V}+N k$,
and $\gamma=c_{P} / c_{V}=\left(N k+c_{V}\right) / c_{V}$

An isothermal (= constant in temperature) process:
internal energy does not change
An adiabatic process: $d Q=0$

$$
\begin{aligned}
& d Q=c_{V} d T+P d V=c_{V} d T+(N k T / V) d V \\
& \quad=d T / T+\left(c_{P}-c_{V}\right) / c_{V}(d V / V)=0
\end{aligned}
$$

$\log T+(\gamma-1) \log V=$ constant
$T V^{\gamma-1}=$ constant
$P V^{\gamma}=$ constant
$P^{1-\gamma} T^{\gamma}=$ constant

Convective equilibrium (stability vs instability)

A fluid convective "cell" is buoyed upwards.
If temperature inside is higher than surroundings, the cell keeps rising. $\mathrm{E}_{\text {kin }}$ of particles higher \rightarrow dissipates

Otherwise it sinks back (convectively stable).
The rising height is typified by the mixing length ℓ, or parameterized as the scale height H, defined as the pressure (or density) varies by a factor of e. Usually

$$
0.5 \lesssim \ell /{ }_{H} \lesssim 2.0
$$

Convective stability/instability

> How grad is energy transportation by radiation?
> of. Schwareselild

\Rightarrow Convection sets in when the adiabatic temp. gradient is smaller than Compared with surrounding temperature gradient temp. gradient by radiative equil.

$$
\text { ie., }\left(\frac{d T}{d r}\right)_{a d}<\left(\frac{d T}{d r}\right)_{r a d}
$$

Radiation can no longer transport the energy efficiently enough
\rightarrow Convective instability
For an adiabatic process, $\mathrm{PV}^{\gamma}=$ constant

Sine $\frac{d P}{d r}=-\rho g$ and $P=\rho^{R} T$

$$
\begin{aligned}
& d T \cdot \frac{d P}{d r} \frac{1}{P} \propto \frac{1}{T} \cdot d T \\
& \therefore \frac{d T}{d r} \propto \frac{d T / T}{d P / P}=\frac{d \ln T}{d \ln P}
\end{aligned}
$$

\Rightarrow Criterion for convection equilibrium bocorimes

$$
\left(\frac{d \ln T}{d \ln P}\right)_{a d}<\left(\frac{d \ln T}{d \ln P}\right)_{\mathrm{rad}}
$$

With the notation ∇ (nabla)

$$
\nabla_{a d}<\nabla_{\mathrm{rad}}
$$

> Convection takes place when the temperature gradient is "sufficiently" high (compared with the adiabatic condition) or the pressure gradient is low enough.

> Such condition also exists when the gas absorbs a great deal of energy without temperature increase, e.g., with phase change or ionization
> \rightarrow when c_{V} is large or γ is small

In meteorology, dry and cool air tends to be stable, whereas wet and warm air (smaller gamma values) is vulnerable to convection \rightarrow thunderstorm

$$
\begin{aligned}
& \text { How to calculate } \nabla_{\text {rad }} \text { ? } \\
& \frac{d T}{d r}=-\frac{3}{4 a e} \cdot \frac{K \rho}{T^{3}} \frac{L_{r}}{4 \pi r^{2}} \quad \text { but } \frac{d p}{d r}=-g \rho \\
& \therefore \frac{d T}{d p} \propto \frac{k}{T^{3}} \frac{L r}{r^{2}} \\
& \nabla_{\text {rad }} \equiv\left(\frac{d l_{n} T}{d \ln P}\right)_{\text {rad }}=\frac{d T / T}{d P / P}=\cdots=\frac{3 k}{16 \pi \text { mac }} \frac{P}{T^{4}} \frac{L r}{d M_{r}}
\end{aligned}
$$

For an adiatatic process for an ideal gas
a) $P=n k T \alpha \rho T$
$\frac{d P}{P}=\frac{d \rho}{\rho}+\frac{d r}{T}$
(2) $\hat{\sigma}^{n}=c_{p}-c_{v}$

$$
\text { (3) } \begin{aligned}
v & =\frac{c_{p}}{c_{v}}=\frac{1+c_{v}}{c_{v}} \\
& =\frac{1+n / 2}{n / 2}=1+\frac{2}{n} \\
n & =\text { d.e.f. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Note } \nabla_{\text {rad }} \propto P \\
& \text { At surface } \nabla_{\text {rad }} \rightarrow 0 \\
& \therefore \nabla_{\text {ad }} \quad \stackrel{\text { always }}{>} \nabla_{\mathrm{rad}} \Rightarrow \text { no convection! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { The outermost sayers } 8 \text { a star are always } \\
& \text { in radiative equilibrium. }
\end{aligned}
$$

in radiative equilibrium.
\therefore Convection occurs either
(1) Large temperature gradient for
(2) small adiabatic temperature gradient

$$
\begin{aligned}
& d Q=c_{v} d T+P d(1 / \rho)=c_{v} d T-\frac{P}{\rho} d \rho=0 \\
& \therefore \quad c_{v} d T=\frac{P}{\rho^{2}} d \rho \\
& \operatorname{cr} \frac{d T}{T}=\frac{P}{\rho^{T}} \cdot \frac{d \rho}{\rho} \\
& c_{r} \frac{d T}{T}=\left(e_{p}-e_{v}\right)\left(\frac{d P}{p}-\frac{d T}{T}\right) \\
& \Rightarrow \quad c_{P} \frac{d T}{T}=\left(c_{p}-c_{v}\right) \frac{d P}{P} \\
& \underbrace{\nabla_{a d}}_{a \alpha}\left(\frac{d \ln T}{d \ln P}\right)_{a d}=\left(\frac{d T / T}{d P / P}\right)_{a d}^{n=d \cdot e .1}=1-\frac{c_{v}}{c_{p}}=1-\frac{1}{\mu} \\
& \text { 8.g., for monatomic gases, } \delta=5 / 3 \quad \nabla_{\text {ad }}=0.4 \\
& \text { In practice, if } \gamma=5 / 3 \text {, the } \\
& \text { condition for convective } \\
& \text { stability (no convective) is } \\
& \left(\frac{d \log T}{d \log P}\right)<0.4
\end{aligned}
$$

Ionization satisfies both conditions because
(1) Opacity \uparrow
(2) e^{-}receive energy \rightarrow d.o.f. \uparrow, so $\gamma \downarrow \rightarrow \nabla_{\text {ad }} \downarrow$
\rightarrow Development of hydrogen convective zones

Similarly, there are $1^{\text {st }}$ and $2^{\text {nd }}$ helium convective zones.

For a very low-mass star, ionization of H and He leads to a fully convective star $\rightarrow \mathrm{H}$ completely burns off.

For a sun-like star, ionization of H and He , and also the large opacity of H^{-}ions \rightarrow a convective envelope (outer 30% radius).

For a massive star, the core produces fierce amount of energy \rightarrow convective core
\rightarrow a large fraction of material to take part in the thermonuclear reactions

A binary system at 5.74 pc . Gliese 752A (=Wolf 1055) is an M2.5 red dwarf (mass ~ 0.46 solar, $\mathrm{m}_{\mathrm{V}} \sim 9.13$), whereas Gliese 752B (VB 10) is an M8V (mass ~ 0.075 solar, $\mathrm{m}_{\mathrm{V}} \sim 17.30$).

Energy Transport

By radiation

$$
\begin{array}{ll}
\frac{d T}{d r}=\frac{-3}{4 a c} \frac{k \rho}{T^{3}} \frac{L r}{4 \pi r^{2}} \quad & \begin{array}{l}
\text { Kr: luminosity } \\
\end{array} \\
& \left.\begin{array}{l}
\text { electron scattering, } \\
\text { b-f,f-f, } H^{\circ}
\end{array}\right)
\end{array}
$$

Note For radiative transport

$$
\nabla_{\mathrm{rad}} \equiv\left(\frac{d \ln T}{d \ln P}\right)_{\mathrm{rad}}=\frac{3 k}{16 \pi a c} \frac{P}{T^{4}}\left(\frac{L}{G M_{r}}\right)
$$

```
    If temperature gradient is too longe, then
By convection (unstable to convection;
                                    convective instability)
            criterion \(\nabla>\nabla_{a d}\)
            \(\nabla \equiv \frac{d \ln T}{d \ln P} \quad \nabla_{a d} \equiv\left(\frac{d \ln T}{d \ln P}\right)_{a d}=\frac{\gamma-1}{\gamma}\)
                        r': adiabatic index
    In case or convection hydrostatic
        \(\nabla \equiv \frac{d \ln T}{d \ln P}=\frac{P}{T} \frac{d T / d r}{d P / d r} \stackrel{\downarrow^{\text {equip }}}{=}-\frac{r^{2}}{G M_{r}}\left(\frac{P}{\rho T}\right) \frac{d T}{d r} \simeq \nabla_{\text {ad }}\)
\(\therefore \frac{d T}{d r}=-\nabla_{a d} \frac{G M_{r}}{r^{2}} \frac{\rho T}{P}=-\frac{\gamma-1}{\gamma} \frac{G M_{r}}{r^{2}} \frac{\rho^{T}}{P}\)
```


Hayashi Track

A convection evolutionary track for low-mass pre-main sequence stars

When a protostar reaches hydrostatic equilibrium, there is a minimum effective temperature ($\sim 4000 \mathrm{~K}$) cooler than which (the Hayashi boundary) a stable configuration is not possible (Chushiro Hayashi 1961).

A protostar

- contracts on the Kevin-Helmholtz timescale
\rightarrow is cool and highly opaque \rightarrow fully convective
\rightarrow homogenizes the composition
A star $<0.5 \mathrm{M}_{\odot}$ remains on the Hayashi track throughout the entire PMS phase.

Convection occurs when $\nabla_{\text {rad }}>\nabla_{\text {ad }}$
That is, when $\nabla_{\text {rad }}$ is large, or when ∇_{ad} is small.

$$
\begin{aligned}
& \text { Recall } \nabla_{\text {rad }}=\frac{d T}{d r}=\frac{L_{r}}{r^{2}} \frac{\kappa \rho}{\sigma T^{3}} \\
& \nabla_{\text {ad }}=1-\frac{1}{\gamma} \text { where } \gamma=c_{p} / c_{v} \\
& \rightarrow \nabla_{\text {ad }} \text { small }=c_{v} \text { large } \rightarrow \text { H }_{2} \text { dissociation } \\
& \text { H ionization, } \mathrm{T} \sim 6,000 \mathrm{~K} \\
& \text { He ionization, } \mathrm{T} \sim 20,000 \mathrm{~K} \\
& \text { He II ionization, } \mathrm{T} \sim 50,000 \mathrm{~K}
\end{aligned}
$$

Astron. \& Astrophys. 40, 397-399 (1975)
On the Luminosity of Spherical Protostars
I. Appenzeller ${ }^{\star}$
Universiäts-Sternwarte Göttingen
W. Tscharnuter
Universitäts-Sternwarte Göttingen and Max-Planck-Institut für Physik und Astrophysik München

Summary. Hydrodynamic model computations have been carried out for a spherically symmetric $1 M_{\odot}$ protostar. Compared to similar computations by Larson (1969) we used a different treatment of the accretion shock front. Our computations basically confirm Larsons results and show that Larson's disputed shock jump conditions have little influence on the protostellar models.

Key words: star formation - protostars - YY Orionis stars

Fig. 1. Evolutionary path of a $1 M_{\odot}$ protostar in an infrared HR diagram (solid line). The numbers indicate the time (in years) since the formation of the (final) hydrostatic core. For comparison, the evolutionary path of a conventional fully hydrostatic $1 M_{\odot}$ pre-main sequence star is also included (broken line)

Fig. 2. Temperature distribution in the hydrostatic core of a $1 M_{\odot}$ protostellar model after 95% of the total mass has accumulated in the core

The Evolution of a Massive Protostar

I. Appenzeller and W. Tscharnuter

Universitäts-Sternwarte Göttingen
Astron. \& Astrophys. 30, 423-430 (1974)
Summary. The hydrodynamic evolution of a massive protostar has been calculated starting from a homogeneous gas and dust cloud of $60 M_{\odot}$ and an initial density of $10^{-19} \mathrm{~g} \mathrm{~cm}^{-3}$. Initially the collapsing gas cloud evolved similar to protostar models of lower mass. About 3.6×10^{5} years after the beginning of the collapse a small hydrostatic core was formed. About 2×10^{4} years later hydrogen burning started in the center of the hydrostatic core. After another 2.5×10^{4} years the collapse of the envelope was stopped and reversed by the heat flow from the interior and the entire envelope was blown off, leaving behind an almost normal mainsequence star of about $17 M_{\odot}$. During most of the core's evolution the central region of the protostar would have looked like a cool but luminous infrared point source to an outside observer.

Read this paper!

Fig. 5. The variation of the internal structure of the evolving hydrostatic core. The abscissa gives the time since the formation of the (final) hydrostatic core. ($t=0$ corresponds to an age of the protostar of 361473 years.) "Cloudy" regions represent convection. Crosshatched regions represent nuclear energy generation at a rate exceeding $10^{3} \mathrm{ergg}^{-1} \mathrm{~s}^{-1}$. The approximate extent of the hydrostatic core is indicated by the line $\varrho=0.01 \mathrm{~g} \mathrm{~cm}^{-1}$

Fig. 6. Approximate evolutionary path of the optically thick central region of the $60 M_{\odot}$ protostar in an infrared HR diagram. The numbers indicate the time t since the formation of the final hydrostatic core (c.f. Fig. 5). For comparison we also included the position of the zero-age main-sequence (ZAMS). The broken line gives the approximate lower limit of the effective temperature of hydrostatic configurations (Hayashi et al., 1962)

Pre-Main Sequence Evolutionary Tracks

Theoretical evolutionary tracks

Fig. 6.6. Evolutionary paths in the HR-diagram for stellar masses ranging from 0.5 to $15 M_{\odot}$ (solid tracks, adapted from Iben [420]). These paths are marked by
thin hatched lines marking time periods labeled 1 to 5 . The thick hatched line to the left approximately indicates the location of the ZAMS. The line across the tracks is the stellar birthline approximated from [76] for an accretion rate of $\dot{M}_{\text {ace }}=$ $10^{-5} M_{\odot}$ yr $^{-1}$

1965ApJ...141.. 993

STELLAR EVOLUTION. I. THE APPROACH TO THE MAIN SEQUENCE*
Icko Iben, Jr.
California Institute of Technology, Pasadena, California Received August 18, 1964; revised November 23, 1964

ABSTRACT
The manner in which nuclear reactions replace gravitational contraction as the major source of stellar luminosity is investigated for model stars of population I composition in the mass range $0.5<M / M \odot<$ 150 . By following in detail the depletion of C^{12} from high initial values down to values corresponding to equilibrium with N^{14} in the $\mathrm{C}-\mathrm{N}$ cycle, the approach to the main sequence in the Hertzsprung-Russell
diagram and the time to reach the main sequence, for stars with $M \geq 1.25 M \odot$, are found to differ sigdiagram and the time to reach the main
nificantly from data reported previously.
 Fic. $17,-$ Paths in the Hertzssprung-Russell diagram for models of mass $(M / M \odot)=0.5,1.0,1.25$,
1.5, 2.25, 30, 5.0, 9.0 , and 15.0 . Units of luminosity and surface temperature are the same as those in
Fig.

Effects of chemical abundances and "metals" in determination of stellar structure

Metal poorer \rightarrow hotter

Exercise

A useful site to download theoretical evolutionary tracks (the "Padova tracks") is the CMD/PARSEC isochrones
http://stev.oapd.inaf.it/cgi-bin/cmd

As homework

1. Plot V versus $(B-V)$ for an ensemble of stars (i.e., a star cluster) of ages 1 Myrs, $10 \mathrm{Myr}, 100 \mathrm{Myr}$, and 1 Gyr.
2. Compare the V versus ($B-V$) CMDs of two 100 Myr old star clusters, one with $\mathrm{Z}=0.01$ and the other with $\mathrm{Z}=0.0001$ (extremely metal poor).

Thermonuclear Reactions

- Eddington in 1920s hypothesized that fusion reactions between light elements were the energy source of the stars.
- Stellar evolution $=(c o n)$ sequence of nuclear reactions
- $E_{\text {kinetic }} \approx k T_{c} \approx 8.62 \times 10^{-8} T \sim \mathrm{keV}$,
but $E_{\text {Coulomb barrier }}=\frac{Z_{1} Z_{2} e^{2}}{r}=\frac{1.44 Z_{1} Z_{2}}{r[\mathrm{fm}]} \sim \mathrm{MeV}, 3$ orders
higher than the kinetic energy of the particles.
- Tunneling effect in QM proposed by Gamow (1928, Z. Physik, 52, 510); applied to energy source in stars by Atkinson
\& Houtermans (1929, Z. Physik, 54, 656)

George Gamow (1904-1968)

Russian-born physicist, stellar and big bang nucleosynthesis, CMB, DNA, Mr. Thompkins series

1929 U Copenhagen

1960s U Colorado

Figure 4.2 Schematic representation of the Coulomb barrier - the repulsive potential encountered by a nucleus in motion relative to another - and the short-range negative potential well that is due to the nuclear force. The height of the barrier and the depth of the well depend on the nuclear charge (atomic number).

Quantum mechanics tunneling effect

Figure 3.4 Illustration of the potential seen by particle b when approaching particle A with a kinetic energy $E_{\text {kin }}$, and the corresponding wavefunction Ψ; classically, particle b would reach only a distance r_{1} from particle A before being repelled by the Coulomb force

Cross section for nuclear reactions (penetrating probability) $\propto e^{-\pi Z_{1} Z_{2} e^{2} / \varepsilon_{0} h \nu}$
 This \nearrow as $v \nearrow$

Velocity probability distribution (Maxwellian)
 $\propto e^{-m v^{2} / 2 k T}$
 This ゝasv \nearrow

\therefore Product of these 2 factors \rightarrow Gamow peak

D. Clayton "Principles of Stellar Evolutions
 and Nucleosynthesis"

Fig. 4-6 The dominant energy-dependent factors in thermonuclear reactions. Most of the reactions occur in the high-energy tail of the max wellian energy distribution, which introduces the rapidly falling factor $\exp (-E / k T)$. Penetration through the coulomb barrier introduces the exp $(-E / k T)$ exp $\left(-b E^{-1}\right)$, which vanishes strongly at low energy. Their factor $\exp \left(-b E^{-1}\right)$, which vanishes strongly at low energy. Their product is a fairly sharp peak near an energy designated by E_{0}, which is
generally much larger than $k T$. The peak is pushed out to this energy by generally much larger than $k T$. The peak is pushed out to this energy by the penetration factor, and it is therefore commonly called the Gamow
peak in honor of the physicist who first studied the penetration through the coulomb barrier.

Fig. 4-7 The Gamow peak for the reaction $\mathrm{C}^{12}(p, \gamma) \mathrm{N}^{13}$ at $T=30 \times 10^{6}{ }^{\circ} \mathrm{K}$. The curve is actually somewhat asymmetric about E_{0}, but it is nonetheless adequately approximated by a gaussian.

Resonance \rightarrow very sharp peak in the reaction rate
\rightarrow 'ignition' of a nuclear reaction
So there exists a narrow range of temperature in which the reaction rate $\uparrow \uparrow$

Resonance reactions Energy of interacting particles \approx Energy level of compound nucleus \rightarrow a power law
\rightarrow an ignition (threshold) temperature
For a thermonuclear reaction or a nucleosynthesis (fusion) process, the reaction rate is expressed as
q [energy released per mass] $\propto \rho^{m} T^{n}$

Collision

A two-body encounter,
[\# of collisions] = [total \# of particles in the (moving) volume], so $N=n(\sigma v t)$
\checkmark \# of collisions per unit time $={ }^{N} / t=n \sigma v$
\checkmark Time between 2 consecutive collisions, mean free time ($N=1$), $t_{\text {col }}=1 / n \sigma v$
\checkmark Mean free path $\ell=v t_{\text {col }}=1 / n \sigma$

Nuclear reaction rate

$\checkmark r_{12} \propto n_{1} n_{2}\langle\sigma v\rangle \propto n_{1} n_{2} \exp \left[-C\left(\frac{z_{1}^{2} z_{2}^{2}}{T_{6}}\right)^{1 / 3}\right]\left[\mathrm{cm}^{-3} \mathrm{~s}^{-1}\right]$
\checkmark As T $\nearrow, r_{12} \nearrow \nearrow$
\checkmark Major reactions are those with smallest $Z_{1} Z_{2}$
$\checkmark n_{i}$ is the particle volume number density, $n_{i} m_{i}=\rho X_{i}$, where X_{i} is the mass fraction
$\checkmark q_{12} \propto Q \rho X_{1} X_{2} / m_{1} m_{2}\left[\operatorname{erg~g}^{-1} \mathrm{~s}^{-1}\right]$

> Planets - form in cireumstellas disks by aggregation of ever larger dust grains (and gas)

Brown dwarfs - form like stars but evolve like planets

In terms of nuclear reactions

- Stars, $M>0.08 M_{0}$, core H burning

$$
\text { flat } L(t)
$$

- $B D_{s}, M>0.01 M_{0}$, short D burning for $t=10^{6}-10^{8} y_{r}$ ${ }^{1}$ also for low-mass PMS Stars
- Planets, no nuclear burning ever

$$
L(t) \& \text { continuous /y }
$$

7.-Evolution of the luminosity (in L_{0}) of solar-metallicity M dwarfs and substellar objects vs time (in yr) after formation. The stars, "brown dwarfs" and "planets s are e shown as solid, dashed, and dot-dashect curves, respectively. In this figure, we arbitrarily designate as "brown dwarf " those
objects that burn deuterium, while we designate those that do not as "planets." The mass (in $M \circ$) label most of the curves, with the lowest three corresponding to the mass of Saturn, half the mass of Jupiter, and the mass of Jupiter.
$\left.\begin{array}{|c|l|}\hline \text { Stars } & \mathcal{M} / \mathrm{M}_{\odot}>0.08 \text {, core } \mathrm{H} \text { fusion } \\ & \text { Spectral types } 0, \mathrm{~B}, \mathrm{~A}, \mathrm{~F}, \mathrm{G}, \mathrm{K}, \mathrm{M}\end{array}\right]$

The Astrophysical Journal, Vol. 158, November 1969
(C) 1969 The University of Chicago. All rights reserved Printed in U.S.A.

THE MASS-RADIUS RELATION FOR COLD SPHERES OF LOW MASS*

H. S. Zapolsky

University of Maryland, College Park, and Center for Theoretical Physics
AND
E. E. Salpeter

Laboratory of Nuclear Studies, Physics Department, and Center for Radiophysics and Space Research, Cornell University, Ithaca, New York

Received 1960 March 14

ABSTRACT

The relationship between mass and radius for zero-temperature spheres is determined for each of a number of chemical elements by using a previously derived equation of state and numerical integration. The maximum radius of a cold sphere is thus found as a function of chemical composition, and a semiempirical formula for the mass-radius curve is derived.

Fig. 1.-Mass-radius plot for homogeneous spheres of various chemical compositions. The points J, S, U, N are the observed values for the Jovian planets.

Brown dwarfs and very lowmass stars ... partial $P_{\text {deg }}^{e-}$

White dwarfs
\approx completely degenerate, $\mathrm{R} \downarrow$ as M フ

Terrestrial planets

$\mathrm{R} \nearrow$ as $\mathrm{M} \nearrow \leftarrow$ complicated EoSs

Figure 12.4 Mass-radius relation for low-mass objects (following H. S. Zapolsky \& E. E. Salpeter, Astrophys. J. 158). Different curves correspond to different compositions, as indicated. The locations of several planets - Earth, Jupiter, Saturn, Uranus and Neptune are marked by the planets' symbols. Also marked are the locations of two white dwarfs, Sirius B (§) and 40 Eridani B (ϵ) (data from D. Koester (1987), Astrophys. J., 322).

Mass-radius relation max @ $M_{\text {Jupiter }} \approx$
$(1 / 1000) M_{\odot}$

Deuterium Burning
 $$
M_{\odot} c^{2}=2 \times 10^{54} \mathrm{ergs}
$$
 $$
1 \mathrm{amu}=931 \mathrm{Mev} / \mathrm{c}^{2}
$$

$$
{ }^{2} \mathrm{H}+{ }^{1} \mathrm{H} \longrightarrow{ }^{3} \mathrm{He}+\gamma \quad\left(T>10^{6} \mathrm{~K}\right)
$$

$$
{ }^{2} H\left(1 H, r^{2}\right)^{3} H e
$$

$$
Q_{D P}=5.5 \mathrm{MeV}
$$

$$
q_{D P}=4.19 \times 10^{7}[\mathrm{D} / \mathrm{H}]\left(\frac{\rho}{1 g_{\mathrm{mm}^{-3}}}\right)\left(\frac{T}{10^{6} \mathrm{~K}}\right)^{11.8}\left[\operatorname{logg} g^{-1} \mathrm{~s}^{-1}\right.
$$

$$
\text { ISM value, }\langle D / H\rangle \sim 2 \times 10^{-5}
$$

$n+p \rightarrow D+\gamma$ (production of D$)$

The lower the mass density, the more the D abundant $\rightarrow D$ as a sensitive tracer of the density of the early Universe

Before the Big Bang nucleosynthesis, there were plenty of neutrons, but much less abundant than protons, so all neutrons go into making ${ }^{4} \mathrm{He}$
$\rightarrow{ }^{4} \mathrm{He} \approx \frac{n / 2}{(n+p) / 4}=\frac{2 n}{n+p}$
Current value $n / p \approx 0.12$, so ${ }^{4} \mathrm{He} \approx 2 / 9$, as observed today.

D/H

- 156 ppm ... Terrestrial seawater $\left(1.56 \times 10^{-4}\right)$
- 22~26 ppm ... Jupiter
- 17 ppm ... Saturn
- $55 \mathrm{ppm} . .$. Uranus
- 200 ppm ... Halley's Comet

Recall a star's central temperature

$$
T_{c} \sim \frac{\mu G M}{R} \cdot \alpha^{\prime} \text { mass distr. }
$$

Numerically

$$
\begin{aligned}
T_{c} & =7.5 \times 10^{6} \mathrm{~K}\left(\frac{M_{*}}{M_{\theta}}\right)\left(\frac{R_{*}}{R_{\theta}}\right)^{-1} \\
\therefore \quad M_{*} & =0.4 M_{0} \longrightarrow T_{c} \sim 10^{6} \mathrm{~K}
\end{aligned}
$$

Fig. 5-1 The path on the H-R diagram of the contraction of the sun to the main sequence. The interior has become sufficiently hot to burn deuterium after about 10^{5} years. The contraction ceases near the main sequence when the core has become hot enough to replenish the solar luminosity with the thermonuclear power generated by the fusion of hydrogen into helium. [After D. Ezer and A. G. W. Cameron, The Contraction Phase of Stellar Evolution, in R. F. Stein and A. G. W. Cameron (eds.), "Stellar Evolution," Plenum Press, New York, 1966.]

The Astrophysical Journal, 274:822-829, 1983 November 15

THE BIRTHLINE FOR LOW-MASS STARS
Steven W. Stahler
Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts
nithsonian Center for Astrophysics, Cambridge. M
Received I983 January 19; accopted I983 May 4

ABSTRACT

Using the results of protostar theory, I find the locus in the Hertzsprung-Russell diagram where pre-main-sequence stars of subsolar mass should begin their quasi-static contraction phase and first appear as visible objects. This "birthline" is in striking agreement with observations of T Tauri stars, providing a strong confirmation of the fact that these stars are indeed contracting along Hayashi tracks. The assumption that most T Taun stars first appear along this line forces a recalibration of their ages. This recalibration removes the puzzling dip in present-day star formation seen in age histograms of several cloud complexes. Since the underlying protostar calculation assumes that the parent cloud was only thermally supported prior to its collapse, the observed location of the birthline places severe restrictions on the degree of extrathermal support provided by rotation, magnetic fields,
or turbulence. In addition, the hypothesis that the collapse from thermally supported clouds to or turb-mass stars proceeds through protostellar disks appears untenable, since the disk accretion process almost certainly produces pre-main-sequence stars with radii well below the observed birthline.

Protostars are heavily embedded in clouds, so obscured, with no definition of $T_{\text {eff }}$
Birthline=beginning of PMS; star becomes optically visible \approx deuterium main sequence

Stahler (1983, 1988),
Palla \& Stahler (1990)

... compared with observations

Figure 4 Hertzsprung-Russell diagrams from Cohen \& Kuhi (1979) showing theoretical pre-main-sequence contraction tracks and T Tauri stars in the Taurus-Auriga and Orion cloud complexes. The heavy solid curve is the theoretical "birthline" of Stahler (1983).

```
Lithium Burning
\({ }^{7} \mathrm{Li}+{ }^{1} \mathrm{H} \rightarrow 4 \mathrm{He}+{ }^{4} \mathrm{He}\left(\underline{T>3 \times 10^{6} \mathrm{k}}\right)\)
    ISM \([\mathrm{Li} / \mathrm{H}] \sim 2 \times 10^{-9}\)
                                    Primordial abundance \(10 \times\) lower,
                                    produced by cosmic rays a hitting 4 He
            (inverse reaction)
Li measurable in stellar spectra
    LiI 6708\& absorption
    (actually doublet 6707.78 and 6707.93
    but difficult to resolve
```


Figure 16.9 Lithium absorption in a pre-main-sequence star. Shown is a portion of the optical spectrum of BP Tau, a T Tauri star of spectral type K7, corresponding to an effective temperature of 4000 K . Also shown, for comparison, is a main-sequence star of the same spectral type, 61 Cyg B. Only in the first star do we see the Li I absorption line at $6708 \AA$. Both objects also have a strong line due to neutral calcium.

$\mathrm{M}>1.2 \mathrm{M}$ _sun \rightarrow shallow convection \rightarrow surface Li does not deplete during contraction

For protostars with $T_{c} \geq 3 \times 10^{6} \mathrm{~K}$, the central lithium is readily destroyed.

Stars $\geq 0.9 M_{\odot}$ become radiative at the core, so Li not fully depleted.

Li abundance \rightarrow age clock

Figure 16.10 Theoretical predietion of pre-main-sequence lithium depletion. Within the white area between the birthline and the ZAMS, the surface [L/H] is equal to its interstellar value of 2×10^{-8}. Sars in the lighlly shaded region have depleted the element down to 0.1 times the interstellar value. The darker shading indicates depletion by at least this amount. Note also the masses on the ZAMS, in solar units, and the indicated isochrone.

Older \rightarrow depletion at higher $\mathrm{T}_{\text {eff }}$

$$
\left[L_{i} / H\right] \downarrow \text { as } T_{\text {eff }} \downarrow
$$

$$
\begin{aligned}
& \text { A hydrogen gas - proton-proton chains } \\
& 4 \mathrm{H} \rightarrow 4 \mathrm{He} \text { unlikely } \Rightarrow \text { a chain of } \\
& \text { reactions } \\
& \text { baryon \#\#, lepton it, charges all conserved } \\
& P^{+}+P^{+} \rightarrow 2 D^{+}+e^{+}+\nu\left\langle 1.4 \times 10^{1 c} \text { 人 } \quad 0.420 \mathrm{MeV}\right. \text { to the positron and }
\end{aligned}
$$

but the nucleus of
deuterium, a deuteron,
consists of a proton
and a neutron!
$\checkmark p+p \rightarrow{ }^{2} \mathrm{He}$ (unstable) $\rightarrow p+p$
\checkmark Hans Bethe (1939) realized that the weak interaction was capable of converting a proton to a neutron (!) first
\checkmark Weak interaction \rightarrow very small cross section

\checkmark The neutron is more massive, so this requires energy, i.e., it is an endothermic process, but neutron + proton
\rightarrow deuteron (releasing binding energy, so exothermic)

$\begin{array}{\|c} \hline \mathbf{H} \\ \hline \end{array}$																			
$\begin{array}{\|c} \hline \mathbf{L i} \\ \mathrm{c} \end{array}$	$\underset{c}{\text { Be }}$			Cosmic rays			Small stars			Manmade		B	C	N_{S}	S	F			
$\overline{\mathrm{Na}}$	$\mathbf{M g}$					Al			Si			P	S	Cl					
\mathbf{K}	${ }_{\text {Ca }}$	Sc	$\begin{aligned} & \mathrm{Ti} \\ & \$ \mathrm{i} \end{aligned}$	$\left.\right\|_{s L} ^{V}$	$\mathbf{C r}$		Mn	$\mathrm{Fe}_{\mathrm{se}}$		Co	$\underset{\mathrm{si}}{\mathrm{Ni}}$	Cu	$\mathbf{Z n}$	Ga	Ce_{5}	As	Se	Br	
$\mathbf{R b}$	Sr	Y	Zr	Nb	$\mathrm{Mo}_{\substack{\text { L } \\ \text { L }}}$	Tc	R_{5}	${ }_{\text {Rh }}$	$\underset{\$}{\text { Pd }}$	${ }_{\text {Ag }}$	$\mathbf{C d}$	In	Sn	Sb	${ }_{\text {Te }}$	I			
Cs	Ba		$\mathrm{Hf}_{\substack{\text { L }}}$	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At			
Fr																			
			La	Ce		Nd			Eu	Gd		Dy	Ho	Er	Tm	Yo			
				,	\$	\$ 2	\$ 2	\$	${ }_{5}$		¢	${ }_{5}$				\$			
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No			

The proton-proton chain

```
\({ }^{1} \mathrm{H}+{ }^{1} \mathrm{H} \rightarrow{ }^{2} \mathrm{D}+\mathrm{e}^{+}+\nu_{e} \quad\left(1.44 \mathrm{MeV}, 1.4 \times 10^{10} \mathrm{yr}\right) \quad\) pp I important when
\({ }^{2} \mathrm{D}+{ }^{1} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\gamma \quad(5.49 \mathrm{MeV}, 6 \mathrm{~s})\)
pp I chain
\({ }^{3} \mathrm{He}+{ }^{3} \mathrm{He} \rightarrow{ }^{4} \mathrm{He}+{ }^{1} \mathrm{H}+{ }^{1} \mathrm{H} \quad\left(12.85 \mathrm{MeV}, 10^{6} \mathrm{yr}\right)\)
    Note: net \(6{ }^{1} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+2{ }^{1} \mathrm{H}\)
        \(T_{\mathrm{c}}>5 \times 10^{6} \mathrm{~K}\)
    \(Q_{\text {total }}=1.44 \times 2+5.49 \times 2\)
        \(+12.85=27.7 \mathrm{MeV}\)
    \(Q_{\text {net }}=27.7-0.26 \times 2=26.2 \mathrm{MeV}\)
```

pp II chain
${ }^{3} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{7} \mathrm{Be}+\gamma$
${ }^{7} \mathrm{Be}+\mathrm{e}^{-} \rightarrow{ }^{7} \mathrm{Li}+\nu_{e}$
${ }^{7} \mathrm{Li}+{ }^{1} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$
pp III chain
The baryon number, lepton number, and
charges are all conserved.
${ }^{3} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{7} \mathrm{Be}+\gamma$
${ }^{7} \mathrm{Be}+{ }^{1} \mathrm{H} \rightarrow{ }^{8} \mathrm{~B}+\gamma$
${ }^{8} \mathrm{~B}+\rightarrow{ }^{8} \mathrm{Be}+\mathrm{e}^{+}+\nu_{e}$
${ }^{8} \mathrm{Be} \rightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}$
All 3 branches operate simultaneously.
pp I is responsible for $>90 \%$ stellar luminosity

Exercise

Assuming that the solar luminosity if provided by $4{ }^{1} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}$, liberating 26.73 MeV , and that the neutrinos carry off about 2% of the total energy. Estimate how many neutrinos are produced each second from the sun? What is the solar neutrino flux at the earth? (How many neutrinos pass through your body per second?)

Solution

2% is carried away by neutrinos, so the actual energy produced for radiation

$$
E=(0.98 \times 26.731 \mathrm{MeV}) \times 1.6 \times 10^{-12} \mathrm{erg} / \mathrm{eV}
$$

Each alpha particle produced $\rightarrow 2$ neutrinos, so with $L_{\odot}=3.846 \times 10^{33} \mathrm{ergs} / \mathrm{s}$, the neutrino production rate is $2 \times 10^{38} \mathrm{v} / \mathrm{s}$, and the flux at earth is $2 \times 10^{38} / 4 \pi(1 \mathrm{AU})^{2} \approx 6.6 \times 10^{10} v \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

The thermonuclear reaction rate,

$$
\begin{aligned}
r_{p p}= & 3.09 \times 10^{-37} n_{p}^{2} T_{6}^{-2 / 3} \exp \left(-33.81 T_{6}^{-1 / 3}\right) \\
& \left(1+0.0123 T_{6}^{1 / 3}+0.0109 T_{6}^{2 / 3}+0.0009 T_{6}\right)\left[\mathrm{cm}^{-3} \mathrm{~s}^{-1}\right]
\end{aligned}
$$

where the factor $3.09 \times 10^{-37} n_{p}^{2}=11.05 \times 10^{10} \rho^{2} X_{H}^{2}$

$$
\begin{aligned}
q_{p p}= & 2.38 \times 10^{6} \rho X_{H}^{2} T_{6}^{-2 / 3} \exp \left(-33.81 T_{6}^{-1 / 3}\right) \\
& \left(1+0.0123 T_{6}^{1 / 3}+0.0109 T_{6}^{2 / 3}+0.0009 T_{6}\right)\left[\operatorname{erg~g}^{-1} \mathrm{~s}^{-1}\right]
\end{aligned}
$$

```
\(P P I\) vs \(P P I I\)
ie., \({ }^{3} \mathrm{He}\) to react with \({ }^{3} \mathrm{He}\) lower temp.
    or with \(4 \mathrm{He} T>1.4 \times 10^{7} \mathrm{~K}\)
Relative importame of each chain
        i, e, branching ratio \(\longleftrightarrow T, \rho, \mu\)
\(T>3 \times 10^{7} \mathrm{~K}\), PPIII dominates
    out in reality, at this temperature. CNO reactions
                                    take over.
Overall rate of energy generation io determined by
    the slowest reaction, i, e, the \(1^{s t}\) one, \(\uparrow \sim 10^{10} \mathrm{y} r\)
        \(q_{p P} \sim \rho^{\prime} T^{n}, \quad n \sim 4-6\)
\(Q_{P P} \sim 26.73 \mathrm{MaV} \approx 6.54 \mathrm{MeV}\) per proton
\(n \sim 6\) for \(\mathrm{T} \approx 5 \times 10^{6} \mathrm{~K}\)
\(n \sim 3.8\) for \(\mathrm{T} \approx 15 \times 10^{6} \mathrm{~K}(\) Sun \()\)
\(n \sim 3.5\) for \(\mathrm{T} \approx 20 \times 10^{6} \mathrm{~K}\)
```

Among all fusion processes, the p-p chain has the lower temperature threshold, and the weakest temperature dependence.
$Q_{p p}=\left(M_{4 H}-M_{H e}\right) c^{2}$
$=26.73 \mathrm{MeV}$
But some energy (up to a few MeV) is carried away by neutrinos.

CNO cyele C．N．O as catalysts

（bi－cycle）

$$
\begin{aligned}
& { }^{12} \mathrm{C}+{ }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{~N}+\gamma^{10^{6}} \mathrm{y} \quad{ }^{14} \mathrm{~N}+{ }^{1} \mathrm{H} \rightarrow{ }^{15} \mathrm{O}+\gamma \\
& { }^{13} \mathrm{~N} \rightarrow{ }^{13} \mathrm{C}+e^{+}+v 14 \text { min }{ }^{15} \mathrm{O} \rightarrow{ }^{15} \mathrm{~N}+e^{+}+v \\
& { }^{13} \mathrm{C}+{ }^{1} \mathrm{H} \rightarrow{ }^{14} \mathrm{~N}+\gamma_{3 \times 1} 0^{5} y{ }^{15} \mathrm{~N}+{ }^{1} \mathrm{H} \rightarrow{ }^{16} \mathrm{O}+\gamma \leftarrow
\end{aligned}
$$

$$
\begin{aligned}
& { }^{15} \mathrm{O} \rightarrow{ }^{15} \mathrm{~N}+e^{+}+v 82 \mathrm{~s}{ }^{17} \mathrm{~F} \rightarrow{ }^{17} \mathrm{O}+e^{+}+\nu \\
& \rightarrow{ }^{15} \mathrm{~N}+{ }^{1} \mathrm{H} \rightarrow{ }^{12} \mathrm{C}+{ }^{4} \mathrm{He}^{10}{ }^{4} \mathrm{y} \text { 铞 } \mathrm{O}+{ }^{1} \mathrm{H} \rightarrow{ }^{14} \mathrm{~N}+{ }^{4} \mathrm{He}
\end{aligned}
$$

CN cycle more significant
NO cycle efficient only when $T>20 \times 10^{6} \mathrm{~K}$

Recognized by Bethe and independently by von Weizsäcker

CN cycle＋NO cycle Cycle can start from any reaction as long as the involved isotope is present．
$Q_{\text {CNO }} \sim 25 \mathrm{MeV}$ after that carried away by the neutrinos
$8_{C N O} \sim \rho T^{16}$

序号r	反应式	Q（MeV）	（q．），（MeV）	速率 $\left.N_{A}<\sigma 0\right\rangle$ （ $\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ ）
1	${ }^{1} \mathrm{H}\left(\mathrm{p}, \mathrm{e}^{+} \nu\right)^{2} \mathrm{H}$	1． 442	0． 265	1． 26×10^{-20}
2	${ }^{2} \mathrm{H}(\mathrm{p}, \gamma)^{3} \mathrm{He}$	5.494		1.85×10^{-3}
3	${ }^{3} \mathrm{He}\left({ }^{3} \mathrm{He}, 2 \mathrm{p}\right)^{4} \mathrm{He}$	12.860		2． 29×10^{-11}
4	${ }^{3} \mathrm{He}(\alpha, \gamma){ }^{\prime} \mathrm{Be}$	1． 588		1.67×10^{-18}
5	${ }^{7} \mathrm{Be}\left(\mathrm{e}^{-}, \nu\right)^{7} \mathrm{Li}$	0.862	0． 862	－4． $59 \times 10^{6} \mathrm{~s}$
6	${ }^{7} \mathrm{Li}(\mathrm{p}, \gamma)^{8} \mathrm{Be}(\alpha){ }^{4} \mathrm{He}$	17．346		3． 21×10^{-11}
7	${ }^{\prime} \mathrm{Be}(\mathrm{p}, \gamma)^{4} \mathrm{~B}$	0． 137		1． 38×10^{-4}
8	${ }^{5} \mathrm{~B}\left(\mathrm{e}^{+} \nu\right)^{2} \mathrm{Be}(\alpha){ }^{4} \mathrm{He}$	18．072	6.710	$\cdot 0.77 \mathrm{~s}$
9	${ }^{12} \mathrm{C}(\mathrm{p}, \gamma)^{1{ }^{1} \mathrm{~N}}$	1． 944		1． 26×10^{-11}
10	${ }^{31} \mathrm{~N}\left(\mathrm{e}^{+} \nu\right)^{13} \mathrm{C}$	2． 221		－870s
11	${ }^{13} \mathrm{C}(\mathrm{p}, \gamma){ }^{4 \prime} \mathrm{~N}$	7． 551		4.59×10^{-12}
12	${ }^{4} \mathrm{~N}(\mathrm{p}, \gamma)^{3} \mathrm{O}$	7． 297		1.30×10^{-14}
13	${ }^{15} \mathrm{O}\left(\mathrm{e}^{+}\right)^{14} \mathrm{~N}$	2． 754	0． 9965	$\cdot 178$ s
14	${ }^{15} \mathrm{~N}(\mathrm{p}, \alpha)^{12} \mathrm{C}$	4． 966		3.62×10^{-10}
15	${ }^{15} \mathrm{~N}(\mathrm{p}, \gamma){ }^{14} \mathrm{O}$	12． 128		2.76×10^{-11}
16	${ }^{\text {a }} \mathrm{O}(\mathrm{p}, \gamma)^{10} \mathrm{~F}$	0.600		2.51×10^{-18}
17	${ }^{n} \mathrm{~F}\left(\mathrm{e}^{+} \nu\right)^{17} \mathrm{O}$	2． 762	0． 9994	$\cdot 95$ s
18	${ }^{12} \mathrm{O}(\mathrm{p}, \alpha)^{4} \mathrm{~N}$	1． 191		4.07×10^{-16}
19	${ }^{10} \mathrm{O}(\mathrm{p}, \gamma)^{40} \mathrm{~F}$	5． 607		3.05×10^{-18}
20	${ }^{3} \mathrm{~F}\left(\mathrm{e}^{+} \nu\right)^{18} \mathrm{O}$	1． 655	0． 3965	$\cdot{ }^{1.67}$
21	${ }^{18} \mathrm{O}(\mathrm{p}, \alpha)^{15} \mathrm{~N}$	3． 980		7． 63×10^{-13}
22	${ }^{12} \mathrm{O}(\mathrm{p}, \gamma)^{19} \mathrm{~F}$	7． 994		8． 43×10^{-16}
23	${ }^{19} \mathrm{~F}\left(\mathrm{p}, \alpha^{2}\right)^{10} \mathrm{O}$	8． 114		6.25×10^{-18}

表示 β 裹变的半周期．

互作用过程的快椇用原子半衰期表示，根擆 Fuller，et al．，1980，1982，1985；Clayton
1968）。表中的速承为典型温度下的速事， $\mathrm{p}-\mathrm{p}$ 锛的典型濞度为 $1 \times 10^{\prime} \mathrm{K}, \mathrm{CNO}$ 循环的

Fig. 10.1. Nuclear energy generation as a function of temperature (with $\rho X^{2}=100$ and $X_{\mathrm{CN}}=0.005 X$ for the proton-proton reaction and the carbon cycle, but $\rho^{2} Y^{3}=10^{8}$ for the triple-alpha process).

At the center of the Sun,

$$
q_{\mathrm{CNO}} / q_{\mathrm{pp}} \approx 0.1
$$

CNO dominates in stars
$>1.2 \mathrm{M}_{\odot}$, i.e., of a spectral
type F7 or earlier
\rightarrow large energy outflux
\rightarrow a convective core
This separates the lower and upper MS.

CN cycle takes over the PP chains near $\mathrm{T}_{6}=18$. Helium burning starts $\sim 10^{8} \mathrm{~K}$.

The Solar Standard Model (SSM)

Best structural and evolutionary model to reproduce the observational properties of the Sun

- $L_{\odot}=3.842 \times 10^{33}$ [ergs $\left./ \mathrm{s}\right]$
- $R_{\odot}=6.9599 \times 10^{10}[\mathrm{~cm}]$
- $M_{\odot}=1.9891 \times 10^{33}[\mathrm{gm}]$
- Spectroscopic observations $\rightarrow \mathrm{Z} / \mathrm{X}=0.0245$
(latest value seems to indicate $\mathrm{Z}_{\odot}=0.013$)
Neglecting rotation, magnetic fields, and mass loss ($d M / d t \sim 10^{-14} M_{\odot} / \mathrm{yr}$)

Sun Fact Sheet

http://nssdc.gsfc.nasa.gov/planetary/factsheet/sunfact.html

```
A He Gas - the triple-alpha process He-burning ignites at \(\mathrm{Tc} \sim 10^{8} \mathrm{~K}\)
\({ }^{4} \mathrm{He}+{ }^{4} \mathrm{He} \rightarrow{ }^{8} \mathrm{Be} \quad\left(-95 \mathrm{keV}\right.\), i.e., endothermic) \(\quad\) The lifetime of \({ }^{8} \mathrm{Be}\) is \(2.6 \times 10^{-16} \mathrm{~s}\) but is still
                                    longer than the mean-free time between \(\alpha\) particles at \(T_{8}\)
                                    (Edwin Salpeter, 1952)
    \({ }^{8} \mathrm{Be}+{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}+\gamma \quad(7.4 \mathrm{MeV}) \leftarrow\) bottleneck
            Note: net \(3{ }^{4} \mathrm{He} \rightarrow{ }^{12} \mathrm{C}\)
```

```
\[
5=
\]
```



```
\[
Q_{3 \infty}=\underset{\hookrightarrow 5.8 \times 10^{17} \mathrm{lerg} g^{-1} \sim 0.1 \text { of } \mathrm{He} \rightarrow \mathrm{He}^{72} \mathrm{C}}{\substack{\text { ne }}}
\]
```



```
\[
q_{z \alpha} \sim \rho^{2} T^{4 / 0} \quad \because \underset{\substack{\text { bottleneck }=2^{\text {nd }} \\ \leftrightarrow B_{B_{e}}}}{\text { reaction }}
\]
    \(q_{z \alpha} \sim \rho^{2} T^{4 / 0} \quad \because\) bettroneck \(=2^{\text {ned }}\) reaction
nucleosynthesis during helium burning
                            \(\mathrm{k} \quad \ldots\)
\[
=
\]
nucleosynthesis during helium burning
```



```
\[
C^{\prime 2}\left(\alpha, \gamma^{2}\right) O^{16} \quad Q=7,162 \mathrm{MeV}
\]
\[
O^{16}(\alpha, \gamma) N_{l}^{20}
\]
\[
\text { A succession of }(\alpha, \gamma) \text { processes }
\]
\[
\rightarrow{ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne},{ }^{24} \mathrm{Mg} \ldots \text { (the } \alpha \text {-process) }
\]
```


A carbon/ oxygen Gas

C-burning ignites when $\mathrm{Tc} \sim(0.3-1.2) \times 10^{9} \mathrm{~K}$, i.e., for stars $15-30 \mathrm{M}_{\odot}$

O-burning ignites when $\mathrm{Tc} \sim(1.5-2.6) \times 10^{9} \mathrm{~K}$, i.e., for stars $>15-30 \mathrm{M}_{\odot}$

The p and α particles produced are captured immediately (because of the low Coulomb barriers) by heavy elements
\rightarrow isotopes
0 burning \rightarrow Si

$$
\begin{aligned}
& q_{P P}=2.4 \times 10^{6} \rho X^{2} T_{6}{ }^{-2 / 3} \exp \left[-33.8 T_{6}{ }^{-1 / 3}\right] \quad\left[\operatorname{erg~g}^{-1} \mathrm{~s}^{-1}\right] \\
& q \propto \rho X_{H}^{2} T^{4} \\
& q_{C N}=8 \times 10^{27} \rho X X_{C N} T_{6}{ }^{-2 / 3} \exp \left[-152.3 T_{6}{ }^{-1 / 3}\right]\left[\operatorname{erg~g}^{-1} \mathrm{~s}^{-1}\right] \\
& q \propto \rho X_{H} X_{C N} T^{16} \quad \frac{X_{C N}}{X_{H}}=0.02 \text { ok for Pop I } \\
& \begin{aligned}
q_{3 \alpha} & =3.9 \times 10^{11} \rho^{2} X_{\alpha}{ }^{3} T_{8}{ }^{-3} \exp \left[-42.9 T_{8}\right] \quad\left[\operatorname{erg~g}^{-1} \mathrm{~s}^{-1}\right] \\
& \approx 4.4 \times 10^{-8} \rho^{2} X^{3} T_{8}{ }^{40}\left[\operatorname{erg~g}^{-1} \mathrm{~s}^{-1}\right] \quad\left(\text { if } T_{8} \approx 1\right)
\end{aligned} \\
& \approx 4.4 \times 10^{-8} \rho^{2} X_{\alpha}{ }^{3} T_{8}{ }^{40}\left[\operatorname{erg~g}^{-1} \mathrm{~s}^{-1}\right] \quad\left(\text { if } T_{8} \approx 1\right)
\end{aligned}
$$

No: Coulomb barrier becomes extremly high; another nuclear reaction takes place
EM binding force

Likewise

For example, ${ }^{16} \mathrm{O}+\alpha \leftrightarrow{ }^{20} \mathrm{Ne}+\gamma$
If $T<10^{9} \mathrm{~K} \rightarrow$
but if $T \geq 1.5 \times 10^{9} \mathrm{~K}$ (in radiation field) \leftarrow
So ${ }^{28}$ Si disintegrates at $\approx 3 \times 10^{9} \mathrm{~K}$ to lighter elements (then recaptured ...)
Until a nuclear statistical equilibrium is reached
But the equilibrium is not exact
\rightarrow pileup of the iron group nuclei ($\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}$) which can resist photodisintegration until $7 \times 10^{9} \mathrm{~K}$

Nuclear Fuel	Process	$\mathrm{T}_{\text {threshold }}$ $\left(10^{6} \mathrm{~K}\right)$	Products	Energy per nucleon (MeV)
H	$\mathrm{p}-\mathrm{p}$	~ 4	He	6.55
H	CNO	15	He	6.25
He	3α	100	C, O	0.61
C	$\mathrm{C}+\mathrm{C}$	600	$\mathrm{O}, \mathrm{Ne}, \mathrm{Na}, \mathrm{Mg}$	0.54
O	$\mathrm{O}+\mathrm{O}$	1,000	$\mathrm{Mg}, \mathrm{S}, \mathrm{P}, \mathrm{Si}$	~ 0.3
Si	Nuc. Equil.	3,000	$\mathrm{Co}, \mathrm{Fe}, \mathrm{Ni}$	<0.18

${ }^{56} \mathrm{Fe}+100 \mathrm{MeV} \rightarrow 13{ }^{4} \mathrm{He}+4 n$

If $T \uparrow \uparrow \uparrow$, even ${ }^{4} \mathrm{He} \rightarrow p^{+}+n^{0}$

So stellar interior has to be between a few T_{6} and a few T_{9}.

Lesson: Nuclear reaction that absorb energy from ambient radiation field (in stellar interior) can lead to catastrophic consequences.

Alternative Energy --- Accretion Energy

$$
\begin{aligned}
& \text { Accretion Energy } \\
& \qquad L=\frac{G M}{R} \dot{M} \\
& \text { in terms of the Scharzschild radius } R_{s}=\frac{2 G M}{c^{2}} \\
& \Rightarrow L=\underbrace{\left[\frac{R_{s}}{2 R}\right] \dot{M} c^{2}}_{\text {'efficiency; }}
\end{aligned}
$$

Accretion is highly efficient onto a compact object,

$$
\begin{aligned}
& \text { For chemical reaction typically ~ a few eV } \\
& \text { R.9., } H_{2} \text { dissociation, } E \sim 4.48 \mathrm{eV} \\
& \therefore \quad \frac{4.480 \mathrm{cv}}{2 \mathrm{mp}} \sim 10^{12} \mathrm{erg} g^{-1} \rightarrow 10^{-9} \mathrm{sff} \text {. } \\
& \text { For nuctear reactions typically } \sim \text { a few MeV } \\
& \text { R.9., } H H \rightarrow H e, E \sim 7 \mathrm{meV} \\
& \therefore \frac{7 \mathrm{MeV}}{\mathrm{mp}} \sim 10^{19} \mathrm{srg} \mathrm{~g}^{-1} \rightarrow 10^{-2} \mathrm{eff} . \\
& \text { For accretion process } \quad E \sim 10^{21} \text { ang } g^{-1} \\
& \text { Ex. a neutron star } R \sim 15 \mathrm{~km}, \frac{R_{s}}{2 R} \sim 0.1 \\
& \text { Longain "High-Energy Astophyaic" }
\end{aligned}
$$

Time Scales

Different physical processes inside a star,
e.g., nuclear reactions (changing chemical composition) are slow (longer time scales); structural adjustments ($d P / d t$) take places on relatively shorter time scales.
\checkmark Dynamical timescale
\checkmark Thermal timescale
\checkmark Nuclear timescale
\checkmark Diffusion timescale

Dynamical Timescale

hydrostatic equilibrium $\xrightarrow{\text { perturbation }}$ motion $\xrightarrow{\text { adjustment }}$ hydrostatic equilibrium

Free-fall collapse

Equation of motion $\ddot{r}=-\frac{G M_{r}}{r^{2}}-\frac{1}{\varrho} \frac{d P}{d r}$
Near the star's surface $r=R, M_{r}=M$, so $\ddot{R}=-\frac{G M}{R^{2}}-\frac{1}{\varrho} \frac{d P}{d R}$
Free-fall means pressure << gravity, so $\ddot{R} \approx-\frac{G M}{R^{2}}$
Assuming a constant acceleration $R=-(\ddot{R} / 2) \tau_{\mathrm{ff}}^{2}$, so

$$
\tau_{\mathrm{ff}}=\left(2 R^{3} / G M\right)^{1 / 2}=\frac{1}{\left(\frac{2}{3} \pi G \bar{\rho}\right)^{1 / 2}} \approx 0.04\left(\frac{\rho_{\odot}}{\bar{\rho}}\right)^{1 / 2}[\mathrm{~d}]
$$

Stellar Pulsation

The star pulsates about the equilibrium configuration
\rightarrow same as dynamical timescale

$$
\tau_{\text {pul }} \propto 1 / \sqrt{\bar{\rho}}
$$

Propagation of Sound Speed (pressure wave)

Pressure induced perturbation,

$$
R / \tau_{\mathrm{ff}}^{2}=-\frac{\ddot{R}}{2}=\frac{G M}{R^{2}}+\frac{1}{\varrho} \frac{d P}{d R} \approx \frac{1}{\varrho} \frac{d P}{d R} \approx \frac{1}{\varrho} \frac{P}{R}
$$

so $\frac{R}{\tau_{\mathrm{ff}}} \approx \sqrt{\frac{P}{\rho}} \approx c_{S}$ (sound speed) $\propto \sqrt{T}$ (for ideal gas) $\tau_{\mathrm{s}} \approx \frac{R}{c_{S}}$
In general, $\tau_{\mathrm{dyn}} \approx \frac{1}{\sqrt{G \bar{\rho}}} \approx \frac{1.6 \times 10^{15}}{\sqrt{n}}[\mathrm{~s}]=1000 \sqrt{\left(\frac{R}{R_{\odot}}\right)^{3}\left(\frac{M_{\odot}}{M}\right)}[\mathrm{S}]$

Thermal Timescale

Kelvin-Helmholtz timescale (radiation by gravitational contraction)

$$
E_{\text {total }}=E_{\text {grav }}+\mathrm{E}_{\text {thermal }}=\frac{1}{2} E_{\text {grav }}=-\frac{1}{2} \alpha G M^{2} / R
$$

This amount of energy is radiated away at a rate L, so timescale

$$
\begin{aligned}
\tau_{\mathrm{KH}} & =\frac{E_{\text {total }}}{L}=\frac{1}{2} \alpha G M^{2} / R L \\
& =2 \times 10^{7} \mathrm{M}^{2} / R L \quad[\mathrm{yr}] \text { in solar units }
\end{aligned}
$$

$$
\tau_{\mathrm{KH}} \approx 2 \times 10^{7}\left(\frac{M}{M_{\odot}}\right)^{2}\left(\frac{R_{\odot}}{R}\right)\left(\frac{L_{\odot}}{L}\right)[\mathrm{yr}]
$$

$$
\begin{array}{c|c}
\hline M=1 \mathcal{M}_{\odot}, R=1 \mathrm{pc} & M=1 \mathcal{M}_{\odot}, R=1 \mathcal{R}_{\odot} \\
\hline \tau_{\mathrm{dyn}} \approx 1.6 \times 10^{7} \mathrm{yr} & \tau_{\mathrm{dyn}} \approx 1.6 \times 10^{3} \mathrm{~s} \approx 30 \mathrm{~min} \\
\tau_{\text {ther }} \approx 1 \mathrm{yr} & \tau_{\text {ther }} \approx 3 \times 10^{7} \mathrm{yr}
\end{array}
$$

Nuclear Timescale

Time taken to radiate at a rate of L on nuclear energy

$$
\begin{aligned}
& 4{ }^{1} H \rightarrow{ }^{4} \mathrm{He}\left(Q=6.3 \times 10^{18} \mathrm{erg} / \mathrm{g}\right) \\
& \tau_{\text {nuc }}= \frac{E_{\text {nuc }}}{L}=6.3 \times 10^{18} \frac{M}{L} \\
& \tau_{\text {nuc }} \approx 10^{11}\left(\frac{M}{M_{\odot}}\right)\left(\frac{L_{\odot}}{L}\right)[\mathrm{yr}]
\end{aligned}
$$

From the discussion above, $\tau_{\text {nuc }} \gg \tau_{\text {KH }} \gg \tau_{\text {dyn }}$

Main-Sequence Lifetime of the Sun

Energy Gained in a PP Chain

$4 \mathrm{H} \rightarrow 1 \mathrm{He}+$ neutrinos + energy

Mass of $4 \mathrm{H}=6.693 \times 10^{-27} \mathrm{~kg}$
Mass of $1 \mathrm{He}=6.645 \times 10^{-27} \mathrm{~kg}$
Mass deficit $\boldsymbol{>} \mathbf{0 . 0 4 8} \times \mathbf{1 0}^{-27} \mathrm{~kg}=0.7 \%$

$$
\mathrm{M}_{\odot} \approx 2 \times 10^{33}[\mathrm{~g}]
$$

$\mathrm{L}_{\odot} \approx 4 \times 10^{33}$ [ergs/s]
Fusion efficiency

Nuclear
physics

$$
\tau_{\odot}^{\mathrm{MS}} \approx \mathrm{M}_{\odot} \frac{(0.007)(0.1) c^{2}}{\mathrm{~L}_{\odot}}=3.15 \times 10^{17}[\mathrm{~s}]=10^{10}[\mathrm{yr}]
$$

Given $L_{\mathrm{MS}} / L_{\odot} \approx\left(M / M_{\odot}\right)^{4} \rightarrow \tau^{\mathrm{MS}} \approx 10^{10}\left(M_{\odot} / M\right)^{3}[\mathrm{yr}]$

Diffusion Timescale

Time taken for photons to randomly walk out from the stellar interior to eventual radiation from the surface
$r_{e}=\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{m_{e} c^{2}}$ ("classical" radius of the electron)
$\sigma_{\text {Thomson }}=\frac{8 \pi}{3} r_{e}^{2}=6.6525 \times 10^{-29}\left[\mathrm{~m}^{2}\right]$ for interactions with photon energy $h \nu \ll m_{e} c^{2}$ (electron rest energy)
Thus, mean free path $\ell=1 /\left(\sigma_{T} n_{e}\right)$, where for complete ionization of a hydrogen gas, $n_{e}=M /\left(m_{p} R^{3}\right)$.
So, $\ell \approx m_{p} R^{3} / \sigma_{T} M=4[\mathrm{~mm}]$ for the mean density.
At the core, it is 100 times shorter.
$\tau_{\mathrm{dif}} \approx 10^{4}[\mathrm{yr}]$ (Exercise: Show this.)

For an isotropic gas

$$
P=\frac{1}{3} \int_{0}^{\infty} p v_{p} n(p) d p
$$

- p and v_{p} : relativistic case
- $n(p)$: particle type \& quantum statistics

For a photon gas, $p=h v / c$, so

$$
\begin{gathered}
P_{\text {rad }}=\frac{1}{3} \int_{0}^{\infty} h v n(v) d v=\frac{1}{3} u=\frac{1}{3} a T^{4} \\
a=7.565 \times 10^{15} \mathrm{ergs} \mathrm{~cm}^{-3} \mathrm{~K}^{-4}
\end{gathered}
$$

Radiation Pressure

$P_{\text {total }}=P_{\text {radiation }}+P_{\text {gas }}$
Since $P_{\text {rad }} \sim T^{4} \sim M^{4} / R^{4}$
But $P_{\text {tot }} \sim M^{2} / R^{4}$
$\rightarrow P_{\text {rad }} / P_{\text {tot }} \sim M^{2}$
So the more massive of a star, the higher relative contribution by radiation pressure (and γ decreases to 4/3.)

When $P_{\text {rad }}$ dominates

$$
\begin{gathered}
\mathcal{F}=\frac{-d P_{\mathrm{rad}} / d r}{\kappa \rho}=\frac{4 a c}{3} T^{3} \frac{d T}{d r}=\frac{L}{4 \pi r^{2}} \\
\frac{d \mathrm{P}_{\mathrm{rad}}}{d r}
\end{gathered} \sim \frac{\kappa \rho}{c} \frac{L}{4 \pi r^{2}}
$$

On the other hand, by definition

$$
\begin{aligned}
& \frac{d P_{\text {tot }}}{d r}=-\rho \frac{G m}{r^{2}} \\
\Rightarrow & \frac{d \mathrm{P}_{\mathrm{rad}}}{d P_{\mathrm{tot}}}=\frac{\kappa L}{4 \pi c G m}
\end{aligned}
$$

Toward the outer layers, both $P_{\text {gas }} \searrow$ and $P_{\text {rad }} \searrow$, so $P_{\text {tot }} \downarrow \searrow$, and $d P_{\text {tot }}>d P_{\text {rad }}$. This leads to

$$
\kappa L \leq 4 \pi c G m
$$

At the surface, $m=M, P=0$, it is always radiative, so

$$
L<\frac{4 \pi c G M}{\kappa}
$$

This is the Eddington luminosity limit = Maximum luminosity of a celestial object in balance between the radiation and
Numerically, gravitational force.

$$
L_{E d d} / L_{\odot}=3.27 \times 10^{4} \mu_{e} M / M_{\odot}
$$

For X-ray luminosity, scattered by electrons in an optically thin gas, $L_{X}<10^{38} \mathrm{erg} \mathrm{sec}^{-1}$

Eddington limit is the upper limit on the luminosity of an object of mass $M, L \leq\left(\frac{4 \pi G m_{p}}{\sigma_{T}}\right) M$

$$
\equiv L_{\mathrm{Edd}} \approx 10^{38 M} / M_{\odot}\left[\mathrm{erg} \mathrm{~s}^{-1}\right]
$$

For $1 M_{\odot}, L_{\mathrm{Edd}} \approx 5 \times 10^{4} L_{\odot}, M_{\mathrm{bol}}=-7.0$
For $40 M_{\odot}, M_{\mathrm{bol}}=-11.0$
Eta Carina, $L \approx 5 \times 10^{6} L_{\odot}, M_{\mathrm{bol}}=-11.6, M \approx 120 M_{\odot}$

In general,

$$
L_{E \text { ad }}=3.2 \times 10^{4} \frac{M}{M_{0}} \frac{K_{0}}{K}\left[L_{0}\right]
$$

inequality is violated
$L_{\text {Ed }}$ can be exceeded if
(1) $L \uparrow \uparrow$, e.g., intense thermonuclear burning
(2) $K \uparrow \uparrow, ~ e .9, H$ a H e ionization
\Rightarrow Hydrostatic equilibrium can wo longer
maintained
\therefore need a different neat tramper mechanism

Comparison of 1,5 , and $25 \mathcal{M}_{\odot}$ stars

Evolutionary tracks of theoretical model stars in the HR diagram (Iben, 1985)

Stellar Evolution onto and off the Main Sequence


```
Luminesity
    L}\mp@subsup{L}{0}{L}=\frac{L}{\mp@subsup{L}{0}{}}(M/\mp@subsup{M}{0}{}
L
\[
\text { Approximately, for } M Z M_{0}, \angle \alpha \cdot M^{3,5}
\]
Approximately, for MZM
    Main sequence lifetime
Main sequence liferime
                                    ( H}->\mp@subsup{\textrm{He}}{\mathrm{ ) }}{
\[
\hat{\tau}_{\mathrm{Ms}} \sim 0.1 \in \frac{X M}{L}
\]
    \mp@subsup{\tau}{MS}{}~0.1\in\frac{XM}{L}
After this fraction stellar
                            After this fracrion stellar
                            evolution Arocmes stellar.t
                            so star not in stable state
        \approx10
\[
\approx 10^{10}\left(\frac{M}{M_{0}}\right)\left(L / L_{0}\right)[y r]
\]
se star not in stable spate
\[
\approx 10^{10}\left(\mathrm{M} / \mathrm{M}_{0}\right)^{-2.5}[\mathrm{yr}]
\]
        \approx10.0}(\textrm{M}/\mp@subsup{M}{0}{}\mp@subsup{)}{}{-2.5}[yr
Note M-L, strong dependence on mass (index of
        *5) <= stomg dep of & on T for
            H Z Mo
Note M-L. strong deperdence on mass (index or \(M \approx M_{0}\)
```

$\begin{aligned} d m & =\rho d r d S=\rho 4 \pi r^{2} d r \\ \frac{\partial^{2} r}{\partial t^{2}} & =\ddot{r} d m \\ & =-\frac{G m d m}{r^{2}}+P(r) d S-\frac{P(r+d r)}{P(r)+\frac{\partial P}{\partial r}} d S\end{aligned}$
The equation of motion is
$\begin{aligned} & d m=\rho d r d S=\rho 4 \pi r^{2} d r \\ & \frac{\partial^{2} r}{\partial t^{2}}=\ddot{r} d m \\ &=-\frac{G m d m}{r^{2}}+P(r) d S-\frac{P(r+d r)}{P(r)} d S \\ & \text { The equation of motion is }\end{aligned}$

$$
=-\frac{G m d m}{r^{2}}+P(r) d S-P(r+d r) d S
$$

$\begin{aligned} & d m=\rho d r d S=\rho 4 \pi r^{2} d r \\ & \frac{\partial^{2} r}{\partial t^{2}}=\ddot{r} d m \\ &=-\frac{G m d m}{r^{2}}+P(r) d S-\underset{P(r+d r)}{P} d S \\ & \text { The equation of motion is }\end{aligned}$

$$
P(r)+\frac{\partial P}{\partial r} \cdot d r
$$

$$
\ddot{r}=-\frac{G m}{r^{2}}-\frac{1}{\rho} \frac{\partial P}{\partial r} \quad \text { or } \quad \ddot{r}=\frac{G m}{r^{2}}-4 \pi r^{2} \frac{\partial P}{\partial m}
$$

In case of hydrostatic equilibrium, i.e., $\ddot{r} \rightarrow 0$

$$
\frac{d P}{d r}=-\rho \frac{G m}{r^{2}}<0
$$

$$
\begin{aligned}
& \text { Radius } \frac{R}{R_{\theta}}=\frac{R}{R_{\theta}}\left(M / M_{\theta}\right) \\
& R \sim M^{0.85} \quad M \leqslant M_{0} \\
& R=M^{0.56} M Z M_{0} \text { diterent structurd } \\
& \text { Temperature } \\
& \frac{T_{e}}{T_{e, c}}=\frac{T_{e}}{T_{e, e}}\left(\mathrm{M} / M_{0}\right) \\
& \zeta_{0, c} \sim 1.44 \times 10^{7} \mathrm{~K}
\end{aligned}
$$

STELLAR EVOLUTION. I. THE APPROACH TO THE MAIN SEQUENCE*

Icko Iben, Jr.
California Institute of Technology, Pasadena, California
Received August 18, 1964; revised November 23, 1964

ABSTRACT

The manner in which nuclear reactions replace gravitational contraction as the major source of stellar luminosity is investigated for model stars of population I composition in the mass range $0.5<M / M \odot<$ 150 . By following in detail the depletion of C^{12} from high initial values down to values corresponding to equilibrium with N^{14} in the C - N cycle, the approach to the main sequence in the Hertzsprung-Russell diagram and the time to reach the main sequence, for stars with $M \geq 1.25 M \odot$, are found to differ significantly from data reported previously.

Pre-main Sequence Evolution of a $1 M_{c}$ star
$r<2 \times 10^{14}$ s (i,e, $\left.7 \times 10^{6} \mathrm{yr}\right)$
Toff \sim count $\sim 4200 \mathrm{~K} \quad R \downarrow \Rightarrow L \downarrow$ due to ionization of $H \propto H e$
a deep convective envelope

(Hayashi track)
star completely convective in the first $10^{6} \mathrm{yr}$
Lg / L : energy from gravitational contraction
$\frac{\tau \sim 14.5}{7}, \frac{L \uparrow}{\text { i nuclear reactions }}$
(cont.)

$$
\sim 15
$$

\Rightarrow expanding the core

$$
P_{c} \downarrow, T_{e} \downarrow
$$

But T_{c} not high enough

$$
\text { only }{ }^{\prime} \mathrm{H} \rightarrow{ }^{2} \mathrm{D} \rightarrow{ }^{3} \mathrm{He}
$$

$$
{ }^{12} \mathrm{C} \rightarrow{ }^{43} \mathrm{~N} \rightarrow{ }^{13} \mathrm{C} \rightarrow{ }^{14} \mathrm{~N}
$$

The rest of PP chains on c NO cycle do not operate yet
Note \quad Laue $+L_{g} \equiv L$

$$
\tau \sim 15, \operatorname{Lg}<0 \quad(\because \text { core expansion })
$$

$$
\epsilon_{n u c} \uparrow \rightarrow \nabla T \uparrow
$$

\Rightarrow A temporary convective core $(\tau \sim 14,9)$ until ${ }^{12} \mathrm{C}$ is depleted and PP chaws become important

Eventually $\nabla T \downarrow$ at core, convective core \downarrow ($\uparrow \sim 15.3$)

$$
\tau \sim 15, L \rightarrow L_{\max }
$$

Structure of star adjusts

\because Energy sources from gravitational to nuclear processes
$\Rightarrow 12 \mathrm{C}$ main sequence! Point 5
short lasting, depletion rapidly
\rightarrow slight contraction

Tc. P_{c} high enough for $P P$ reactions
Yo be the sole energy source.

$$
\begin{aligned}
\text { For all stars } M \approx H_{0} \Rightarrow & \text { convective core } \\
\qquad{ }^{12} \mathrm{C} \text { burning } & \longrightarrow \text { recedes }
\end{aligned} \quad \begin{aligned}
& \text { Hor stars } M \approx 1.25 M_{0} \Rightarrow \text { double Luminosity } \\
& \text { maxima and minima }
\end{aligned}
$$


```
For \(0.5 M_{0}\) stars,
    \(P_{e}, T_{c}\) not high enough for \({ }^{12} C\)
    burning
For \(M \lesssim 0.1 M_{0}\) (dependent of \(\mu\) )
    Te not high enough for even \(H\)
        burning
    \(\Rightarrow\) contraction continues
    \(\rightarrow\) degenerate core
    \(\Rightarrow\) black dwarfs ... nowadays called brown dwarfs
```

only the initial, nearly vertical descent
$\because T_{c}, P_{c}$ never high enough to ignite ${ }^{12} C$

Fig. 7-3B Evolutionary Tracks of Pre-Main-Sequence Stars of Low Mass in the Hertzsprung-Russel! Diagram. The masses, and the ages at two points on each track, are indicated. The heavy curve (MS) is the hydrogen-burning main sequence. The convective parameter is assumed to have the value $l / H=1.0$. [Adapted from A. S. Grossman and H. C. Graboske, Jr., 1971 (400).]

Figs. 3a and 3b. For non-rotating stars, the central pressure
and central temperature variation with mass along the and central temperature variation with mass along the main-sequence

Parameters at the stellar cores for non-rotating single MS stars

Fig. 4. The central temperature versus the central density for main-sequence stars. The curve is drawn through the data referring to non-rotating stars (dots). The crosses refer to critically, uniformly rotating stars. The Arabic numeral refers to the mass of the model

Effect of Stellar Rotation

Fig. 1. The decrease of the luminosity with increasing rotation measured by Ω^{2} / Ω^{2} where Ω refers to the rotation measured by $\Omega^{2} / \Omega_{\max }^{2}$, where Ω refers to the
angular velocity of rotation and the subscript max to the angular velocity of rotation and the subscript max to the critical case. The Arabic numeral refers to
sequence in solar units

More so for lowermass stars

Rotation effectively lowers the stellar mass.

Fig. 5. The maximum change in the luminosity of a critically rotating star from that of a non-rotating star of the same mass, expressed in percent, against the mass of the mainsequence model. The dots refer to the actual results of the Stellar Interior models, while the crosses refer to the approximations made for Eq. (12)

Rotation \rightarrow star cooler and fainter

啹

D : solid body rotation

Rotation law:
angular momentum distribution $j\left(m_{\mathfrak{w}}\right)$ as a function of, $m_{\mathfrak{w}}$, the mass fraction interior to the cylinder of radius \mathfrak{w} about the rotation axis.

Rotation
 \rightarrow line broadening

Wovelength

[^3]
Rotation

VS

Spectral Type

Fig. 3. Projected equatorial velocities, averaged over all possible inclinations, as a function of spectral type. On the main sequence (luminosity class V), early-type stars have rotational velocities that reach and even exceed $200 \mathrm{~km} / \mathrm{s}$; these velocities drop to a few km / s for late-type stars, such as the Sun (type G2) (Slettebak [20]; courtesy Gordon \& Breach)

Fia. 7. Color-magninude diagram for all stars nith measured V. and 1 -band photometry. Errors for the new photometry are smaller than 0.05 mag in V and
0.1 mag in $V-I_{C}$ in 90% of the cases and are restricted in all cases to 0.1 mag in V and 0.2 mag in $V-I_{C}$, corresponding to the error bar shown. Also shown is the reddening vector corresponding to 5 magnitudes of visual extinction and the zero-age main sequence over the range $05-\mathrm{M} 7$, as well as the $0.1,1$, and 10 Myr isochrones and the 0.5 and $11 \mathrm{M}_{0}$ evolutionary tracks from the calculations of D'Antona \& Mazzitelli (1994) translated into this color-magnitude plane. Filled circles indicate proper motion cluster members plus all sources which have been identified as being extermally ionized; open circles indicate that no proper motion information is available; crosses indicate proper motion nonmembers.

Fl. 7 -25 Evolutionary Tracks in the Hertaprung-Ruseell Diagram. The man of each star is siven at the left of the track. The composition is $X=0.700$,
$Y=0.272$, and $Z=0.020$ for all masues except 30

 The dotied liner indicate the boundaries of the main wesuence. The the (lower teff)

 (Adapted from
1966 (33) .1
$H_{c}: H$ core burning
$H_{r s}: H$ thick shell
$T_{s}: H$ thin shell

1-2 main sequence
2-3 overall contraction 3-4 H thick shell burning $5-6 \mathrm{H}$ thin shell burning 6-7 red giant
7-10 core He burning 8-9 envelope contraction

$$
\begin{gathered}
\qquad M_{0} \text { Stars on the Main Sequence } \\
H H \rightarrow H_{e} n \downarrow \rightarrow P \downarrow \rightarrow \text { core contracts } \\
\text { (slowly) } \\
q_{p p} \sim \rho X^{2} T_{6}^{4} \\
\vdots \text { depletion } X \downarrow \text { but } T \uparrow, \rho \uparrow \\
\therefore q \uparrow \Rightarrow L \uparrow \\
\rightarrow \text { envelope } R \uparrow
\end{gathered}
$$

$$
\begin{aligned}
& H \text { depleted core } L_{r}=0 \text {, but } \epsilon_{\text {nue }} \text { in a thick shell } \\
& \text { around the core } \\
& \qquad L_{T S}>L_{\text {core }}(M S) \\
& \Rightarrow L \uparrow \rightarrow R \uparrow \Rightarrow T_{\text {eff }} \downarrow \\
& \text { Point } 4 \equiv \text { End of MS } \\
& \text { Star } \rightarrow \text { subgiant branch } \\
& \text { until } M_{\text {Sc }} \text { is reached } \\
& (\sim 8-10 \%)
\end{aligned}
$$

envelope

THE ASTROPHYSICAL JOURNAL
 AN INTERNATIONAL REVIEW OF SPECTROSCOPY AND ASTRONOMICAL PHYSICS
 VOLUME 96
 SEPTEMBER 1942
 NUMBER 2
 ON THE EVOLUTION OF THE MAIN-SEQUENCE STARS
 M. Śchönberg ${ }^{1}$ and S. Chandrasekhar
 ABSTRACT
 The evolution of the stars on the main sequence consequent to the gradual burning of the hydrogen in the central regions is examined. It is shown that, as a result of the decrease in the hydrogen content in these regions, the convective core (normally present in a star) eventually gives place to an isothermal core. It is further shown that there is an upper limit (~ 10 per cent) to the fraction of the total mass of hydrogen which can point are also made.
 $$
\frac{M_{c}}{M} \approx 0.37\left(\frac{\mu_{e}}{\mu_{c}}\right)^{2}(\sim 10.15 \% \text { in reality })
$$
 $$
\text { Take ionized } H_{\mu=0.61} \text { inv ; pure } H \text { e in core } \mu=1.34
$$
 $$
M_{c} \sim 8 \sim 9 \% M \quad \mu_{c} \sim 2 \mu_{s}
$$
 Beech 1988

(Point 4,5) shortly after the MS

$\epsilon_{\text {rue }}$ in a thin shell
L, $\uparrow \uparrow$ between $13 \%-20 \%$
core experiences gravitational contraction $L_{g}>0$

$$
\Rightarrow \nabla T
$$

$$
P_{c} \rightarrow 1.5 \times 10^{4} \mathrm{gam}^{-3}, \quad P_{\text {deg important }}\left(=0.46 P_{\text {total }}\right)
$$

convection beyond $63 \% M \rightarrow$ mixing $\rightarrow X \approx$ cont

$$
\begin{aligned}
& \text { (Point 5') } P_{\text {deg }}=76 \% P_{\text {total }} \\
& T_{\text {shell }} \uparrow \uparrow \quad \epsilon_{C N}>\epsilon_{p p} \Rightarrow R \uparrow \uparrow, T_{\text {eff }} \not \downarrow \\
& K \uparrow \text { in envelope } \rightarrow \text { convection for often } \\
& \text { 712077 M } \\
& X \approx \text { count outer } 29 \% \mathrm{M} \\
& \text {; } \\
& \text { beyond }
\end{aligned}
$$

FIg. 7-1/A A Model Solar Interior. Density relative to the central density p_{0} / ρ_{o} temperature relative to central temperature $T / T_{\text {, }}$, net luminosity relative fractional mass M_{l} / M. The chemical composition is $X=0.730, Y=0.245$, and $Z=0.025$. The age is $4.5 \times 10^{\circ}$ years. [After S. Torres-Peimbert, E. Simpson, and R. K. Ulrich, 1969 (329).]

$$
x_{c}=0.376
$$

Fig. $7-1 / B$ The Evolution of the Sun during 7 Billion Years. Total luminosity L
and central values of pressure P, and central values of pressure P_{0}, temperature T_{s} density ρ_{s}, and hydrogen abun
dance X_{t} are shown as functions of time r, which is massurd (homogencous) state for which the composition is $X=0.730, Y=0.245$, and haten
$Z=0.025$. The power of ten by which each value must be multiplied is indicated in
parentheses. The values of P. parentheses. The values of P_{c}, P_{c} and L are expressed in cgss units, and T_{e} expressed in degrees Kelvin. [After S. Torres-Peimbert, E. Simpson, and R. K.
Ulrich, 1969 (329).]

$$
\begin{array}{rlr}
P_{\text {deg }} \sim & 0.017 P_{\text {total at }} \text { ZAMS } \\
& 0.075 & 9.2 \times 10^{9} \mathrm{yr}
\end{array}
$$

(Fig7-10B)

Figure 3.2. The present structure of the Sun. The physical parameters are indicated in the figure. The temperature T_{6} is in million K. From Maeder (2009).

Evolutionary track of a $1 \mathrm{M}_{\odot}$ model $(Z=0.015, Y=0.275)$ during gravitational contraction and central and shell hydrogen-burning phases

Figure 3.1. The evolution of the Sun. The evolution track of a solar-mass star is shown in the HR diagram from its formation to its death as a planetary nebula. Time is indicated at different steps along the track. The two 4-branch stars correspond to the helium flash and to the subsequent rapid rearrangement of the structure of the star. From Maeder (2009), data from Corinne Charbonnel.

Main Sequence phase $=$ core H burning
Evidence of thermonuclear reactions at a star's center, ie., stellar evolution

- (solar) neutrinos
- heavy elements in evolved stars

$$
\text { (isotope ratios } \neq \mathrm{YSO}_{s} \text {) }
$$

'dredge.up' \longleftarrow convective Zone to bring processed materials to surface

- Stars "disappear", 2.g., supernovae

Figure 8.4 The extent of convective zones (shaded areas) in main-sequence star models as a function of the stellar mass [adapted from R. Kippenhahn \& A. Weigert (1990), Stellar Structure and Evolution, Springer-Verlag].

Subdwarfs: The Pop II Main Sequence

- Luminosity class VI
- 1.5 to 2 mag fainter than a Pop I MS stars o the same spectral type
\rightarrow Low metallicity \rightarrow low opacity \rightarrow (UV excess) \rightarrow low radiation pressure, so smaller, hotter for the same stellar mass

Fig. 17.1. Relation of subdwarfs to the main-sequence in the Hertzsprung-Russell diagram.

Post-main Sequence Evolution

	Hypergiants
	Supergiants Ia luminous supergiants; Ib supergiants; $\mathrm{Ia}^{+}=0$
	Subgiants
	the red giant branch
viI	Dwarfs luminosity class $\mathrm{V}=\mathrm{MS}$ stars
${ }^{+20} 0$	Subdwarfs (sd) luminosity class VI, 1.5 to 2 mag lower than
http://en.wikikedia. org/wik/filieltr-diag-no-text-2.svg	MS; lower metallicity

Mass Loss during Stellar Evolution

- Stars lose mass at all evolutionary stages.
- Pre-main sequence: protostellar (bipolar) outflows YSO jets, (star/disk) winds
- Main sequence: solar wind $\dot{\mathcal{M}}=10^{-14} M_{\odot} \mathrm{yr}^{-1}$

For $\tau_{\text {MS }} \approx 10^{10} \mathrm{yr} \rightarrow \tau_{\text {loss,MS }} \approx 10^{-4} M_{\odot}$
Some stars, e.g., WR stars $\dot{\mathcal{M}}=10^{-5} M_{\odot} \mathrm{yr}^{-1}$

- Post-main sequence: $R \uparrow \rightarrow g \downarrow$, and $P_{\text {rad }} \uparrow \Rightarrow \dot{\mathcal{M}} \uparrow$

Fig. 7.6. Schematic representation of an irradiated flared disk. Below the radius R_{g} where matter remains bound by the gravity of the central star an optically thin atmosphere develops. Above this radius flared matter may escape and form some kind of slow wind. Adapted from Hollenbach et al. [403].

- For a stationary, isotropic wind, the mass loss rate

$$
\dot{\mathcal{M}}=4 \pi r^{2} \rho(r) \frac{\mathrm{dr}}{\mathrm{~d} t}=4 \pi r^{2} \rho(r) v(r) \quad v(r) \text { : velocity law }
$$

- $v(r) \uparrow$, at $r \rightarrow \infty, v_{\infty} \equiv v(r \rightarrow \infty)$ terminal velocity

Often $v(r) \approx v_{0}+\left(v_{\infty}-v_{0}\right)\left(1-\frac{R_{*}}{r}\right)^{\beta}$, where

$$
v_{0}=v\left(R_{*}\right) \text { at photosphere }
$$

- $\beta \leq 1, v \rightarrow v_{\infty}$ gradually $\beta \geq 1, v \rightarrow v_{\infty}$ slowly
- For hot stars, $\beta \approx 0.8$. Cool stars experience slower acceleration, so have larger β.
$\dot{\mathcal{M}}=4 \pi r^{2} \rho(r) v(r)$ mass conservation
$\ddot{r}=-\frac{1}{\rho} \frac{\mathrm{~d} P}{\mathrm{~d} r}-\frac{G M}{r^{2}}=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d} v}{\mathrm{~d} r} \frac{\mathrm{dr}}{\mathrm{d} t}=v \frac{\mathrm{~d} v}{\mathrm{~d} r}$ momentum conservation

Massive stars \rightarrow radiation pressure \rightarrow outer atmosphere expands supersonically \rightarrow winds driven by spectral-line opacity in UV.

Fig. 8.8. The evolutionary paths in the Hertzsprung-Russell diagram of Population I stars having $1.0 \mathcal{M}_{\odot}$ and $1.1 \mathcal{M}_{\odot}$, from central hydrogen burning (A) to the helium flash (E), without taking mass losses into account. After A. V. Sweigart and P. G. Gross (1978). The ejection of a mass of $0.1 \mathcal{M}_{\odot}$ during the helium flash was assumed. The further evolution of the star of $1.0 M_{\odot}$ was calculated taking the mass loss according to (7.105) into account, after D. Schönberner (1979). $\mathrm{F} \rightarrow \mathrm{G}$: the asymptotic giant branch; only one of the thermal pulses (helium flashes) which occur after I is drawn in, at J . The mass loss becomes important at H and leads to a final mass of $0.6 \mathcal{M}_{\odot}$, which is reached at K

Mass loss (Reimers 1975)

$$
\dot{M} \approx 4 \times 10^{-13} \frac{L / L_{\odot}}{\left(g / g_{\odot}\right)\left(R / R_{\odot}\right)}\left[\mathrm{M}_{\odot} \mathrm{yr}^{-1}\right]
$$

$$
g=G M / R^{2}
$$

Sun now $\dot{M} \approx 2 \times 10^{-14} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$
Cool supergiant $\dot{M} \approx 10^{-7}$ to $10^{-5} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$

P Cygni profile of a spectral line
--- a blue-shifted absorption
superimposed on an emission line
\rightarrow mass loss (cool gas toward us)

P Cygni stars

- Higher mass-loss rate, $>10^{-5} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$
- Lower terminal velocity, $v_{\infty}<10^{2.5} \mathrm{~km} \mathrm{~s}^{-1}$
- Higher wind density, $n_{H}>10^{10} \mathrm{~cm}^{-3}$ at $2 R_{*}$

than normal stars (Lamers 1986).

Effects of metallicity

RGB for a Pop II $1.2 \mathrm{M}_{\odot}$ star

Next Tuesday (May 30) is a holiday, again. A make-up class on June 5 (Monday) at 3 pm ? June 7 (Wednesday) at 3 pm ?

Stellar Pulsation

[^4]

Stellar Variability

\square Time to transmit a perturbation of pressure changes across the star

$$
t_{\mathrm{vib}} \sim \frac{2 R}{\overline{v_{s}}} \text { where } \quad v_{s}=\sqrt{\gamma \frac{P_{g}}{\rho}}
$$

$\gamma=\mathrm{c}_{\mathrm{P}} / \mathrm{c}_{\mathrm{V}}=5 / 3$ for monatomic gas.
\square Virial theorem, $2 \mathrm{~K}+\boldsymbol{\Omega}=0, \therefore \quad v_{s}^{2}=\frac{G M}{R}$

$$
t_{\mathrm{vib}} \sim \frac{2 R}{\sqrt{G M / R}} \sim \frac{1}{\sqrt{G \rho}} \quad \text { cf. free-fall time }
$$

Approximate Relation between Stellar Density, Pulsation and Minimum Rotational Period

Star	Density $\mathrm{g} \mathrm{cm}^{-3}$	$t_{\text {vi }}$ sec	$t_{\text {rot, min }}$ sec
Neutron star	10^{15}	10^{-4}	3×10^{-4}
White Dwarf	10^{7}	1	3
RR Lyrae star	10^{-2}	$10^{4.5}$	10^{5}
Cepheid Variable	10^{-6}	$10^{6.5}$	10^{7}

t (Crab Nebula) ~ $33 \mathrm{~ms} \rightarrow$ cannot be a white dwarf

* Rotational Variation --- sub-seconds .. weeks
* Pulsational Variation --- hours .. weeks
* Orbital (Eclipsing Binaries) --- hours .. days

Valve mechanism (Eddington)

- Heating $\rightarrow P \hat{\uparrow} \rightarrow$ expansion \rightarrow cooling

$$
\therefore \text { Self-regulated stability }
$$

- Absorption of radiation
- Usually $\beta \propto T^{-n}$

Normally T $\nearrow \rightarrow \kappa \downarrow$

$$
\therefore \text { Heating } \xrightarrow{I F} T \uparrow \rightarrow k \downarrow \rightarrow \text { cooling Recall Kramers opacity }
$$

- contraction \rightarrow releases energy
expansion \rightarrow absorbs energy
K mechanism - a partially ionized layer to absorb energy during compression (and release energy ding expansion)

In stars, there are 2 ionization zones

- $T \sim(1-1.5) \times 10^{4} \mathrm{~K}$ hydingen ionization zone

$$
H I \rightarrow H I I, H e I \rightarrow H_{e} I
$$

- TR $\sim(4-5) \times 10^{4} \mathrm{~K}$

$$
\mathrm{He} \text { II } \rightarrow \text { He III } \text { helium ionization zone }
$$

But if there is an ionization layer, e.g., $\mathrm{He}^{+} \rightarrow \mathrm{He}^{++}$
$\mathrm{T} \nearrow \rightarrow \kappa$ ィ energy trapped
\rightarrow expansion
Energy escaped
\rightarrow Contraction
\rightarrow pulsation

Depths o ionization zones
R.9. $T_{\text {eff }} \gtrsim 7500 \mathrm{~K}$, zones near surface
\rightarrow not enough mass available to drive the oscillation.

$$
\begin{aligned}
T_{\text {eff }} & \approx 5500 \mathrm{k}, \text { Zones deeper } \\
& \Rightarrow \text { significant pulsation }
\end{aligned}
$$

There is a certain surface temperature range for stellar pulsation ...

$$
\begin{aligned}
T_{\text {eff }}<550 \mathrm{~K} & \text {, convective outer layer } \\
& \rightarrow \text { pulsation suppresses }
\end{aligned}
$$

\therefore Toff $\sim 5500-7500 \mathrm{~K}$ for pulsation to take place, Instability "strip"

Figure 4.9. Examples of various types of pulsating variable stars plotted as small circles on the Hertzsprung-Russell diagram. The dark line to the right is the main sequence with evolutionary tracks branching off to the right for different stellar masses. The ultimate evolutionary track of a star that ends its life as a compact star of $0.63 M_{\odot}$ is shown. It moves leftward through the planetary nebulae nuclei variables (PNNV) and then downward as a cooling white dwarf, passing through regions of pulsational instability sequentially classified as DOV, DBV, and DAV (DAV = Dwarf + type/temperature A + Variable). Other types of intrinsic variables are shown: β Cephei stars, Mira (M), Semiregular (Sr), luminous blue (LBV), Wolf-Rayet (WR), slowly pulsating B stars (SPB), and subdwarf B stars (sdBV). The classical instability strip is shown as two parallel lines encompassing Cepheid, RR Lyrae, and δ Scuti variables; if extended, it intersects the pulsating DAV stars. The thin lines represent loci of constant radius. [Provided by A. Gautschy, see Gautschy H. Saio, ARAA 33, 77 (1995)]

Bradt "Astrophycs
Processes"

$$
\begin{aligned}
& \text { Normally, } T \hat{T} \Rightarrow K \downarrow \\
& \text { plays a role also in red giants } \\
& \text { Core } \rightarrow \text { increased energy output } \\
& \text { Envelope } \rightarrow \text { expansion, cooling } \rightarrow K \uparrow \\
& \Rightarrow \text { Red giants have convective envelopes. } \\
& \text { of pMs Hayashi tracks } \\
& \text { The envelope extends from just outside } t \\
& \text { the H-burning shell to the surface. } \\
& \rightarrow \text { 'Dredg e-up' of processed material } \\
& \text { from deep interior to surface }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8.9., observations of heavy elements a } \\
& \text { isotope ratios in evolved stars different } \\
& \text { from (enrichment) young stars } \\
& \text { (in a star cluster) } \\
& \Rightarrow \text { Evidence of stellar evolutions } \\
& \text {.. of nuclear reactions. }
\end{aligned}
$$

Convection \rightarrow chemical mixing
Much more efficient than the slow change of chemical composition produced by nuclear reaction.
In a convection region, $\frac{\partial X_{i}}{\partial m}=0$

Fig. 8.1. The abundances X_{i} are smeared out owing to rapid mixing inside a convection zone extending from m_{1} to m_{2}. At these borders X_{i} can be discontinuous

The Dredge-ups

When H shell burning begins, the He core contracts and heats up, making the shell burn furiously. The input of energy forces the envelope to expand and the star moves up the "red giant branch" (RGB). But the furiously burning shell runs on the CNO cycle and now the envelope becomes convective because of the low temperature, high opacity, and high temperature gradient, and processed material from the core mixes for the first time with the envelope. We call this the first dredge-up which should be visible in the spectrum of the photosphere as an increase in N at the expense of C and 0 .

For stars more than half a solar mass, the (gravitationally) contracting and heating He core will reach ignition temperature for triple alpha, and the star will (after a possibly traumatic He-flash start) begin life on the "helium burning main sequence". When the He is exhausted in the core (the H-burning shell never provides enough He to keep the core going very long) the He begins shell burning, and now the star rapidly moves up the AGB, the Asymptotic Giant Branch. Now begins a second dredge-up where for the first time new elements ($\mathrm{C} N$ and 0) appear in the star's photosphere. The triple alpha shell is really unstable and generates thermal pulses rather than a clean burn. The C core is nearly degenerate at the C-He boundary. The boundary shrinks, heats up, triple alpha starts, pulses, and the explosion may shut
itself down. The pulse is quite muffled by the outer layers of the star. But during a pulse the process can actually initiate more complicated fusion processes including neutron generation which can synthesize heavier elements. So for the first time new elements can be dredged up during the AGB phase of stellar evolution. Now these giant stars all have associated strong stellar winds and so can contribute to the chemical evolution of the cosmos.

But why wait for a dredge-up? Really massive 0 stars evolve in a really short time and lose their outer layers due to strong stellar winds really fast. There is a class of stars, the Wolf-Rayet or WR stars whose spectra are helium-rich and hydrogen-deficient which are thought to have lost their outer layers revealing directly the by-products of the CNO cycle (original CNO recycled to mostly N-- WN stars) or even the triple alpha (first production of new elements, mainly C -- WC stars). Almost all WR stars are binary stars which may help the envelope stripping process.

The Dredge-ups
H shell burning \rightarrow He core $\downarrow, T \uparrow$

CNO cycle \rightarrow low T, high opacity, $\nabla T \uparrow$
\therefore convective envelope
\downarrow
Material in the core brought up and mixed with envelope
\Rightarrow The (first) dredge-up
photosphere observed $N \uparrow$ at the expenses of

$$
C \text { and } O
$$

He flash
If $M>0.5 M_{0} \rightarrow$ He core burning (He "main sequence") (lasting v. short)

He shell burning \rightarrow asymprotie giant branch ($A G B$)
\Rightarrow The second dredge-up
$3 \times$ process \rightarrow unstable \rightarrow thermal pulses
Heavy elements in spectra of evolved stars $\leftrightarrow Y$ YO \Rightarrow obs. Yest of S tell ar evolution

Schematic view of an AGB star

Electron Degeneracy

Fermi-Dirac distribution for non-interacting,

 indistinguishable particles obeying Pauli exclusion principle; applicable to half-integer spin in TE. Examples of fermions include the electron, proton, neutrons, ${ }^{3} \mathrm{He}\left(2 \mathrm{e}^{-}, 2 \mathrm{p}^{+}, 1 \mathrm{n}^{0}\right)$Bose-Einstein distribution for particles not limited to single occupancy of the same energy state. i.e., that do not obey Pauli exclusion principle; with integer values of spin. Example bosons include ${ }^{4} \mathrm{He}$, the Higgs boson, gauge boson, graviton, meson.

A Fermi gas is called degenerate if the temperature is low in comparison with the Fermi temperature/energy.

Chemical Potential (μ)

- Temperature governs the flow of energy between two systems.
- Chemical potential governs the flow of particles; from higher chemical potential to the lower

Figure 7.1 (a) The energies of the orbitals $n=1,2, \ldots, 10$ for an electron
confined to a line of length L. Each level corresponds to two orbitals, one for
spin up and one for spin down. (b) The ground state of a system of 16 electrons. Orbitals above the shaded region are vacant in the ground state.

> As time goes on, electron degeneracy becomes
> increasingly important,
> 2.9. $P_{e}^{\text {deg }} \sim 1.7 \%$ of total prosame at $\tau \sim 0$
> ~ 7.5%
> making electron deg. presume into account,
> isothermal core $\sim 0.13 M_{\odot}$
> \Rightarrow preaome insufficient yo support overlying layers
> \Rightarrow core contraction \Rightarrow heated, $\epsilon_{\text {nyc }} \uparrow$
> \Rightarrow Overlying layers pushed outwards
> $\Rightarrow \epsilon_{\text {ne }}$ in a narrowing shell
> End of main-sequence phase

For low-mass stans ($0.7-2 M_{0}$)
ρ_{c} is high $\rightarrow e^{-}$degeneracy sets in before
core He burning begins
When He burning starts $\rightarrow T_{c} \uparrow$ (but P_{c} does $\underline{n} t$)

$$
\rightarrow \in \uparrow \uparrow
$$

$$
\Rightarrow \text { He flash }
$$

$$
E_{\text {release }} \sim 10^{\prime \prime} L_{\odot} \text { in a few seconds }
$$

$$
\begin{aligned}
& \text { Energy absorbed by envelope (being pushed) } \\
& \text { no observable efforts, }
\end{aligned}
$$

no observable effects !

$$
\begin{aligned}
& \text { Structural changes dining Post-Main Sequence }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{cc}
\\
\left.\begin{array}{c}
\text { envelope expands } \\
T_{\text {eff }} \downarrow
\end{array} \begin{array}{c}
\text { adds mass to core } \\
\text { core contracts } \Rightarrow T_{c}
\end{array}\right)
\end{array} \\
& L_{*} \approx L_{\text {shell }} \\
& L_{\text {shell }} \text { heats core } \rightarrow \text { core } \approx \text { isothermal } \\
& \therefore \text { needs density gradient to support } \\
& \text { against gravity }
\end{aligned}
$$

```
WHY IS THERE A HELIUM FLASH?
    normal ideal gas \(P \uparrow \Rightarrow T \uparrow\)
    \(\therefore\) Energy input \(\Rightarrow T \uparrow \Rightarrow P \uparrow \Rightarrow\) expand
        stable \(\because \ddots\)
against thermal \(\cdots \Rightarrow T \&\)
instability
\(\Rightarrow\) a safty-value mechanism
    If the helium core is degenerate
        \(P \leftrightarrow K T\)
    when \(T \geqq 10^{8} \mathrm{~K}, 丁 9 \uparrow \Rightarrow\) runaway thermal
    instability
    within a few seconds. He ignited
\(\Rightarrow\) helium flash
```

The helium flash occurs for $M_{\text {core }} \approx 1 M_{\odot}$

If $\mathcal{M} \leq 0.5 \mathcal{M}_{\odot} \rightarrow$ core never hot enough
If $\mathcal{M} \geq 2.25 \mathcal{M}_{\odot} \rightarrow$ core too hot, He ignited before a degenerate core develops
\Rightarrow Only $\mathcal{M} \approx 0.5-2.25 \mathcal{M}_{\odot}$ stars experience the He flash.

After the helium flash

$$
\begin{aligned}
& T_{c} \uparrow \uparrow \text {, degeneracy lifted } \rightarrow \text { normal Heburning } \\
& \underset{\downarrow}{\begin{array}{c}
\text { Core expands } \\
T_{e \downarrow} \downarrow
\end{array}} \rightarrow \begin{array}{c}
E_{\text {envelope contracts }}(R \downarrow) \\
T_{\text {eff }} \uparrow
\end{array} \\
& H \text { shell burning } \downarrow \\
& L_{\text {she" }} \\
& \therefore R \downarrow, L_{\text {sol }} \\
& \Rightarrow L_{*} \downarrow, \begin{array}{c}
\text { star descends from } R G B \\
\text { and moves to left in HRD }
\end{array}
\end{aligned}
$$

Core He burning is much shorter than the MS phase of core H burning, because He is short in abundance, not as efficient in energy supply ($1 / 10$ per mass), and the stellar luminosity is higher.

Evolution of the Sun in the HRD

ㅁ MS (core H burning)
ㅁ Subgiant branch (shell H burning)
ㅁ Red giant branch (shell H burning)

- Red giant (core He flash)

ㅁ Horizontal branch (core He burning)

- Asymptotic giant branch (shell He burning)

ㅁ Red supergiant

- Protoplanetary nebula
- Planetary nebula
- White/black dwarf ${ }^{48}$

Figure 3-18. Schematic evolution track for a representative low-mass, globular-cluster star from the main sequence to its ultimate demise as a white dwarf. The major energy sources are indicated at several key phases. Dashed lines indicate episodes of very rapid evolution, during which details of the episodes of very rapid evolution, during which details of the
structure of the star are, at present, not too well known. structure of the star are, at present, no
Compare this figure with Figure 3-13.

Fig. 14.11. Evolutionary tracks for population II stars with 0.7 and $0.8 M_{\odot}$. A helium abundance of $Y=0.30$ and a heavy element abundance of $Z=10^{-3}$ was used. On the main sequence and subgiant branches evolution times since arrival on the zero age main sequence are given in billions of years. On the red giant branch evolution times from one arrow to the next are given in millions of years. Also indicated is the instability strip, the $T_{\text {eff }}, L$ domain in which stars start to pulsate (see Chapter 17). From the tip of the asymptotic giant branch the stars probably evolve through the planetary nebula stage to become white dwarfs as indicated by the long dashed lines. From Iben (1971).

The red clump $=\mathrm{HB}$ (core He burning) of metal-rich stars

L_{RC} independent of composition or age \rightarrow standard candles

Distance to M31 With the HST and Hipparcos Red Clump Stars (1998)

$$
\begin{aligned}
& H_{c}: H \text { core burning } \\
& H_{r s}: H \text { thich shell } \\
& T_{S}: H \text { thin shell }
\end{aligned}
$$

$$
\begin{aligned}
& \text { For high-mass stain, e.9., } 5 M_{0} \\
& L_{\text {grave contributes; }} L_{r} \uparrow \text { for } M_{r}<0,1 M \\
& \Rightarrow \nabla T \Rightarrow \text { later He burning begins before } \\
& \\
& e^{-} \text {deg. sets in }
\end{aligned}
$$

Shell burning pushes the core and envelope $\rightarrow L_{\mathrm{r}}(\mathrm{r}>0.2) \downarrow$ $\epsilon_{\text {shell }} \uparrow \uparrow \Rightarrow$ envelope expands $\uparrow \uparrow$
\longrightarrow adds mass until Schönberg-Chaudimsekhar hint
\Rightarrow core contracts, $T_{e} \uparrow \longrightarrow \epsilon_{\text {shell }} \uparrow \uparrow \uparrow$

$$
\text { Prado envelope, } T_{\text {eff }} \downarrow, L_{r} \leq \text { corot }
$$

End of cere contraction

Fig. $7-28 A$ A Model of Mass $5 M_{e}$, portly after Leaving the Main Sequence,
at $t=6.82461 \times 10^{7}$ Years, Radius r, pressure P, density ρ, temperature T, net
luminosity $L_{\text {, }}$, and hydrogen abundance X are shown as functions of fractional
mass M_{r} / M. The lower limit of the ordinate is zero for all variables. The upper
limits, given in the figure, are $2.9198 R_{\odot}$ (with $R_{\odot}=6.96 \times 10^{20} \mathrm{~cm}$; however,
the total radius is $\left.3.9429 R_{\odot}\right)$, central pressure $P_{e}\left(\right.$ dyne $\left.\mathrm{cm}^{-2}\right)$, central density ρ_{e}
$\left(\mathrm{gm} \mathrm{cm}{ }^{-3}\right)$, central temperature $T_{e}\left({ }^{\circ} \mathrm{K}\right)$, total luminosity L (units of $L_{\odot}=$
$\left.3.86 \times 10^{33} \mathrm{erg} \mathrm{sec}{ }^{-1}\right)$, and initial hydrogen abundance $X=0.708$. The time is
measured from the initial model calculated for the pre-main-sequence phase. [Adapted from I. Iben, Jr., 1966 (331).]

$$
\begin{aligned}
& \tau_{(4)-(5)} \sim 7.5 \times 10^{5} \mathrm{yr} \text { (ide., v. short) } \\
& \rightarrow \text { Hertzsprung gap } \\
& \tau_{(5)-(b)} \sim 5 \times 10^{5} \mathrm{yr} \\
& \text { (6) }=\text { tip of } R G B \\
& =\text { onset of He burning } \\
& \text { But core is nondegenerate } \\
& T_{C} \sim 2 \times 10^{8} \mathrm{~K} \\
& \therefore \text { core expands, } \epsilon_{\text {core }} \downarrow \\
& \text { envelope contracts, Toff } \uparrow
\end{aligned}
$$

After (5)

Fig. 7-28B A Model of Mass 5 M © during the Giant Stage at $t=7.03776 \times 10^{7}$ Years. Radius r, pressure P, density ρ, temperature T, net luminosity L_{n}, hydrogen abundance X, and carbon-12 abundance X_{12} are shown as functions of fractional mass M_{r} / M. The lower limit of the ordinate is zero for all variables. The upper limits, given in the figure, are $47.088 R_{\odot}$ (with $R_{\odot}=6.96 \times 10^{10} \mathrm{~cm}$; however, the total radius is $51.328 R_{\odot}$), central pressure P_{e} (dyne cm^{-2}), central density ρ_{e} ($\mathrm{gm} \mathrm{cm}^{-}{ }^{9}$), central temperature $T_{e}\left({ }^{\circ} \mathrm{K}\right)$, total luminosity L (units of $L_{\odot}=3.86 \times$ $10^{33} \mathrm{erg} \mathrm{sec}^{-1}$), initial hydrogen abundance $X=0.708$, and carbon- 12 abundance $X_{12}=0.003610$. The time is measured from the initial model calculated for the pre-main-sequence phase. [Adapted from I. Iben, Jr., 1966 (331).]

At the center, $\mathrm{N}^{14}(\alpha, \gamma) \mathrm{F}^{18}\left(\beta^{+}, v\right) \mathrm{O}^{18}$

$$
\begin{aligned}
& 5 M_{0} \text { (continued) } \\
& \text { From (b) } \rightarrow \text { (7) } \\
& \epsilon_{\text {core } \downarrow \rightarrow} \rightarrow L_{*} \downarrow \\
& \\
& T_{\text {eff }} \uparrow \\
& \text { But as } T_{\text {envelope }} \uparrow \rightarrow \text { opacity } \downarrow \Rightarrow L_{*} \uparrow
\end{aligned}
$$

Between points (7) and (8)

Point 11
Two shells at $M_{\mathrm{r}}=0.07(\mathrm{He})$ and $0.22(\mathrm{H})$

Fig. 7-28D A Model of Mass $5 M_{\odot}$ during the Giant Stage at $t=8.79060 \times 10^{7}$ Years. Radius r, density ρ, temperature T, net luminosity L_{r}, and helium-4 abundance X_{4} are shown as functions of fractional mass M_{V} / M. The lower limit of the ordinate is zero for all variables. The upper limits, given in the figure, are
$23.775 R_{\odot}$ (with $R_{\odot}=6.96 \times 10^{10} \mathrm{~cm}$; however, the total radius is $44.141 R_{\odot}$) $23.775 R_{\odot}$ (with $R_{\odot}=6.96 \times 10^{10} \mathrm{~cm}$; however, the total radius is $44.141 R_{\odot}$), central density $\rho_{e}\left(\mathrm{gm} \mathrm{cm}^{-3}\right)$, central temperature $T_{c}\left({ }^{\circ} \mathrm{K}\right)$, total luminosity L
(units of $\left.L_{\odot}=3.86 \times 10^{33} \mathrm{erg} \mathrm{sec}^{-1}\right)$, and helium-4 abundance $X_{4}=1.0$. The time is measured from the initial model calculated for the pre-main-sequence phase. [Adapted from I. Iben, Jr., 1966 (331).]

$$
\left\{\begin{array}{r}
\text { If } H \text {-shell burning } \rightarrow \text { WD wi athin layer } \\
\text { of } H \\
80 \% \text { of all } D A \text { white dwarfs }
\end{array}\right.
$$

If He-shell burning
(H hies, no He hies
less freq.
nor mental hies)
-D He layer

$$
\left.\underset{16 \%}{D B\left(H e I \text { lines, mo } H_{1}\right.} \text { metals }\right)
$$

\Rightarrow expect more $D A$ white dwarfs than $D B_{S}$

$$
\text { obs } 25 \% \text { He lives } D C \text { (contimons, no hines) }
$$

DO (H elI hies)
DQ (C dominated)

$$
\begin{aligned}
& \text { MS stars } A G B \\
& M=1-9 M_{0} \xrightarrow{\text { wind } \rightarrow \text { envelope } \quad W D} \\
& \text { roughly core mass } \leftrightarrow \text { MS mass } \\
& \Rightarrow \text { expect WD mostly } 0.6 M_{\text {c }} \\
& \text { During } A G B, H \text {-shell and Hershel burning } \\
& \text { bottom of He layer } \\
& \text { Envelope shed }=\text { a ranalom process in pulses }
\end{aligned}
$$

- Origins of DA and non-DA uncertain: (1) exact phase when the last thermal pulse takes place after the AGB phase, or (2) convective mixing, radiative levitation, or diffusion.

$$
\begin{aligned}
& M=0.7-1.0 M_{\odot} \\
& M S \rightarrow R G-H_{e} \text { core } \lesssim 0.4 M_{0} \text { WD } \\
& \text { mo } A G B, P N \text { phases }
\end{aligned}
$$

Mass distribution of DA white dwarfs in the First Data Release

Received 4 March 2004 / Accepted 23 March 2004
Abstract. We investigate the sample of 1175 new nonmagnetic DA white dwarfs with the effective temperatures $T_{\text {at }} \geq$
12000 K . which were extracted from the Data Release I of the Sloan Digital Sky Survey. We determined masses, radii, and
bolometric luminosities of stars in the sample. The above parameters were derived from the effective temperatures $T_{\text {er }}$ and
surface gravities $\log g$ published in the DRI. and the new theoretical $M-R$ relations for carton-core and oxygen-core white
dwarfs. Mass distribution of white dwarfs in this sample exhibits the peak at $M=0.562 M_{0}$ (carbon-core stars), and the tail
towards higher masses. Both the shape of the mass distribution function and the empirical mass-ratius relation are practically
identical for white dwarfs with either pure carton or pure oxygen cores.

$$
\begin{aligned}
& \underline{\mathcal{M}}<0.7 \mathrm{M}_{\odot} \\
& <0.16 \mathrm{M}_{\odot} \rightarrow \text { no RGB } \\
& <0.5 \mathrm{M}_{\odot} \rightarrow \tau_{\mathrm{MS}}>\tau_{\text {Universe }} \\
& <0.5 \sim 0.7 \mathrm{M}_{\odot} \rightarrow \text { no core He burning }
\end{aligned}
$$

Very low-mass stars are completely convective \rightarrow more H to burn $\rightarrow \tau_{\mathrm{MS}}$ lengthened

A $1 \mathrm{M}_{\odot}$ main sequence star

- $\tau_{\text {MS }} \sim 10^{10} \mathrm{yrs}$
- $\tau_{\text {RGB }} \sim 10^{9} \mathrm{yrs}$
- $\tau_{\text {нв }} \sim 10^{8} \mathrm{yrs}$
- $\tau_{\text {AGB }} \sim 2 \times 10^{7} \mathrm{yrs}$
- $\tau_{\mathrm{PS}} \sim 5 \times 10^{4} \mathrm{yrs}$

A remnant of a 0.6 WD

$\underline{\mathcal{M}}<25 \mathrm{M}_{\odot}$

$$
\begin{aligned}
& \text { Mass loss rate low } \\
& \qquad \mathcal{M}=\mathbf{2 0}-\mathbf{2 5} \mathrm{M}_{\odot} \\
& \text { O type star } \rightarrow \text { red supergiant } \rightarrow \text { supernova } \\
& \boldsymbol{\mathcal { M }}<\mathbf{2 0} \\
& \text { O type star } \rightarrow \text { red supergiant } \rightarrow \text { Cepheid } \\
& \rightarrow \text { red supergiant } \rightarrow \text { supernova }
\end{aligned}
$$

$\mathcal{M}=25-60 M_{\odot}$

Mass loss not sufficient to remove the entire envelope
$\mathcal{M}=40-60 M_{\odot}$
0 type star \rightarrow blue super giant \rightarrow yellow supergiant
\rightarrow red supergiant
\rightarrow blue supergiant \rightarrow WN \rightarrow supernova
$\mathcal{M}=25-40 M_{\odot}$
0 type star \rightarrow blue super giant \rightarrow yellow supergiant
\rightarrow red supergiant
\rightarrow supernova

$\mathcal{M}>60 \mathrm{M}_{\odot}$

Mass loss fierce $\approx 10^{-1} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$, rid of almost entire envelope during the LBV stage, left with a WR star, evolving toward a SN.

O type star \rightarrow Of star \rightarrow blue super giant
\rightarrow luminous blue variable \rightarrow WN star \rightarrow WC star \rightarrow supernova

For the first time, the interior and spectroscopic evolution of a massive star is analyzed from the zero-age main sequence (ZAMS) to the pre-supernova (SN) stage. For this purpose, we combined stellar evolution models using the Geneva code and stellar atmospheric/wind models using CMFGEN. With our approach, we were able to produce observables, such as a synthetic high-resolution spectrum and photometry thereby aiding the comparison between evolution models and observed data. Here we analyze the evolution of a nonrotating $60 M_{\odot}$ star and its spectrum throughout its lifetime. Interestingly, the star has a supergiant appearance (luminosity class I) even at the ZAMS. We find the following evolutionary sequence of spectral types: O3 I (at the ZAMS), O4 I (middle of the H-core burning phase), B supergiant (BSG), B hypergiant (BHG), hot luminous blue variable (LBV; end of H-core burning), cool LBV (H-shell burning through the beginning of the He-core burning phase), rapid evolution through late WN and early WN, early WC (middle of He-core burning), and WO (end of He-core burning until core collapse). We find the following spectroscopic phase lifetimes: $3.22 \times 10^{6} \mathrm{yr}$ for the O-type, $0.34 \times 10^{5} \mathrm{yr}$ (BSG), $0.79 \times 10^{5} \mathrm{yr}(\mathrm{BHG}), 2.35 \times 10^{5} \mathrm{yr}$ (LBV), $1.05 \times 10^{5} \mathrm{yr}(\mathrm{WN}), 2.57 \times 10^{5} \mathrm{yr}$ (WC), and $3.80 \times 10^{4} \mathrm{yr}(\mathrm{WO})$. Compared to previous studies, we find a much longer (shorter) duration for the early WN (late WN) phase, as well as a long-lived LBV phase. We show that LBVs arise naturally in single-star evolution models at the end of the MS when the mass-loss rate increases as a consequence of crossing the bistability limit. We discuss the evolution of the spectra, magnitudes, colors, and ionizing flux across the star's lifetime, and the way they are related to the evolution of the interior. We find that the absolute magnitude of the star typically changes by $\sim 6 \mathrm{mag}$ in optical filters across the evolution, with the star becoming significantly fainter in optical filters at the end of the evolution, when it becomes a WO just a few 10^{4} years before the SN explosion. We also discuss the origin of the different spectroscopic phases (i.e., O-type, LBV, WR) and how they are related to evolutionary phases (H-core burning, H -shell burning, He-core burning).

Read the first 4 paragraphs of this paper.

Stellar Rotation

Fig. 3. Projected equatorial velocities, averaged over all possible inclinations, as a function of spectral type. On the main sequence (luminosity class V), early-type stars have rotational velocities that reach and even exceed $200 \mathrm{~km} / \mathrm{s}$; these velocities drop to a few km/s for late-type stars, such as the Sun (type G2) (Slettebak [20]; courtesy Gordon \& Breach)

Fig. 2.2 Panel A The blue curve is the median equatorial velocity $(4 / \pi)\langle v \sin i\rangle$ for each spectral type from Glebocki and Gnacinski (2005). The green curve shows the equatorial velocity of the Kepler targets, \bar{v} (s.t.), derived from the measured rotation periods and the KIC radii. The black points show measurements by Reiners and Mohanty (2012). In this sample 201 stars have an upper vini limit of $4 \mathrm{~km} / \mathrm{s}$ (due to instrumental limitations), these stars are represented by the solid bar. Panel B The rotation periods $P_{\text {rot }}$ of the stars in our sample, averaged within each spectral
lype. Panel C The same as panel B, but for comparison we show the median of the rotation periods measured by McQuillan et al. (2013) (black points with errorbars), for the stars overlapping with our sample. Similarly, the red curve shows the median of the rotation periods found by Debosscher et al. (2011). Shaded areas and error bars span the upper and lower 34th percentile values from the median. Reproduced with permission from Astronomy \& Astrophysics, © ESO

(c)

Rotation \rightarrow star cooler and fainter

Fio. 1.- Angular momentum per unit mass, as a function of mass fraction interior to a given cylinder about the axis of rotation, for three essumeds laws of differenential rotation (Cases A, B, and C) and for a
uniformly rotating model (Case D) of $30 \mathrm{R}_{\odot}, \log J=52.73$.
D : solid body rotation

> Rotation law:
> angular momentum distribution $j\left(m_{\mathfrak{w}}\right)$ as a function of, $m_{\mathfrak{w}}$, the mass fraction interior to the cylinder of radius \mathfrak{w} about the rotation axis.

Fig. 2.-Theoretical H-R diagram showing model sequences of increasing angular momentum (solid curves). Numbers on curves give calculated velocities at the equator in $\mathrm{km} \mathrm{sec}^{-1}$. The distribution of angular momentum for each sequence is indicated by the letter A, B, C, or D.

Bodenheimer (1971) ApJ, 167, 153

1. Introduction

Massive stars are essential constituents of stellar populations and galaxies in the near and far Universe. They are among the most important sources of ionizing photons, energy, and some chemical species, which are ejected into the interstellar medium through powerful stellar winds and during their extraordinary deaths as supernovae (SN) and long gamma-ray bursts (GRB). For these reasons, massive stars are often depicted as cosmic engines, because they are directly or indirectly related to most of the major areas of astrophysical research.

Despite their importance, our current understanding of massive stars is still limited. This inconvenient shortcoming can be explained by many reasons on which we elaborate below. First, the physics of star formation mean that massive stars are rare (Salpeter 1955). Moreover, their lifetime is short, of a few to tens of millions of years (e.g., Ekström et al. 2012; Langer 2012). These factors make it challenging to construct
evolutionary sequences and relate different classes of massive stars. This is in sharp contrast to what can be done for low-mass stars.

Second, one can also argue that the evolution of massive stars is extremely sensitive to the effects of some physical processes, such as mass loss and rotation (Maeder \& Meynet 2000; Heger et al. 2000), that have relatively less impact on the evolution of low-mass stars. However, the current implementation of rotation in one-dimensional codes relies on parametrized formulas, and the choice of the diffusion coefficients has a key impact on the evolution (Meynet et al. 2013). Likewise, mass-loss recipes arising from first principles are only available for main sequence (MS) objects (Vink et al. 2000, 2001) and a restricted range of Wolf-Rayet (WR) star parameters (Gräfener \& Hamann 2008). Third, binarity seems to affect the evolution of massive stars, given that a large portion of them are in binary systems that will interact during the evolution (Sana et al. 2012).

Fourth, our understanding of different classes of stars is often built by comparing evolutionary models and observations. However, mass loss may affect the spectra, magnitudes, and colors of massive stars, thus making the comparison between evolutionary models and observations a challenge. In addition to luminosity, effective temperature, and surface gravity, the
observables of massive stars can be strongly influenced by a radiatively driven stellar wind that is characteristic of these stars. The effects of mass loss on the observables depend on the initial mass and metallicity, since they are in general more noticeable in MS stars with large initial masses, during the post-MS phase, and at high metallicities. When the wind density is significant, the mass-loss rate, wind clumping, wind terminal velocity, and velocity law have a strong impact on the spectral morphology. This makes the analysis of a fraction of massive stars a difficult task, and obtaining their fundamental parameters, such as luminosity and effective temperature, is subject to the uncertainties that comes from our limited understanding of mass loss and clumping. Furthermore, the definition of effective temperature of massive stars with dense winds is problematic and, while referring to an optical depth surface, it does not relate to a hydrostatic surface. This is caused by the atmosphere becoming extended, with the extension being larger the stronger the wind is. Stellar evolution models are able to predict the stellar parameters only up to the stellar hydrostatic surface, which is not directly reached by the observations of massive stars when a dense stellar wind is present. Since current evolutionary models do not thoroughly simulate the physical mechanisms happening at the atmosphere and wind, model predictions of the evolution of massive stars are difficult to be directly compared to observed quantities, such as a spectrum or a photometric measurement.

Fig. 3. a) HR diagram showing the evolutionary track of a non-rotating star with initial mass of $60 M_{\odot}$ at metallicity $Z=0.014$, using our revised values of $T_{\text {eff. }}$. The color code corresponds to the evolutionary phases of a massive star, with H -core burning in blue, He-core burning in orange, C-core burning in green, and H and/or He-shell burning in gray. b) Similar to a), but color coded according to the spectroscopic phases. Lifetimes of each phase are indicated in parenthesis. c) Evolution of $T_{\text {eff }}$ as a function of age. The color code is the same as in a). d) Surface abundances

Fig. 4. Evolution of the ultraviolet a) (top) and optical spectra b) (bottom) of a non-rotating $60 M_{\odot}$ star. The evolution proceeds from top to bottom, with labels indicating the evolutionary phase, spectral type, scale factor when appropriate, age, and model stage according to Table 1. Note that certain spectra have been scaled for the sake of displaying the full range of UV and optical emission lines.

Test of Stellar Evolution by Star Clusters

Figure 9.21 Evolutionary calculations for stars of different masses forming a hypothetical cluster result in an evolving H-R diagram, shown at four ages. The number of stars and their mass distribution is arbitrary. The dashed lines are lines of constant radius. The dotted lines mark the main-sequence slopes. We note that at 10^{7} years (a), the low-mass stars are not yet settled on the main sequence, while the very massive ones have already left it: the open triangles show the main sequence of massive stars at a much earlier epoch, 10^{5} years. The Hertzsprung gap is conspicuous at 10^{8} years (b) resembling the Hyades-cluster H-R diagram shown in Figure 1.5. By contrast, the continuously-populated track toward the red giant branch is clearly seen at later epochs (c and d), when low-mass stars leave the main sequence.

Initial Mass Function

The birthrate function $B(M, t)$ is the number of stars per unit volume, with masses between M and $M+d M$ that are formed out of ISM during time interval t and $t+d t$.

$$
B(M, t) d M d t=\psi(t) \xi(M) d M d t
$$

where $\psi(\mathrm{t})$ is the star formation rate (SFR), and $\xi(\mathrm{M})$ is the initial mass function (IMF).

For the Galactic disk, SFR is $5.0 \pm 0.5 M_{\odot} \mathrm{pc}^{-2} \mathrm{Gyr}^{-1}$ integrated over the z direction.

IMF: many more low-mass stars than higher mass stars as a result of cloud fragmentation?

The IMF specifies the fractional distribution in mass of a newly formed stellar system. It is often assumed to have a simple power law $\boldsymbol{\xi}(\boldsymbol{M})=\boldsymbol{c} \boldsymbol{M}^{-\alpha}=\boldsymbol{c} \boldsymbol{M}^{-(\mathbf{1}+\Gamma)}$
In general, $\boldsymbol{\xi}(\boldsymbol{M})$ extends from a lower to an upper cutoff, e.g., from 0.1 to 125 solar masses. Commonly used IMFs are those of Salpeter (1955), Scalo (1986), and Miller and Scalo (1979).

- Edwin Salpeter (1955) on solar-neighborhood stars (ApJ, 121, 161) Present-day LF \rightarrow mass-luminosity relation \rightarrow present-day mass function \rightarrow stellar evolution \rightarrow initial mass function $\alpha=2.35$ or $\Gamma=1.35$
- Glenn E. Miller and John M. Scalo extended work below $1 \mathrm{M}_{\odot}$ (1979, ApJS, 41, 513) $\alpha \approx 0$ for $\mathrm{M}<1 \mathrm{M}_{\odot}$
- Pavel Kroupa (2002, Sci, 295, 82)
$\alpha=2.3$ for $\mathrm{M}>0.5 \mathrm{M}_{\odot}$
$\alpha=1.3$ for $0.08 \mathrm{M}_{\odot}<\mathrm{M}<0.5 \mathrm{M}_{\odot}$
$\alpha=0.3$ for $\mathrm{M}<0.08 \mathrm{M}_{\odot}$
- A universal IMF among stellar systems (SFRs, star clusters, galaxies) (Bastian et al. 2010, ARAA). But why?

THE LUMINOSITY FUNCTION AND STELLAR EVOLUTION

Edwin E. Salpeter*
Australian National University, Canberra, and Cornell University
Received July 29, 1954
ABSTRACT
The evolutionary significance of the observed luminosity function for main-sequence stars in the solar neighborhood is discussed. The hypothesis is made that stars move off the main sequence after burning about 10 per cent of their hydrogen mass and that stars have been created at a uniform rate in the solar neighborhood for the last five billion years.

Using this hypothesis and the observed luminosity function, the rate of star creation as a function of stellar mass is calculated. The total number and mass of stars which have moved off the main sequence is found to be comparable with the total number of white dwarfs and with the total mass of all fainter main-sequence stars, respectively.

Figure 1. Initial mass function for field stars in the solar neighborhood taken from a variety of recent studies. These results have been normalized at $1 \mathrm{M} \odot$. For both the MS79 and Scalo 86 IMFs we have adopted 15 Gyr as the age of the Milky Way. Current work suggests that the upper end of the IMF ($>5 \mathrm{M} \odot$) is best represented by a power-law similar to Salpeter (1955) while the low mass end ($<1 \mathrm{M} \odot$) is flatter (Kroupa, Tout, and Gilmore 1993). The shape of the IMF from 1-5 M \odot is highly uncertain. From Meyer et al. (2000) Protostars \& Planets IV

Fig. 17. The Initial Mass Function as measured in the Orion Nebula Cluster.

Fig. 9. The IMF determined in a number of young ($<10 \mathrm{Myr}$) clusters and star forming regions (offset for clarity). The solid lines show the log-normal model that best fits the Pleiades (see Fig. 8). The MFs may be generally consistent with that of the Pleiades but the MF of Upper Sco is quite different. Figure constructed by Bouvier \& Moraux.

$\underline{\text { Stellar Initial Mass Function and Dense Core Mass Function }}$

Formation of Massive Stars

\square Competitive accretion (of cloud cores)
... low-mass protostars competing with each other, and accrete matter from the parent molecular cloud
\square Coalescence of two or more stars with lower masses

THE HIGH-MASS STELLAR INITIAL MASS FUNCTION IN M31 CLUSTERS*

Daniel R. Weisz ${ }^{1.12}$, L. Clifton Johnson ${ }^{1}$, Daniel Foreman-Mackey ${ }^{2}$, andrew E. Dolphin ${ }^{3}$, Lori C. Beerman ${ }^{1}$, Benjamin F. Williams ${ }^{1}$, Julianne J. Dalcanton ${ }^{1}$, Hans-Walter Rix ${ }^{4}$, David W. Hogg ${ }^{2,4}$, Morgan Fouesneau ${ }^{4}$, Benjamin D. Johnson ${ }^{5}$, Eric F. Bell ${ }^{6}$, Martha L. Boyer ${ }^{7}$, Dimitrios Gouliermis ${ }^{4.8}$, Puragra Guhathakurta ${ }^{9}$, Jason S. Kalirai ${ }^{7}$, Alexia R. Lewis ${ }^{1}$, Anil C. Seth ${ }^{10}$, Evan D. Skillman ${ }^{17}$

Submitted on February 17th, 2015

ABSTRACT

We have undertaken the largest systematic study of the high-mass stellar initial mass function (IMF) to date using the optical color-magnitude diagrams (CMDs) of 85 resolved, young ($4 \mathrm{Myr}<\mathrm{t}<25 \mathrm{Myr}$), intermediate mass star clusters $\left(10^{3}-10^{4} \mathrm{M}_{\odot}\right)$, observed as part of the Panchromatic Hubble Andromeda Treasury (PHAT) program. We fit each cluster's CMD to measure its mass function (MF) slope for stars $\gtrsim 2 \mathrm{M}_{\odot}$. By modeling the ensemble of clusters, we find the distribution of MF slopes is best described by $\Gamma=+1.45_{-0.06}^{+0.03}$ with a very small intrinsic scatter. This model allows the MF slope to depend on cluster mass, size, and age, but the data imply no significant dependencies within this regime of cluster properties. The lack of an age dependence sug gests that the MF slope has not significantly evolved over the first $\sim 25 \mathrm{Myr}$, and provides direct observational evidence that the measured MF represents the IMF. Taken together, this analysis - based on an unprecedented large sample of young clusters, homogeneously constructed CMDs, well-defined selection criteria, and consistent principled modeling - implies that the high-mass IMF slope in M31 clusters is universal. The IMF has a slope $\left(\Gamma=+1.45_{-0.06}^{+0.03}\right)$ that is slightly steeper than the canonical Kroupa (+1.30) and Salpeter $(+1.35)$ values, with no drastic outliers in this sample of nearly 100 clusters. Using our inference model on select Milky Way (MW) and LMC high-mass IMF studies from the literature, we find $\Gamma_{\mathrm{MW}} \sim+1.15 \pm 0.1$ and $\Gamma_{\mathrm{LMC}} \sim+1.3 \pm 0.1$, both with intrinsic scatter of $\sim 0.3-0.4$ dex. Thus, while the high-mass IMF in the Local Group may be universal, systematics in literature IMF studies preclude any definitive conclusions; homogenous investigations of the high-mass IMF in the local universe are needed to overcome this limitation. Consequently, the present study high-mass IMF in the local universe are needed to overcome this limitation. Consequently, the present study
represents the most robust measurement of the high-mass IMF slope to date. To facilitate practical use over represents the most robust measurement of the high-mass IMF slope to date. To facilitate practical use over
the full stellar mass spectrum, we have grafted the M31 high-mass IMF slope onto widely used sub-solar mass the full stellar mass spectrum, we have grafted the M31 high-mass IMF slope onto widely used sub-solar mass
Kroupa and Chabrier IMFs. The increased steepness in the M31 high-mass IMF slope implies that commonly Kroupa and Chabrier IMFs. The increased steepness in the M31 high-mass IMF slope implies that commonly
used UV- and Ho-based star formation rates should be increased by a factor of $\sim 1.3-1.5$ and the number of used UV- and $H \alpha$-based star formation rates should be increased by a factor of $\sim 1.3-1$
stars with masses $>8 \mathrm{M}_{\odot}$ are $\sim 25 \%$ fewer than expected for a Salpeter/Kroupa IMF.

Compact Objects

Compact objects

Nuclear energy $4^{m} H-{ }^{m} H_{e}=0.029 m_{H}$ mass deficit $=7 \times 10^{-3} \mathrm{~g} / \mathrm{g}$
\therefore Energy available $=m c^{2}=6 \times 10^{18}$ eng g^{-1}
Chemical energy $\approx 100 \mathrm{kcal} \Rightarrow 4 \times 10^{12} \mathrm{rg} \mathrm{g} \mathrm{g}^{-1}$
Gravitational energy 8.9 . for $0, \frac{3}{5} \frac{M_{\theta}^{2} G}{R_{\theta}} \sim 2 \times 10^{48} \mathrm{eg}$
$\Rightarrow 10^{15} \mathrm{eg} \mathrm{g} \mathrm{g}^{-1}$
Accretion $\frac{M G}{r} \cdot \dot{m}$

$$
\text { In general } \begin{aligned}
\frac{\varepsilon_{n u c}}{\text { mass }} \sim 0.01 \mathrm{C}^{2} \quad & \frac{\varepsilon_{\text {grave }}}{\text { mass }}
\end{aligned} \sim \frac{3 G M}{5 R},
$$

For very compact objects, longe amounts of gravitational energy can be released, perhaps even more than nuclear energy,

$$
R \lesssim \frac{M G}{0.01 \mathrm{c}^{2}} \sim 10^{7} \text { an } \sim 100 \mathrm{~km} \text {, for } 1 \mathrm{M}_{0}
$$

of. Schwareschild radio $R_{S} \equiv \frac{2 G M}{c^{2}} \sim 3 \mathrm{~km}$, for $1 M_{0}$

More about Degeneracy

Atoms in a white dwarf are fully ionized and the e^{-}gas is degenerate.

184 u Bessel observed the oscillated path of Sirius 1862 Sirius B discoved by Clark

$$
\begin{aligned}
M(\operatorname{sinins} B) & \sim 2 \times 10^{33} \mathrm{~g} \longleftarrow \text { orbit } \\
R(\text { sirim } B) \sim & 2 \times 10^{9} \mathrm{~cm} \longleftarrow \text { surface temp. } \\
& \text { \&f } R_{Q} \sim 7 \times 10^{10} \mathrm{am} \text { and radiati }
\end{aligned}
$$

$$
\bar{P}_{\text {siring } B}=\frac{M}{\frac{4}{3} \pi R^{3}} \sim 0.7 \times 10^{5} \mathrm{~g} \mathrm{am}^{-3}
$$

$$
\text { cf } \bar{\rho}_{\text {sun }} \sim 1 \operatorname{gan}^{-3}
$$

Sirius B and A by the Chandra Observatory

$$
\begin{aligned}
& \text { For } \omega D_{s}\langle\rho\rangle \sim 11^{5}-1 c^{6} \mathrm{gam}^{-3} \\
& \text { mean separation of carbon ions } \\
& \left\langle d_{i i}\right\rangle \sim\left(\frac{\rho}{m_{c}}\right)^{-1 / 3} \approx 0.02 \mathrm{~A} \\
& m_{c} \simeq 12 \mathrm{~m}_{\mathrm{H}} \\
& \text { but the size of a normal carbon atom } \\
& r_{c} \simeq \frac{a_{0}}{z} \simeq \frac{a_{0}}{6} \simeq 0.08 \mathrm{~A} \\
& \therefore \text { complete ionization } \\
& \rightarrow \text { fermion gas } r \text { separate nuclei \& } e^{-} \\
& \text {electron gas } \\
& \text { Mean separation of electron } \\
& \left\langle d_{s e}\right\rangle \sim\left(\frac{z \rho}{m_{0}}\right)^{-1 / 3} \approx 0.01 \AA \\
& \text { but } \lambda_{e}=\left[\hbar^{2} / m_{e} k T\right]^{1 / 2} \approx 10 \AA \Rightarrow \text { QM treatment! }
\end{aligned}
$$

Particle in a Box

cf. standing wave in a string
$\Psi=0$ at the walls
\rightarrow De Broglie wavelength

$$
\lambda_{n}=2 L / n, \quad n=1,2,3, \ldots
$$

Since $\lambda_{n}=h / m v \rightarrow E_{K}=1 / 2 m v^{2}=(m v)^{2} / 2 m=\frac{h^{2}}{2 m \lambda^{2}}$
No potential $\rightarrow E_{n}=(m v)^{2} / 2 m=\frac{h^{2}}{2 m \lambda_{n}^{2}}=\frac{n^{2} h^{2}}{8 m L^{2}}=\frac{1}{2 m} \frac{n^{2} \pi^{2} \hbar^{2}}{L^{2}}$

Within the box, the Schrödinger equation

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m}{\hbar^{2}} E \psi=0 \rightarrow \psi_{n}=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}
$$

At the center, ψ_{1}, ψ_{3} probability \rightarrow max
ψ_{2} probability $=0$
c.f. classical physics \rightarrow same probability everywhere in the box

Consider an atom in a box of volume $V=l^{3}$
wave equation $-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=\varepsilon \psi$
energies, $\quad \varepsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi}{l}\right)^{2}\left[n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right]$
where n_{i} 's are quantum no's
any positive integer
(ni_{i})
In the phase space

$$
\begin{aligned}
& \varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi n_{F}}{l}\right)^{2} \\
& n_{F}: \text { radio that separates } \\
& \text { filled amply states }
\end{aligned}
$$

For N electrons

$$
\varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi n_{F}}{\ell}\right)^{2}
$$

$N_{e}=2 \times \frac{1}{8} \times \frac{4}{3} \pi n_{F}^{3} \quad n_{F}=\left(\frac{3}{\pi} N_{e}\right)^{1 / 3}$
2 spin states
$\therefore \varepsilon_{F}=\frac{\hbar^{2}}{2 m} \frac{\pi^{2}}{V^{2 / 3}}\left(\frac{3}{\pi} \mathrm{Ne}\right)^{2 / 3}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} \frac{N_{e}}{V}\right)^{2 / 3}$
$\varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n_{e}\right)^{2 / 3} \sim n_{e}^{2 / 3}$
electron concentration
Fermi energy: the highest filled energy level at temperature zero

The total energy of the system in the ground state

$$
\begin{aligned}
U_{e} & =2 \sum \varepsilon_{n \leq n_{F}}=2 \times \frac{1}{8} \times 4 \pi \int_{0}^{n_{F}} n^{2} \varepsilon_{n} d n \\
& =\frac{\pi^{2}}{2 m}\left(\frac{\hbar^{0}}{l}\right)^{2} \int_{0}^{n_{F}} n^{4} d n \quad \varepsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi n}{l}\right)^{2} \\
& =\frac{\pi^{3}}{10 m}\left(\frac{\hbar^{0}}{l}\right)^{2} n_{F}^{5}=\cdots=\frac{3}{5} N e \varepsilon_{F}
\end{aligned}
$$

Fermi energy of degenerate fermion gases

Phase of matter	Particles	E_{F}	$T_{F}=E_{F} / k_{B}[\mathrm{~K}]$
Liquid ${ }^{3} \mathrm{He}$	atoms	$4 \times 10^{-4} \mathrm{eV}$	4.9
Metal	electrons	$2-10 \mathrm{eV}$	5×10^{4}
White dwarfs	electrons	0.3 MeV	3×10^{9}
Nuclear matter	nucleons	30 MeV	3×10^{11}
Neutron stars	neutrons 300 MeV	3×10^{12}	
		$E_{F}=\frac{\hbar^{2}}{2 m_{e}}\left(3 \pi^{2} n_{e}\right)^{2 / 3}$	

$$
\begin{aligned}
& \text { The average kinetic energy per fermion (} e^{-} \text {) } \\
& \frac{U_{e}}{N_{e}}=\frac{3}{5} \varepsilon_{F} \quad \text { (Degenerate, nonrelativistic) } \\
& \text { For } N=\text { cons, if } n e \uparrow \text { (ide, volume) } \\
& \Rightarrow u_{0} \uparrow \Rightarrow \text { repulsive effect } \\
& \text { the volume. } \\
& \mathbb{P}=\frac{2}{3} u_{e}=\frac{2}{5} n \varepsilon_{F} \\
& \text { It can be shown (!) that for a relativistic, for } \\
& \text { which the energy } \varepsilon \sim p c \\
& \varepsilon_{F}=\hbar \pi c\left(\frac{3}{\pi} n_{e}\right)^{1 / 3} \sim n_{e}^{1 / 3} \\
& \text { and } \frac{U_{e}}{N}=\frac{3}{\mu} \varepsilon_{T} \text { (Degenente, relativistic) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { For any nonrelativistic particles } \\
& \qquad P V=\frac{2}{3} N E_{K} \Rightarrow P=\frac{2}{3} n E_{k} \\
& \text { For nonrelativistic degenerate gas } \\
& \qquad E_{k}=\frac{3}{5} \varepsilon_{F}=\frac{3}{5}\left(3 \pi^{2}\right)^{2 / 3} \frac{\hbar^{2}}{2 m} n_{e}^{2 / 3} \\
& \Rightarrow P_{\text {deg }} \sim 1.004 \times 10^{13}\left(\frac{\rho}{\mu_{e}}\right)^{5 / 3}\left[\text { dynes an }^{2}\right]
\end{aligned}
$$

$$
\mu_{\mathrm{e}} \approx 2 \text { with no } \mathrm{H}
$$

$$
\begin{aligned}
& \text { Degenerate State } \\
& E_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{n \pi}{l}\right)^{2} \Rightarrow E_{f}=\frac{\hbar^{2}}{2 m}\left(\frac{n_{F} \pi}{l}\right)^{2}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n_{e}\right)^{2 / 3} \\
& \text { Total } N_{e}=2 \cdot \frac{1}{8} \cdot \frac{4}{3} \pi n_{F}^{3}=\frac{\pi}{3} n_{F}^{3} \Rightarrow n_{F}=\left(\frac{3}{1} n_{e}\right)^{1 / 3} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Uncertainty prianiople } \Delta V \Delta^{3} p<h^{3} \\
& \text { 2. } 4 \pi p^{2} \alpha p=h^{3} \cdot n_{e}(p) \alpha p \quad \text { Considering the problem in terms of momentum } \\
& \text { unto } p_{F}, \quad 2 \cdot \frac{4}{3} \pi p_{F}^{3}=N_{e}=n_{e} \cdot h^{3} \Rightarrow p_{F}=\left(\frac{3 h^{3}}{8 \pi} n_{e}\right)^{1 / 3} \\
& \text { Presume integral } \mathbb{P}=\frac{1}{3} \int_{0}^{\infty} n(p) v p d p \text { (use } v=p / m_{e} \text {) } \\
& =\frac{1}{3} \int_{0}^{p_{F}} \frac{s \pi p^{2}}{h^{3}} \frac{p}{m_{e}} p d p \\
& =\frac{8 \pi}{3 m e h^{3}} \frac{1}{5} p_{F}^{5}=\frac{8 \pi}{15 m+h^{3}} p_{F}^{5} \\
& \text { For electron, } n_{e}=\frac{\rho}{\mu_{e} m_{H}} \quad \therefore \mathbb{P}=\frac{h^{2}}{20 m_{e}}\left(\frac{3}{\pi}\right)^{2 / 3}\left(\frac{\rho}{\mu_{e} m_{H}}\right)^{5 / 3} \\
& \text { Pressure and Momentum } \\
& \boldsymbol{P}=\frac{1}{3} \int_{0}^{\infty} n(p) v p d p
\end{aligned}
$$

In the non-relativistic case

$$
\begin{aligned}
P_{\mathrm{e}, \mathrm{deg}}^{\mathrm{NR}} & =\frac{h^{2}}{20 m_{e}}\left(\frac{3}{\pi}\right)^{2 / 3} \frac{1}{m_{\mathrm{H}}^{5 / 3}}\left(\frac{\rho}{\mu_{e}}\right)^{5 / 3} \\
& =1.00 \times 10^{13}\left(\frac{\rho}{\mu_{e}}\right)^{5 / 3}[\mathrm{cgs}] \\
& \propto \rho^{5 / 3}
\end{aligned}
$$

In the extremely relativistic case $v \rightarrow c$ in the pressure integral

$$
\begin{aligned}
P_{\mathrm{e}, \mathrm{deg}}^{\mathrm{ER}} & =\frac{h c}{8}\left(\frac{3}{\pi}\right)^{1 / 3} \frac{1}{m_{\mathrm{H}}^{3 / 4}}\left(\frac{\rho}{\mu_{e}}\right)^{4 / 3} \\
& =1.24 \times 10^{15}\left(\frac{\rho}{\mu_{e}}\right)^{4 / 3}[\mathrm{cgs}] \\
& \propto \rho^{4 / 3}
\end{aligned}
$$

For a composition devoid of hydrogen, and not very rich in extremely heavy elements, $\mu_{e} \approx 2$.

$$
\begin{aligned}
& \text { For Stave } M \Sigma 0.8 M_{C} \\
& \\
& \text { Peg enough to support the envelope } \\
& \rightarrow \\
& \rightarrow \text { core contracts slowly, } T \uparrow \text { little } \\
& \rightarrow \\
& \text { envelope expands gradically } \\
& \text { Star moves upwards on } H \cdot R \text { diagram } \\
& \text { Originally, the structure of the star } \\
& \downarrow T \uparrow
\end{aligned}
$$

Why does a red giant puff off?

$$
\begin{aligned}
& \text { As envelope } \uparrow, T \downarrow\left(\text { cooling), } E_{K} \downarrow\right. \text { and } \\
& H^{+}+e^{-} \text {recombine } \\
& H^{+}+e^{-} \longrightarrow H+\gamma \\
& \Rightarrow \text { Energy source! } \\
& \text { So outer envelope (beyond recombination layers) } \\
& \Delta T / \Delta r \uparrow \text { pushing the envelope } \\
& \text { At the same time, gravity } F_{g} \propto 1 / r^{2} \downarrow \downarrow \\
& \text { Recombination } \uparrow \Rightarrow \quad \angle \uparrow, \nabla T \uparrow, F_{g} \downarrow \\
& \Rightarrow \text { T } \downarrow \downarrow \Rightarrow \text { Recombination } \uparrow \uparrow \ldots
\end{aligned}
$$

Mechanical Pressure

$$
P=P_{\text {Ions }}+P_{\text {electrons }}+P_{\text {rad }}+\ldots
$$

- If the gas non degenerate

$$
P_{I}+P_{e}=P_{\text {gas }}=\frac{k}{\mu m_{H}} \rho T
$$

e^{-}

- If gas degenerate P_{z} : ideal gas
P_{e} : degenerate eq. 07 state
- If photon gas $P_{I}+P_{e}$ 《 $P_{\text {rad }=\frac{1}{3} a \pi^{*}}^{\substack{\frac{4 \sigma}{c}}}$

$$
\begin{aligned}
& \text { Note Above needs modifications } \\
& -T \uparrow \uparrow \text {, e.9. } T>10^{9} \mathrm{k} \\
& \qquad p^{+} \cdot e^{-} \text {pain pronation } \\
& -\rho \uparrow \uparrow \text {, particle interaction }<x \text { ideal gas } \\
& -\vec{B} \text {, addition of } P_{\text {mag }} \\
& \text { Radiation pressure } P_{\text {rad }}=\frac{1}{3} a T^{4} \\
& \text { Kor } \mathbb{P}_{\text {gas }}=\mathbb{P}_{\text {rad }} \Rightarrow T=3.20 \times 10^{7}(\rho / \mu)^{1 / 3} \sim 3.6 \times 10^{7} \rho^{1 / 3} \\
& P_{\text {ideal gas }} \propto \rho T / \mu
\end{aligned}
$$

Fig. 2-11 Zones of the equation of state of a gas in thermodynamic equilibrium. Radiation pressure dominates the gas pressure in the upper left-hand corner. The remaining boundaries are similar to those in Fig. 2-7. Also included for comparison are the transition strips in a hydrogen-dominated gas between H^{0} and H^{+}, between He° and He^{+}, and between He^{+}and He^{++}

$$
\begin{aligned}
& \text { Non relativistic, complete degeneracy } \\
& -\mathbb{P}_{N R, e} \sim 1.004 \times 10^{13}\left(\rho / \mu_{e}\right)^{5 / 3}\left[\text { dynes } \mathrm{cmi}^{-2}\right] \\
& \text { of } N R \text {, non-degenerate case, i.e., ideal gas } \\
& - \\
& \mathbb{P i d o a l ~} \sim \rho T \\
& S_{0, \text { as } \rho \uparrow \Rightarrow \mathbb{P}_{\text {ideal }} \longrightarrow \mathbb{P}_{\text {deg }}} \quad \begin{array}{l}
\text { and at relatively } \\
\quad \text { low temperature }
\end{array}
\end{aligned}
$$

Relativistic complete degeneracy
Total energy $\sim m_{0} c^{2}$

$$
p_{0} c
$$

$$
\frac{\rho_{\text {crit }}}{\mu_{e}} \approx 7.3 \times 10^{6}\left[\mathrm{gan}^{3}\right]
$$

where relativistic kinetics has to be used.
Note $\rho>10^{6} \mathrm{gam}^{3}$ or a degerate gas to be relativistic, $T>10^{9} \mathrm{~K}$ to be completely degenerate.
Condition that satisfy both $\rho>10^{6}, T>10^{9}$ probably exist oily in very late stages of stella n evolutions

Almost in all other cases, men relativistic is ok !

$$
\begin{aligned}
& \mathbb{P}_{\text {gas }}=\mathbb{P}_{\text {ono }}+\mathbb{P}_{e^{-}}=\left(\frac{1}{\mu_{s}}+\frac{1}{\mu_{e}}\right) \cdots \\
& \equiv \frac{1}{\mu} \cdots \\
& \therefore \frac{1}{\mu}=\frac{1}{\mu_{x}}+\frac{1}{\mu_{e}}=0.6 \text {, for } \odot \\
& \text { cf. } \frac{1}{\mu_{e}} \approx \frac{1}{2}(1+x) \text { for } \text { © } \\
& \sum_{i} x_{i} \frac{Z_{i}}{A_{i}} \text { [average \#of free electrons } \\
& \left(\frac{\rho}{\mu_{e}}\right)^{5 / 3} \leftrightarrow \rho^{T} n T \sim \rho^{2 / 3} \\
& \frac{P_{\text {crit }}}{\mu_{R}} \gtrsim 2.4 \times 10^{-8} T^{3 / 2}\left[\mathrm{gman}^{-3}\right] \begin{array}{l}
\text { When } \\
\text { sets in } \frac{\text { degeneracy }}{}
\end{array}
\end{aligned}
$$

Figure 7.1 Mapping of the temperature-density diagram according to the equation of state.

In general \rightarrow partial degeneracy

Fig. 15.5. The solid line gives the distribution function ($f(p)$ and p in cgs) for a partially degenerate electron gas with $n_{0}=10^{25} \mathrm{~cm}^{-3}$ and $T=1.9 \times 10^{7} \mathrm{~K}$, which corresponds to a degeneracy parameter $\psi=10$ (cf. the case of complete degeneracy of Fig. 15.2). The dot-dashed line shows the further increase of the parabola that defines an upper bound for the distribution function

... need evaluation of each parameter ...

$$
\begin{aligned}
& n_{e}=\frac{8 \pi}{h^{3}} \int_{0}^{\infty} \frac{p^{2} d p}{1+\exp [E / R T-\psi]} \\
& P_{e}=\frac{8 \pi}{3 h^{3}} \int_{0}^{\infty} p^{3} \cdot v_{(P)} \frac{d p}{1+\exp \left[\frac{E}{R T}-\psi\right]} \\
& u_{e}=\frac{8 \pi}{h^{3}} \int_{0}^{\infty} \frac{E P^{2} d p}{1+\exp \left[\frac{E}{R T}-\psi\right]}
\end{aligned}
$$

In the now rel. case $E=P^{2} / 2 \mathrm{me}_{\mathrm{e}}$

$$
\begin{gathered}
n_{e}=\frac{8 \pi}{h^{3}} \int \frac{p^{2} d p}{1+\exp \left[\frac{p^{2}}{2 m_{k} k T}-\psi\right]} \equiv \frac{8 \pi}{h^{3}}\left(2 m_{e} k T\right)^{3 / 2} a(\psi) \\
\text { where } a(\psi)=\int_{0}^{\infty} \frac{\eta^{2}}{1+e_{x p}\left[\eta^{2}-\psi\right]} d ? \\
\text { where } \eta \equiv p /\left(2 m_{e} k T\right)^{1 / 2} \\
\text { Note }=n_{e} \sim T^{3 / 2} a(\psi) \\
\text { So, } \psi \equiv \psi\left(n_{e} T^{-3 / 2}\right) \\
\vdots \\
\text { (rel. case 田各) }
\end{gathered}
$$

$$
\begin{aligned}
& \text { Define Fermi- Dirac integral } \\
& \qquad F_{\nu}(\psi)=\int_{0}^{\infty} \frac{u^{\nu}}{1+e^{u-\psi}} d u \\
& n_{e}=\frac{4 \pi}{h^{3}}\left(2 m_{e} / R T\right)^{3 / 2} F_{1 / 2}(\psi) \\
& \text { In general, the condition maybe neither } \\
& \text { highly relativistic, nor completely nonreletivistie. } \\
& \text { The pressure can be expresacel as } \\
& \mathbb{P}=K \quad f(x) \quad x=P_{F} / m_{e} c \\
& f(x)=\cdots \quad
\end{aligned}
$$

Tabulation of Fermi integrals

> For partial degeneracy: Fermi-Dirae function
> See: clayton
> Radiation pressure $P_{\text {rad }}=\frac{1}{3} a T^{4}$
> $P_{\text {gas }}=P_{\text {rad }} \Rightarrow T=3.20 \times 10^{7}(\rho / \mu)^{1 / 3}$

$$
\begin{aligned}
& \boldsymbol{P}_{\text {ideal gas }} \propto \rho T / \mu \\
& \boldsymbol{P}_{e, \text { deg }}^{N R}=1.00 \times 10^{13}\left(\frac{\rho}{\mu_{e}}\right)^{5 / 3}[\mathrm{cgs}] \\
& \boldsymbol{P}_{e, \text { deg }}^{E R}=1.24 \times 10^{15}\left(\frac{\rho}{\mu_{e}}\right)^{4 / 3}[\mathrm{cgs}] \\
& \boldsymbol{P}_{\mathrm{rad}}=\frac{1}{3} a T^{4} \\
& \text { Non-Relativistic, Non-Degenerate (ide., ideal gas) } \\
& \text { Non-Relativistic, Extremely Degenerate } \\
& \text { Extremely Relativistic, Extremely Degenerate } \\
& \text { Figure 7.1 Mapping of the temperature-density diagram according to the equation of state. } \\
& \left.\begin{array}{ll}
N R, N D & P \sim P T \\
N R, E D & P \sim \rho^{5 / 3}
\end{array}\right\} \log \rho=1,5 \log T+\operatorname{con} t . \\
& \text { ER, ED } \left.\begin{array}{rl}
p \sim \rho^{4 / 3} \\
& (\sim \rho T)
\end{array}\right\} \log \rho=3 \log T+\text { cont } \\
& \text { Prod us Pidares gao } \left.\begin{array}{l}
P_{\text {rad }} \sim T^{\prime \prime} \\
P_{\text {gao }} \sim \rho T
\end{array}\right\} \quad \log \rho=3 \log T+\operatorname{conot}
\end{aligned}
$$

Figure 7.2 Mapping of the temperature-density diagram according to nuclear processes.

$$
\begin{aligned}
& q=q_{0} p^{m} T^{n \quad \text { threshold } \quad q>q_{\min }\left(\equiv 10^{3} \operatorname{lng} s^{-1} g^{-1}\right)} \begin{array}{l}
\log \frac{q_{m i n}}{q_{0}}=m \log p+n \log T \quad \Rightarrow \text { important } \\
\Rightarrow \log p=-\frac{n}{m} \log T+\frac{1}{m} \log \left(q_{m i n} / q_{0}\right) \\
\Rightarrow \operatorname{sope}<0 \\
\text { for } H(p-p, C N O), H e(3 \alpha), C, 0, S ; \text { burning, } n>m
\end{array}
\end{aligned}
$$

\Rightarrow nearly vertical lmes

Figure 7.3 Outline of the stable and unstable zones in the temperature-density diagram.
$r>4 / 3 \Rightarrow$ stability

Figure 7.4 Relation of central density to central temperature for stars of different masses within the stable ideal gas and degenerate gas zones.

Figure 7.5 Schematic illustration of the evolution of stars according to their central temperature-density tracks.

From nonrelativistic to relativistic degeneracy

In a completely degenerate gas, the equation of
state

$$
\mathbb{P} \sim \rho^{5 / 3} N R
$$

$$
\text { or } \mathbb{P} \sim \rho^{u / 3} E R \quad \text { of ideal gas }
$$

Hydrostatic equilibrium n requmes

$$
\mathbb{P} \sim \frac{M^{2}}{R^{4}}
$$

In the nourelativstic case There is a solution in case of NR.

$$
\begin{aligned}
& \mathbb{P} \sim \frac{M^{2}}{R^{4}} \sim \rho^{5 / 3} \approx\left(\frac{M}{R^{3}}\right)^{5 / 3} \sim \frac{M^{5 / 3}}{R^{5}} \\
& \Rightarrow R \sim M^{-1 / 3}
\end{aligned}
$$

$$
\therefore R \downarrow \text { as } M \uparrow \text { for } \omega D_{s} \quad \begin{aligned}
& \text { The more massive of a } \\
& W D, ~ t h e ~ s m a l l e r ~ o f ~ i t s ~ s i z e . ~
\end{aligned}
$$

Numerically

$$
\log \left(\frac{R}{R_{\theta}}\right)=-\frac{1}{3} \log \left(\frac{M}{M_{\theta}}\right)-\frac{5}{3} \log \left(\mu_{e}\right)-1.397
$$

$$
\text { For } \begin{aligned}
1 M_{\odot}, R & =0.0126 R_{\odot} \\
\langle\rho\rangle & \sim 7 \times 10^{5} \mathrm{gam}^{-3}
\end{aligned}
$$

$$
\text { (Lang) Vol. } 1
$$

What happens in
the ER case?

Total kinetic energy

$$
\begin{gathered}
E_{R}=N_{e} \frac{p^{2}}{2 m}(N R) \\
\left(\begin{array}{c}
\text { degeneracy } p \\
\text { and } \Delta p_{\Delta} \Delta x \hbar \\
n_{e}=\frac{N_{e}}{R^{3}}, \Delta p \sim \frac{\hbar}{\Delta x} \sim \frac{\hbar}{n^{-1 / 3}}
\end{array}\right) \\
E_{t /}=\frac{N_{e}(\Delta p)^{2}}{2 m_{e}}=\frac{N_{e}^{5 / 3}}{2 m_{e}} \cdot \frac{\hbar^{2}}{R^{2}} \sim \frac{1}{\mu_{e}} \\
\left(N_{e}=\frac{M Z}{A m_{N}} \approx \frac{1}{2} \frac{M}{m_{M}}\right)
\end{gathered}
$$

Virial theorem (Equipartion)
$E_{P}=\left|\frac{G M^{2}}{R}\right| \simeq 2 E_{K} \Rightarrow R \approx \frac{\hbar^{2}}{G m_{0} m_{M}^{5 / 3}} \cdot M^{1 / 3}$
Note $M^{1 / 3} R \approx$ cont

$$
\frac{R}{R_{\odot}} \approx \frac{1}{74}\left(\frac{M_{\odot}}{M}\right)^{1 / 3}
$$

The luminosity $L=4 \pi R^{2} \sigma T_{\text {eff }}^{4} \approx \frac{1}{74^{2}}\left(\frac{M_{\odot}}{M}\right)^{2 / 3}\left(\frac{T_{\text {eff }}}{6000}\right)^{4} \quad\left[L_{\odot}\right]$
So a WD with $M=0.4 \mathrm{M}_{\odot}$ and $T_{\mathrm{eff}}=10^{4} \mathrm{~K}$ has $L=3 \times 10^{-3} \mathrm{~L}_{\odot}$

Gravity

$$
g=\frac{G M}{R^{2}} \approx 74^{2}\left(\frac{M}{M_{\odot}}\right)^{5 / 3} \frac{G M_{\odot}}{R_{\odot}^{2}}
$$

For a WD with $M=0.4 \mathrm{M}_{\odot}, \mathrm{g}=4 \times 10^{7} \mathrm{~cm} \mathrm{~s}^{-2}$

Gravitational Red shift

$$
\frac{\Delta \lambda}{\lambda}=\left(1-\frac{2 G M}{R c^{2}}\right)^{-1 / 2} \approx \frac{G M}{R c^{2}} \approx 74\left(\frac{M}{M_{\odot}}\right)^{4 / 3} \frac{G M_{\odot}}{R_{\odot} c^{2}}
$$

In case of $E R, E_{R}=N_{k} p c$ There is no solution in case of ER.

$$
\begin{aligned}
& E_{R}=N_{e} \frac{\hbar N_{e}^{1 / 3}}{R} \cdot c=\frac{M^{M / 3} \hbar c}{m_{H}^{U / 3} \cdot R} \\
& E_{P}=\left|\frac{G M^{2}}{R}\right| \\
& E_{R} \approx E_{P}, R \text { cancels out; no solution for } \\
& M \equiv M(R) \\
& P=\frac{M^{2}}{R^{4}}(\text { if })=\rho^{4 / 3}=\left(\frac{M}{R^{3}}\right)^{4 / 3} \rightarrow \text { no solution }
\end{aligned}
$$

\square For degenerate gas, $M_{\mathrm{WD}} \uparrow, R_{\mathrm{WD}} \downarrow$
\square For $M_{\mathrm{WD}}=1 M_{\odot}, R_{\mathrm{WD}}=0.02 R_{\odot}$
\square There is an upper limit to the mass

$$
\begin{aligned}
M_{\text {limit }} \approx\left(\frac{\hbar c}{G M_{H}^{4 / 3}}\right)^{3 / 2} \approx 2 M_{\odot} \quad \mu_{e} & =1 \text { (for } \mathrm{H}) \\
& =2 \text { (for } \mathrm{He}) \\
& =56 / 26=2.15
\end{aligned}
$$

Rigorously,

$$
M_{\mathrm{limit}} \approx \frac{5.836}{\mu_{e}^{2}} M_{\odot}
$$

$$
M_{\text {limit }}(\mathrm{Fe})=1.26 \mathrm{M}_{\odot}
$$

Weinberg (1972) $M_{\mathrm{limit}} \approx 1.2 M_{\odot}$, Later value $M_{\mathrm{limit}} \approx 1.44 M_{\odot}$

TABLE 8.5. Central Densities, Total Mass, and Radius of Different White Dwarf Models,
Taking $\mu_{e}=2$ (Negligible Hydrogen Concentration). ${ }^{a}$

$$
\begin{aligned}
& M_{c h}=1.44 M_{\odot} \text { needs } \\
& \text { corrections } \\
& \text { - grav force on nuclei } \\
& \text { deg. force on electrons }
\end{aligned}
$$

$\log \rho_{c}$	M / M_{\odot}	$\log R / R_{\odot}$
5.39	0.22	-1.70
6.03	0.40	-1.81
6.29	0.50	-1.86
6.56	0.61	-1.91
6.85	0.74	-1.96
7.20	0.88	-2.03
7.72	1.08	-2.15
8.21	1.22	-2.26
8.83	1.33	-2.41
9.29	1.38	-2.53
∞	1.44	$-\infty$

${ }^{a}$ See text for comments (after M. Schwarzschild (Sc58b)). From Structure and Evolution of the Stars ©1958 by Princeton University Press, p. 232.

$$
\begin{aligned}
& L=\sigma T_{e}^{\mu}\left(4 \pi R^{2}\right) \\
& \log \left(\frac{L}{L_{\odot}}\right)=4 \log \left(\frac{T_{e}}{T_{e \odot}}\right)+2 \log \left(\frac{R}{R_{\odot}}\right)
\end{aligned}
$$

FIGURE 8.14. White dwarf Hertzsprung-Russell diagram. Lines of constant radius are shown. Also shown are the masses based on completely degenerate core models containing elements having $\mu_{e}=2$ (after Weidemann(We68)). Reprinted with permission from Annual Review of Astronomy and Astrophysics, Vol. 6, 01968 by Annual Reviews, Inc.).

The Astrophysical Journal, 784:57 (10pp), 2014 March 20

Figure 4. Top: J vs. $J-K_{s}$ CMD for all the stars (gray dots), those with angular distances greater than 3° from the cluster center but with $\Delta \mu<9 \mathrm{mas} \mathrm{yr}^{-1}$ (small black crosses), those within 3° from the cluster center and with $\Delta \mu<9 \mathrm{mas} \mathrm{yr}^{-1}$ (blue open circles), and those within 3° and with $\Delta \mu<4$ mas yr $^{-1}$ (blue filled circles). The stars at the very center of the cluster, namely within 30^{\prime}, and with $\Delta \mu<4$ mas yr^{-1} are highly probable members and are marked as orange crosses. Note the group of blue stragglers beyond the main sequence turn-off point (Andrievsky 1998). Bottom: g_{PI} vs. $g_{\mathrm{PI}}-y_{\mathrm{PI}}$ CMD, with the same symbols as in the top panel. The group of stars near $g_{\mathrm{P} 1}=18 \mathrm{mag}$, and $g_{\mathrm{PI}}-y_{\mathrm{PI}}=-1$ mag include white dwarfs known in the cluster (Debbie et al. 2004, 2006).

The Astronomical Journal, 143:11 (21pp), 2012 January
O 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

A DEEP, WIDE-FIELD, AND PANCHROMATIC VIEW OF 47 Tuc AND THE SMC WITH HST: OBSERVATIONS AND DATA ANALYSIS METHODS*

Jason S. Kaliral ${ }^{1,8}$, Harvey B. Richer ${ }^{2}$, Jay Anderson ${ }^{1}$, Aaron Dotter ${ }^{1}$, Gregory G. Fahlman ${ }^{3}$, Brad M. S. Hansen ${ }^{4}$, Jarrod Hurley ${ }^{5}$, Ivan R. King ${ }^{6}$, David Reitzel ${ }^{4}$, R. M. Rich ${ }^{4}$, Michael M. Shara ${ }^{7}$, Peter B. Stetson ${ }^{3}$, and Kristin A. Woodley ${ }^{2}$
${ }^{1}$ Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA; jkalirai@stsci.edu, jayander/dotter@ stsci.edu

White Dwarf Cooling

\square WDs are supported by electron degeneracy pressure. With no sustaining energy source (such as fusion), they continue to cool and fade \rightarrow very faint
The luminosity of the faintest WDs in a star cluster $\longleftrightarrow \rightarrow$ cooling theory \rightarrow age
\square The age of the oldest globular cluster = lower limit of the age of the universe

Limiting $V=30$

White Dwarf Cooling

ON THE THEORY OF WHITE DWARF STARS

I. The Energy Sources of White Dwarfs

L. Mestel
(Communicated by F. Hoyle)

(Received 1952 May 9)

Summary

Present theories of the origin of white dwarfs are discussed; it is shown that all theories imply that there can be no effective energy sources present in a white dwarf at the time of its birth. The temperature distribution of a white dwarf is then discussed on the assumption that no energy liberation occurs within the star, and that it radiates at the expense of the thermal energy of the heavy particles present. In the resulting picture, a white dwarf consists of a degenerate core containing the bulk of the mass, surrounded by a thin, non-degenerate envelope. The energy flow in the core is due to the large conductivity of the degenerate electrons, while the high opacity of the outer layer keeps down the luminosity to a low level. Estimates of the ages of observed white dwarfs are given and interpreted. Finally, it is shown that white dwarfs may accrete energy sources and yet continue to cool off, provided the temperature at the time of accretion is not too high; this suggests a possible model for Sirius B.

Boundary between the degenerate core d the $\left(r_{b}\right)$ radiative envelope
$r<r_{b}, T=T_{c}$
$r>r_{b}, L=$ cons

$$
m(r>r b) \simeq M
$$

Figure 8.13 Sketch of the configuration of a cooling white dwarf.

In the envelope,

(1) $\quad \frac{d P}{d r}=-\rho \frac{G M}{r^{2}} \quad$ (ie. $M(r) \rightarrow M$)
(2) $\frac{d T}{d r}=-\frac{3}{4 a c} \frac{k \rho}{T^{3}} \frac{L}{4 \pi r^{2}} \quad($ i.e. $F(r) \rightarrow L)$
(3) $\quad k=k_{0} \rho T^{-3.5}=k_{0} \frac{\mu m_{\mu}}{\notin P} \mathbb{P} T^{-4.5}$ Ideal gas
(3) into (2), and (1)/(2)

$$
\begin{aligned}
& \frac{d P}{d T}=\frac{G M 16 \pi a c}{3 K L} T^{3}=\frac{16 \pi a c G M T^{3}}{3 K_{0} \mu m_{n} P T^{-4.5}} \cdot \frac{R}{L} \\
& =\frac{16}{3} K_{1} \frac{M}{L P} T^{* 7.5} \\
& P d P=\frac{16}{3} K, \frac{M}{L} T^{7.5} d T \\
& \frac{1}{2} P^{2}=\frac{16}{3} K_{1} \frac{M}{4} T^{8.5} \quad \text { is integrate inward, }
\end{aligned}
$$

$$
\begin{aligned}
& P=\cdots\left(\frac{M}{L} T^{8.5}\right)^{1 / 2} \quad \frac{1}{2} P^{2}=\frac{16}{3} K \cdot \frac{M}{2} \frac{T^{8.5}}{8.5} \\
& P(T)=\left(\frac{64}{51} K_{1}\right)^{1 / 2}\left(\frac{M}{L}\right)^{1 / 2} T^{17 / 4}
\end{aligned}
$$

This is the general radiative zero solution to the outer envelope (atmosphere) of stars
or
(4) $\int(T)=K_{2}\left(\frac{M}{L}\right)^{1 / 2} T^{13 / 4}$

$$
\begin{aligned}
& \text { At } r_{b}, e^{-} \text {ideal gas presume }=\begin{array}{c}
\text { degenerate gas } \\
\text { prase }
\end{array} \\
& P_{e}=\left(\frac{k}{\mu m_{N}} \rho T\right)_{b}=P_{\text {deg }}=K_{1}^{\prime}\left(\frac{\rho}{\mu_{e}}\right)_{b}^{5 / 3} \\
& \rho T=K_{2}^{\prime} \rho^{5 / 3} \\
& \rho=K_{3}^{\prime} T_{b}^{3 / 2} A \\
& \text { Here } T_{b}=T_{c} \\
& \therefore \frac{L}{M} \sim \frac{T^{3 / 2}}{\rho^{2}} \sim \frac{T^{13 / 2}}{T^{3}} \sim T_{c}^{3.5} \\
& \frac{L}{M}=K T_{e}^{3.5} L \leftarrow T(T)=K_{2}\left(\frac{M}{L}\right)^{1 / 2} T^{13 / 4} \\
&
\end{aligned}
$$

$$
\frac{L}{L_{\odot}}=6.4 \times 10^{-3} \frac{\mu}{\mu_{e}^{2}} \frac{M}{M_{\odot}} \frac{1}{\kappa_{0}} T_{c}^{3.5} \leftarrow \rightarrow \text { chemical composition and opacity }
$$

$$
\text { Numerically, with constants }\left(\mu, \mu_{e}, k_{3}^{\prime}\right) \text { typical }
$$

$$
\text { for a } W D
$$

$$
\frac{L / L_{0}}{M / H_{0}} \approx 6.8 \times 10^{-3}\left(\frac{T_{e}}{10^{7} \mathrm{~K}}\right)^{3.5}
$$

$$
\stackrel{\sim}{T_{C}} \approx 4 \times 10^{7}\left(\frac{L / L_{0}}{M / M_{0}}\right)^{2 / 7}[k] \text { of } T_{F} \sim 10^{9} \mathrm{k}
$$

The interior of a WD need not be exceedingly hot.

$$
\begin{array}{lr}
\text { Energy source: } E_{\text {thermal }}^{\text {ions }}=(3 / 2) \frac{M}{\mu_{I} m_{H}} k T & \frac{L}{M}=K T_{e}^{3.5} \\
\text { Luminosity } L & =-d E_{\text {thermal }}^{\text {ions }} / d t \\
& =-(3 / 2) \frac{M}{\mu_{I} m_{H}} k d T_{c} / d t
\end{array} \begin{aligned}
d t & \Longleftrightarrow \frac{d L}{2} T_{c}^{5 / 2} \frac{d T_{c}}{d t}
\end{aligned}
$$

(5) $\therefore L=-\frac{3}{7} \frac{M}{\mu m_{H}} k \frac{T_{e}}{L} \frac{d L}{d t}$

$$
\Rightarrow \frac{d L}{d t}=-M T_{c}^{6}
$$

$$
\begin{aligned}
& L=-\frac{M T_{c}}{L} \frac{d L}{\frac{d}{t}} \\
& \frac{d L}{d t}=-\frac{L^{2}}{M T_{c}}=\frac{M^{2}}{M T_{c}} T_{c}^{7}
\end{aligned}
$$

Cooling rate $\downarrow \downarrow \downarrow$ as $T_{c} \downarrow$

Thermal energy of ions in the isothermal core

$$
E_{k, i o n}=\frac{3}{2} \frac{M}{\mu_{I} m_{N}} R T_{c}
$$ = energy source of a white dwarf

Luminosity $L=-\frac{d E_{K}}{d t}=-\frac{3}{2} \frac{M}{\mu_{I} m_{M}} k \frac{d T_{C}}{d t}$

$$
L \downarrow \text { as } T_{c} \downarrow
$$

but $T_{c} \sim L^{2 / 7}$
\Rightarrow lower. mass WD, evolves plowlier
Cooling timescale, from $T_{e}{ }^{\prime}, L$ ' Yo $T_{c},{ }^{\circ} L$

$$
\begin{aligned}
& \text { Integrate (5) } \\
& \tau_{\text {cool }}=0.6 \frac{k}{\mu_{2} m M} M\left(\frac{T_{e}}{L}-\frac{T_{e}^{\prime}}{L^{\prime}}\right) \\
& I f T_{e}^{\prime} \gg T_{e} \quad\left(\frac{T_{e}^{\prime}}{L^{\prime}} \sim T_{e}^{\prime-2.5}\right) \Rightarrow \frac{T_{e}}{L} \gg \frac{T_{e}^{\prime}}{L^{\prime}}
\end{aligned}
$$

$$
\hat{\tau}_{\operatorname{cool}} \approx 2.5 \times 10^{6}\left(\frac{M / M_{0}}{L / L_{0}}\right)^{5 / 7}[y r]
$$

Core Temperature

$$
\begin{aligned}
M & \approx \mathrm{M}_{\odot}, L_{L}^{L} \odot \\
& \approx 10^{-4}-10^{-2} \text { B } \rightarrow T_{\mathrm{c}} \approx 10^{6} \mathrm{~K} \\
A & \rightarrow \rho_{\mathrm{b}} \approx 10^{3} \mathrm{~g} \mathrm{~cm}^{-3}
\end{aligned}
$$

Envelope

$$
\ell \approx \frac{P}{\rho g} \approx \frac{k T}{\mu g}
$$

$T \sim 10^{6} \mathrm{~K}, l \approx 1-10 \mathrm{~km}$
Envelope mass $<4 \pi R^{2} l \rho_{\mathrm{b}} \approx 2 \times 10^{-4} \mathrm{M}_{\odot}$, is indeed small

Figure 8.15 White dwarfs in the H-R diagram. Lines of constant radius (mass) are marked [data from M. A. Sweeney (1976), Astron. \& Astrophys., 49]

$$
\begin{aligned}
& M R^{3}=\text { const, and } L \propto R^{2} \mathrm{~T}_{\text {eff }} \\
& \rightarrow \text { WD evolutionary tracks }
\end{aligned}
$$

$$
\log \left(\frac{L}{L_{\odot}}\right)=4 \log \left(\frac{\mathrm{~T}_{\text {eff }}}{T_{\odot}}\right)-\frac{2}{3} \log \left(\frac{M}{M_{\odot}}\right)+\mathrm{C}
$$

Figure 8.14 White dwarf luminosity function: number density of white dwarfs within a logarithmic luminosity interval corresponding to a factor of $10^{2 / 5} \approx 2.5$ against luminosity [data from D. E. Winget et al. (1987), Astrophys. J., 315].

[^5]THE WHITE DWARF COOLING SEQUENCE OF THE GLOBULAR CLUSTER MESSIER 4^{1}
Brad M. S. Hansen, ${ }^{2,3}$ James Brewer, ${ }^{4}$ Greg G. Fahlman, ${ }^{4,5}$ Brad K. Gibson, ${ }^{6}$ Rodrigo Ibata, ${ }^{7}$ Marco Limongi, ${ }^{8}$ R. Michael Rich, ${ }^{2}$ Harvey B. Richer, ${ }^{4}$ Michael M. Shara, ${ }^{9}$ and Peter B. Stetson ${ }^{10}$

Received 2002 March 5; accepted 2002 June 26; published 2002 July 11

ABSTRACT

We present the white dwarf sequence of the globular cluster M4, based on a 123 orbit Hubble Space Telescope exposure, with a limiting magnitude of $V \sim 30$ and $I \sim 28$. The white dwarf luminosity function rises sharply for $I>25.5$, consistent with the behavior expected for a burst population. The white dwarfs of M4 extend to approximately 2.5 mag fainter than the peak of the local Galactic disk white dwarf luminosity function. This demonstrates a clear and significant age difference between the Galactic disk and the halo globular cluster M4. Using the same standard white dwarf models to fit each luminosity function yields ages of $7.3 \pm 1.5 \mathrm{Gyr}$ for the disk and 12.7 ± 0.7 Gyr for M4 (2σ statistical errors).

White dwarf sequence of M4

Blue - H atmosphere models Red - He atmosphere models
for a $0.6 \mathrm{M}^{\prime \prime}$ WD

- The WD envelope is typically thin, $\sim 1 \%$ of the total WD radius.
- DA WD: layer of $M_{\mathrm{He}} \sim 10^{-2} M_{\mathrm{WD}}$ outside the CO core, then an outer layer $M_{\mathrm{H}} \sim 10^{-4} M_{\mathrm{WD}}$
- A non-DA WD layer of $M_{\mathrm{He}} \sim 10^{-2}-10^{-3} M_{\mathrm{WD}}$

Supernovae and Others

Possible evolutionary paths of a supernova

1. Core collapse
2. Thermonuclear runaway

Evolution of an Intermediate-mass (8 to $25 \mathrm{M}_{\odot}$) or High-mass ($>25 \mathrm{M}_{\odot}$) Star

\square Core size ~ Earth
\square Layers of nuclear reactions (cf an onion)
\square Envelope as a supergiant, with the diameter comparable to the Jupiter's orbit

Each subsequent reaction proceeds ever faster; silicon \rightarrow iron
An iron nucleus is most compact between protons and neutrons
\rightarrow further fusion does not release energy
\rightarrow iron core collapses ($\mathrm{D} \sim 3000 \mathrm{~km}$, collapses in $\sim 0.1 \mathrm{~s}$)

	Evolutionary Stages of a $25-\mathrm{M}_{\odot}$ Star		
Stage	Central temperature (K)	Central density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Duration of stage
Hydrogen fusion	4×10^{7}	5×10^{3}	$7 \times 10^{6} \mathrm{yr}$
Helium fusion	2×10^{8}	7×10^{5}	$5 \times 10^{5} \mathrm{yr}$
Carbon fusion	6×10^{8}	2×10^{8}	6×10^{9}
Neon fusion	1.2×10^{9}	1×10^{10}	1 yr
Oxygen fusion	1.5×10^{9}	3×10^{10}	6×10^{12}
Silicon fusion	2.7×10^{9}	4×10^{17}	1 mo
Core collapse	5.4×10^{9}	varies	0.2 s
Core bounce	2.3×10^{10}	about 10^{9}	
Supernova explosion			

Iron core collapse $\rightarrow 5$ billion $\mathrm{K} \rightarrow$ photodisintegration by energetic gamma rays
The star spends millions of years on the main sequence, synthesizing simple nuclei such as H and He to iron, then takes less than a second to disintegrate back to protons, neutrons and electrons.

Density of the core $\nearrow \nearrow$, reaching $4 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3}$ (cf density of a nucleus) in $<1 \mathrm{~s} \rightarrow$ even the electron degenerate pressure cannot support the core $\rightarrow e^{-}+p^{+} \rightarrow n^{0}+v$

Core supported by neutron degenerate pressure \rightarrow a neutron star
Core bounces \rightarrow supernova explosion + supernova remnant

Evolution of a Binary System

- Both stars of a few solar masses
- More massive component $\rightarrow \mathrm{RG} \rightarrow$ transfers and loses mass \rightarrow a hot WD
- Secondary \rightarrow RG \rightarrow fills the Roche lobe \rightarrow transfers mass to the hot WD via an accreting disk
- Accreted material is compressed and heated, and if $T>10^{7} \mathrm{~K}$ \rightarrow CNO takes place at the base of the accreted layer (even with a thermonuclear runaway if the material is degenerate)
\rightarrow A nova explosion
If accretion onto a C-O WD \rightarrow core mass $>\mathrm{M}_{\mathrm{Ch}}=1.4 \mathrm{M}_{\odot}$
\rightarrow Catastrophic collapse +C burning \rightarrow a Type Ia supernova

Fig. 7.10. Schematic light curve for a typical nova; the time axis is arbitrary and not to scale.

Accreting Binary Systems

A semi-detached	e 7.4. Taxonomy of binary systems		
	Name	Description	Remarks
binary system with the primary being a	Algols	Two normal stars (main sequence or subgiants): semidetached binary	Provide checks on stellar evolution, information on mass loss
WD: (in increasing L) \checkmark dwarf nova	RS Canum Venaticorum	Chromospherically active binaries	Useful for studies of dynamo-based magnetic activity; exhibits starspot chromospheres, corona, and flares similar to the Sun
classical nova (these may be	W Ursae Majoris	Short period (0.2-0.8 days) Contact binaries	High levels of magnetic activity, important for studying stellar dynamo model
cataclysmic variables)	Cataclysmic variables and novas	White dwarfs with cool M-type secondaries; short periods	Exhibits accretion phenomena and accretion disks
\checkmark type Ia supernova	X-ray binaries	Neutron star or black hole as the compact component; powerful x-ray sources with $L_{x}>10^{35}$ ergs s $^{-1}$	Study of structure and evolution of compact remnants; indirect evidence for black holes
	ζ Aurigae/ VV Cephi	Long-period interacting binaries; Late-type supergiant plus a hot companion	Study of supergiant phase, especially atmospheres of supergiants

Gum Nebula is the largest SNR in the sky, originated from a supernova explosion perhaps a Myr ago.

Gum Nebula has a angular extent $>40 \mathrm{deg} \rightarrow$ linear size more than 2300 ly across \rightarrow The closest part from Earth ~ 300 ly

Cassiopeia A SNR is 3.4 kpc from us. The explosion should have been seen 300 years ago, but was not recorded.

X rays

Visible (HST)

Radio

Supernovae in History

- OB association in Scorpius-Centaurus Solar system within 150 ly 2 Myr ago; should have experienced SN explosions

Table 10.1 Historical supernovae

Galaxy: Name	Year	Distance $\times 3000$ ly
Milky Way:		
\quad Lupus	1006	1.4
Crab	1054	2.4
3C 58	$1181(?)$	2.6
Tycho	1572	2.5
Kepler	1604	4.2
Cas A	1658 ± 3	2.8
Andromeda	1885	700
LMC: SN1987A	1987	50

SN 1987A
First observed $24 \mathrm{Feb}, 1987$
not quite $S N$ II
preSN progenitor observed and sp. Classified
Sanduleak-69202
$S_{p}=B 3 I$
$L \sim 1.1 \times 10^{5} L_{\odot} ; T_{\text {eff }} \sim 16,000 \mathrm{~K}$
($M \sim 16-22 M_{\odot}$)
Pop I but metal-poor
Neutrino events (Kamiokande) detected hours before SN visible

Supernova classification

Divided into two types based on spectra
Type I - with no H lines

- Further classification based also on spectra:
\checkmark Ia - strong Si line
$\checkmark \mathrm{Ib}$ - no H or Si line, but have He lines
\checkmark Ic - no Si, He or H lines

DAYS AFTER MAXIMUM LIGHT

- Ia found in all types of galaxies
\rightarrow associated with white dwarfs in binary systems

Supernova classification II

Type II - with H lines
Further classification based on light curve
\checkmark II P - flat 'plateau' in LC
\checkmark II L - linear light curve
DAYS AFIER MAXIMUM LIGHT

- Type II, Ib, Ic found only in spiral arms of spiral galaxies (i.e. regions of recent star formation) \rightarrow massive stars
Core collapse supernovae with mass loss in Ib and Ic

DAYS AFTER MAXIMUM LIGHT

图10．8 几种类型超新星的光变曲线（Wheeler，Harkness，1992）

Figure 1 Spectra of SNe, showing early-time distinctions between the four major types and subtypes. The parent galaxies and their redshifts (kilometers per second) are as follows: SN 1987 N (NGC 7606; 2171), SN 1987A (LMC; 291), SN 1987M (NGC 2715; 1339), and SN 1984L (NGC 991; 1532). In this review, the variables t and τ represent time after observed B-band maximum and time after core collapse, respectively. The ordinate units are essentially "AB magnitudes" as defined by Oke \& Gunn (1983).

Figure 2 Spectra of SNe, showing late-time distinctions between various types and subtypes. Notation is the same as in Figure 1. The parent galaxy of SN 1987L is NGC $2336(c z=2206 \mathrm{~km}$ s^{-1}); others are listed in the caption of Figure 1. At even later phases, SN 1987A was dominated by strong emission lines of $\mathrm{H} \alpha,[\mathrm{O} \mathrm{I]}. \mathrm{[Ca} \mathrm{II]}$,and the Ca II near-IR triplet, with only a weak continuum.

Subelass	\sim maximum	~ 6 mowths
SNIa	$0, \mathrm{Mg}, \mathrm{Si}, \mathrm{S}, \mathrm{Ca}, \mathrm{Fe}$	Fe, Co
SNI6	O, Ca, Fe	$0, \mathrm{Ca}, \mathrm{Mg}$
SNIC	$\mathrm{He}, \mathrm{Fe}, \mathrm{Ca}$	0, Mg

- The energy source of the type Ia supernovae comes from nuclear fusion. The explosion produces various radioactive isotopes , e.g., nickel becomes cobalt.
- So far, a few thousands SNe have been detected in external galaxies.
- Applying the statistics, the Milky Way should have occurred one type Ia SN every 36 years, and one type II SN every 44 years.
- Each century, therefore, we should have seen about 5 supernovae. So, what happened?
- Which star is most likely the next? In the solar neighborhood?

SN 1994D
 A type Ia in NGC 4526

$$
\begin{aligned}
& \text { Supernovae } \\
& M>8 M_{0} \text { core caribou burning } \\
& \rightarrow{ }_{8}^{16} \mathrm{O},{ }_{10}^{20} \mathrm{~N},{ }_{11}^{23} \mathrm{Na},{ }_{12}^{23} \mathrm{Mg} \text { and }{ }_{12}^{24} \mathrm{Mg} \cdots \\
& \text { Eventually }{ }_{26}^{54} \mathrm{Fe},{ }_{26}^{56} \mathrm{Fe} \text {, and }{ }_{28}^{56} \mathrm{~N} \text {; } \\
& \text { Three critical processes } \\
& \text { (1) Neutrino cooling } \\
& \text { At this stage, a lot of } \mathrm{L}_{\mathrm{s}} \\
& \text { Solar neutrino flux } \\
& =7 \times 10^{10} / \mathrm{cm}^{2} / \mathrm{s} \\
& \text { Ex. dining Si burning, a } 20 \mathrm{M}_{\circ} \\
& \begin{array}{lll}
L_{20 M_{0}} \sim 4.4 \times 10^{38} \text { by }_{5}{ }^{-1} & \begin{array}{l}
\text { Neutrino mass } \\
<0.32 \mathrm{eV} \text { for the sum of }
\end{array}
\end{array} \\
& L_{\mu} \sim 3.1 \times 10^{45} \lg _{5}{ }^{-1} \text { masses of } 3 \text { known flavors }
\end{aligned}
$$

（2）Photodisintegration
Energetic photons disintegrate iron nuclei
皮赖 into a particles and protons
This is an endothermic process；ie，takes energy away and lowers pressure support at the core

$$
\begin{aligned}
& { }^{56} \mathrm{Fe}+\gamma \rightarrow 13^{4} \mathrm{He}+4 n \\
& 4 \mathrm{He}+\gamma \rightarrow 2 p^{+}+2 n
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. Neutronization } \\
& \text { possible inverse } \beta \text { decay } p^{+}+e^{\circ} \rightarrow n^{0}+\nu \\
& n_{e} \downarrow^{\downarrow} \Rightarrow p_{\text {deg }} \downarrow \\
& \text { escape } \Rightarrow \text { cooling } \\
& \Rightarrow \text { A rapid collapse of the core } \\
& \text { Note exothermic } \\
& \text { releasing energy }
\end{aligned}
$$

This sends an outgoing pressure wave through the infalling material

Two possibilities

When the shock propagates through the inner
core \rightarrow photodisintegration
(i) If the iron core is small, shock emerges energetically
\rightarrow an explosion on the outer material
prompt hydrodynamic explosion

This can explain the explosion of MS stars with 8~12 M_{\odot}, ending with a core $<1.2 \mathrm{M}_{\odot}$. But the progenitor of SN 1987A had $20 \mathrm{M}_{\odot} \rightarrow$ need an alternative mechanism to explain more massive ONe

$$
\begin{aligned}
& \text { Total Rinetic energy of Entgoing sheck } \\
& \text { Ekin } \sim 10^{51} \text { hgs } \\
& \text { (ihis is ouly } 1 \% \text { of the energy in energy) } \\
& \text { nenerinos } \\
& \rightarrow \text { Buter material expands a becomes oprically } \\
& \text { thin } \\
& \Rightarrow \text { SN explosion, releasing } \sim 10^{149} \text { ergs } \\
& \text { in photons } \\
& \text { With Lpeak } \sim 10^{43} \text { eygs } s^{-1} \sim 10^{9} \text { Lo } \\
& \text { e.f } L_{\text {milkyway }}
\end{aligned}
$$

Roughly if original mass $<25 \mathrm{Mo}$; can be supported neutron pressure; may survive the explosion \rightarrow a neutron star

If $M>25 \mathrm{MO}_{0} \rightarrow$ collapse to a black hole

Neutrino Trapping
Mean free path $\lambda=1 / n \sigma$
cross section $\sigma=\sigma_{0} \varepsilon^{2}$
For neutrinos, $\sigma_{0} \sim 2 \times 10^{-44}\left[\mathrm{~cm}^{2}\right]$
$\varepsilon=$ relative energy in unit of Q^{-}rest mass

In lead $A=11.34 \mathrm{gam}^{-3}, A=208$
A neutrino of 1 MeV , or $\varepsilon=2, \lambda \sim 3.8 \times 10^{20} \mathrm{am}$

$$
\sim 380 \mathrm{ly}
$$

In a collapsing stellar core

$$
\rho \sim 4 \times 10^{14} \mathrm{gam}^{-3}
$$

Neutrinos have $\sim 150 \mathrm{MeV}$, or $\varepsilon \sim 300$

$$
\rightarrow \lambda=2.2 \mathrm{~cm}
$$

So if $R \sim 10 \mathrm{~km}$, the mean free time, or diffusion time $\tau \sim 5 \mathrm{~s}$

Supernova Observations

$$
L_{\text {peak }} \sim 10^{9}-10^{10} L_{0}
$$

Time before peak (rang time) ~ 2 wis
Shell expamaion v $\sim 5.10 \times 10^{3} \mathrm{kms}^{-1}$
supernova remnant (SNR)

$$
\text { lasting ~ } 10^{3} \mathrm{yrs}
$$

$E_{\text {total }} \sim 10^{51}-10^{53}$ ergs $=E_{\text {photons }}+E_{\text {neutrinos }}+E_{\text {Kinetic }}$
noually minor (~1\%) \predominant
cooling core \longrightarrow a neutron star

$$
\rho \sim 10^{14} \mathrm{gan}^{-3}, M \sim M_{0}
$$

- 1932 Chadwick discovered the neutron.
- Landau thought neutron stars might exist.
- 1934 Baade \& Zwicky suggested neutron stars as remnants of supernova explosions.
- 1939 Oppenheimer \& Volkoff proposed the first model for neutron stars, with estimates of masses and sizes.
- 1967 Hewish \& Bell discovered the pulsar.
- Gold \& Pacini proposed pulsars as fast spinning, highly magnetized neutron stars.

> Mass limit of neutron degenerate stars
> uncertain because of uncertain $\xi_{0} S$ at
> $\rho>\rho_{\text {nuclear, ranging from }} 0.7 \mathrm{M}$ © for
noninteracting neutrons
(Tolman-Oppenheimer- Volkoff hint)
up to $\sim 2.5 \mathrm{M}_{\text {© }}$

$$
R \sim 10 \mathrm{~km}
$$

A pulsar $\left\{\begin{array}{l}B \sim 10^{13} G \\ \text { Spin down from periods } \sim \mathrm{ms}\end{array}\right.$

Some SARs host no pulsars.

- not enough e^{-}, not Strong enough \vec{B} ?
-we are not in the 'light house beam'?
- neutron Star destroyed completely
- neutron Star 'Kicked ont'
some NSs (a pulsars) have space motion $\sim 1000 \mathrm{kms}^{-1}$

Annu. Rev. Astron. Astrophys. 1992. 30:359-89
TYPE Ia SUPERNOVAE AS
STANDARD CANDLES

David Branch

Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019

G. A. Tampan

Astronomisches Institut der Universität Basel, Venusstrasse 7, CH-4102 Binningen, Switzerland, and European Southern Observatory, Karl-Schwarzschild-Str. 2, D-8049 Garching/München, Germany

Figure 2 The standard B light curve (adapted from Cadonau 1987), based on observations of 22 SNe Ia.
Many sky survey projects, e.g., Pan-STARRS (PS), Palomar Transient Factory (PTF), Sky Mapper, Large Synoptic Survey Telescope (LSST), to catch SN early on, for pre-SN characterization

$$
\begin{aligned}
& \text { Type I } \\
& \text { No Him spectra } \\
& \text { Located in spirals or elliptical } \\
& \text { If in spirals, zonally NOT in arms } \\
& \text { but some seen near HI regions on } \\
& \text { arms } \rightarrow I_{b} \\
& \text { Ia Standond model } \\
& \text { A WD close to chandrasekhar limit } \\
& \text { + a mass losing companion } \\
& \rightarrow \text { accretion onto } \omega D \rightarrow R_{\text {wo }} \downarrow \\
& \rightarrow T \uparrow \text {. If heat not married away } \\
& \Rightarrow \text { ignition of } c, 0, \ldots \\
& \text { thermonuclear explosion }
\end{aligned}
$$

Fate of WID depends on accretion rate and M WD

- partial explosion w/ a wi lest behind
- disrupt completely; no Stellar remnant
- NS?

Population II progenitor
SN $I_{a} \sim 80 \%$ of Type II $\quad M_{\text {peak }} \sim-17$ mag
Ale SN Ia lighteurves similar
\rightarrow standard candles
Averaged 1 SNI/100yrs in a spiral

$$
\begin{aligned}
& \text { Type II } M_{\text {peak }} \sim-19 \text { mag } \\
& \text { with hydrogen hies in spectra } \\
& \text { Found in spiral arms on Er. } \\
& \text { If formed in the some arm } \\
& \text { timescale }<10^{7} \text { yr } \Rightarrow M>10 M_{0} \\
& \text { progenitor } \\
& \text { Standard model } \\
& \text { End of masoine star evolution } \\
& \text { gravitational collapse } \\
& \text { Population I progenitor } \\
& \text { Fate } \rightarrow \text { NS, BA }
\end{aligned}
$$

Type II (core collapse) SN progenitors

Fig. 34.7. The chemical composition in the interior of a highly evolved model of a $25 \mathrm{M} \Omega$ star of population I. The mass concentrations of a few important elements are plotted against the mass variable m. Below the abscissa the location of shell sources and typical values of temperature (in K) and density (in $\mathrm{g} \mathrm{cm}^{-3}$) are indicated. (After WOOSLEY, WEAVER, 1986)

THE PHYSICS OF SUPERNOVA EXPLOSIONS ${ }^{1}$

S. E. Woosley

Board of Studies in Astronomy and Astrophysics, Lick Observatory, University of California, Santa Cruz, California 95064

Thomas A. Weaver

Special Studies Group, Lawrence Livermore National Laboratory, Livermore, California 94550
${ }^{1}$ The US Government has the right to retain a nonexclusive royalty-free license in and to any copyright covering this paper.

Table 1 Presupernova models and explosions ${ }^{\text {a }}$

	Helium core mass	Iron core mass	Explosion energy ${ }^{\text {b }}$ ($10^{50} \mathrm{erg}$)	Residual baryon mass ${ }^{\text {b }}$	Neutron star mass ${ }^{\text {b }}$	Heavies ejected ($Z \geq 6$)
11	2.4	- ${ }^{\text {c }}$	3.0	1.42	1.31	~ 0
12	3.1	1.31	3.8	1.35	1.26	0.96
15	4.2	1.33	2.0	1.42	1.31	1.24
20	6.2	1.70	-		-	2.53
25	8.5	2.05	4.0	2.44	1.96	4.31
35	14	1.80	-		-	9.88
50	23	2.45	--	-	.	17.7
75	36	$-^{\text {d }}$	-	-	BH?	30 ?
100	45	$\sim 2.3{ }^{\text {d }}$	$\geqslant 4$	-	BH?	39?

"All masses given in units of M_{\odot}.
${ }^{\text {b }}$ All except for $100 M_{\odot}$ determined by Wilson et al. (1985).
${ }^{\mathrm{c}}$ Never developed iron core in hydrostatic equilibrium.
${ }^{d}$ Pulsational pair instability at oxygen ignition.

Core collapse in free-fall, $\tau_{\mathrm{ff}} \approx(G \bar{\rho})^{-1 / 2} \approx 1 \mathrm{~ms}$, if $\rho=10^{10} \mathrm{~g} \mathrm{~cm}^{-3}$

- Central density and pressure $\uparrow \uparrow$ and becomes subsonic; outer material remains free-fall and supersonic.
- Transition zone = constant speed, force free, relativistic electron degenerate pressure balances gravy \rightarrow Chandrasekhar limit
- Inside $\mathbf{M}_{\mathrm{ch}}, \rho \approx 2.3 \times 10^{14} \mathrm{~g} \mathrm{~cm}^{-3}$ (nuclear), strong force; material incompressible; neutron degeneracy Outside $\mathrm{M}_{\mathrm{ch}} \rightarrow$ supersonic accretion
\rightarrow Shock wave and bounce

Fig. 34.8. Schematic picture of the velocity distribution in a collapsing stellar core originally of $1.4 M_{\odot}$ after numerical calculations (VAN RIPER, 1978). Note the two regimes: on the left $\left|v_{\mathrm{r}}\right|$ (in units of $10^{9} \mathrm{~cm} \mathrm{~s}^{-1}$) increases in the outward direction. It corresponds to a (roughly) homologously collapsing part, while on the right $\left|v_{\mathrm{r}}\right|$ decreases with m . This corresponds to the free-fall regime

Energy released in a core collapse

$R: R_{\omega D}\left(0.01 R_{Q}\right) \rightarrow R_{\text {NS }}(10 \mathrm{~km})$
$\Delta E_{\text {grave }} \sim \frac{G M_{0}^{2}}{R_{N S_{S}}} \sim 3 \times 10^{53} \mathrm{args}$
10% used up by nuclear processes
rest to radiation and ejecting material (luminosity a neutrinos)

> Doggert + Branch (1985
> AJ. 90.2303

UVOIR light curve

Evidence of syn thesis of heavy elements

- During a type II SN explosion, the neutron star reaches $T \approx 10^{11} \sim 10^{12} \mathrm{~K}$, but cools down quickly by neutrinos, to $T \approx 10^{9} \mathrm{~K}$ in a day, $10^{8} \mathrm{~K}$ in 100 years.
- This is cold, $k T \approx 10 \mathrm{keV}$
cf. Fermi energy ($\rho \approx 10^{14} \mathrm{~g} \mathrm{~cm}^{-3}$), $\varepsilon_{F} \approx 1000 \mathrm{MeV}$, so $T_{\text {neutron star }} \rightarrow 0$, and all electrons, protons, and neutrons are at the lowest energy states.
- Neutron beta decay process, $n \rightarrow p+e^{-}+\overline{v_{e}}$, does not take place, because the resultant electron and neutrino are not energetic enough (energy difference between n and p)
- But inverse beta decay $p+e^{-} \rightarrow n+v_{e}$ OK
\rightarrow All neutrons
- So far thousands of SNe have been detected in external galaxies.
- In the Milky Way, a type Ia SN is expected every 36 years, and a type II SN is expected every 44 years. Then each century should see about 5 SNe .

Notable Historical supernovae in the Milky Way			
SN 1006	Lupus	Ia	-7.5 mag, brightest in history
SN 1054	Taurus	II	Chinese SN; Crab Nebula as the SNR
SN 1572	Cassiopeia	Ia	Tycho's Nova
SN 1604	Ophiuchus	Ia	Kepler's Star
SN 1680	Cassiopeia	Ilb	Not observed, Cas A as the SNR

Prediction:

$\checkmark\left[{ }^{4} \mathrm{He} / \mathrm{H}\right] \approx 0.25 \rightarrow$ obs OK
$\checkmark[\mathrm{D} / \mathrm{H}],\left[{ }^{4} \mathrm{He} / \mathrm{H}\right],,\left[{ }^{3} \mathrm{He} / \mathrm{H}\right],[\mathrm{Li} / \mathrm{H}]$ density dependent \rightarrow obs all same densities

WMAP (CMB) obs \rightarrow consistent result

Solar System Abundances

$\mathrm{Z} \uparrow$, Coulomb barrier $\uparrow \uparrow$ for charged particle reactions \rightarrow elements produced by neutron capture

Cosmic abundance and stellar/galaxy evolution (Burbidge, E. M., Burbidge, G. R., Fowler, W. A., \& Hoyle, F. (1957)

$$
\text { Big Bang } \rightarrow \mathrm{H}: \mathrm{He}=10: 1
$$

Stellar Interior

$10^{7} \mathrm{~K} \rightarrow \mathrm{p}-\mathrm{p}, \mathrm{CNO}$ (fusing proton, in a proton rich or neutron poor gas) (p process)
$10^{8} \mathrm{~K} \rightarrow$ triple-alpha to $\mathrm{C} \rightarrow$ continue to fuse α particles \rightarrow mass number multiples of 4 by fusing (α process)
$4 \times 10^{9} \mathrm{~K} \rightarrow$ nuclear equilibrium $\rightarrow \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}$ and elements of the iron group (e process)

Explosive events

Neutron capture rapidly (compared to the competing β decays) \rightarrow neutron-rich isotopes (r process)
e, g., the radioactive elements ${ }^{235} \mathrm{U},{ }^{238} \mathrm{U}$, at the expense of the iron group

Neutron capture slowly (compared to the competing β decays) \rightarrow neutron-rich isotopes (s process)

Fig. 2.2. Abundance ($A=1,64$)

Fig. 2.3. Abundance $(A=50,100)$

- Other than H and He, the rest ('metals') is rare
\because penetration prob. between positively charged nuclei has an exponential dependence $\left(Z_{1} Z_{2}\right)$
e.g., $\mathrm{O}+\mathrm{O} \rightarrow 64$ times stronger than in $\mathrm{H}+\mathrm{H}$
- Even A nuclei are favored; especially for even-even elements, i.e., even Z and even N.
$-Z=N \rightarrow \alpha$ particle nuclei e.g. ${ }^{12} \mathrm{C},{ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne},{ }^{24} \mathrm{Mg},{ }^{28} \mathrm{Si},{ }^{32} \mathrm{~S},{ }^{36} \mathrm{Al},{ }^{40} \mathrm{Ca}$
- First odd- A element is ${ }^{25} \mathrm{Mg}$; placed the $15^{\text {th }}$
- Among the top, only ${ }^{14} \mathrm{~N}$ is not even-even.
- Nuclei, like atoms, have a shell structure; "magic numbers" of protons are particularly tightly bound, e.g., ${ }^{4} \mathrm{He}(\mathrm{Z}=\mathrm{N}=2),{ }^{16} \mathrm{O}(\mathrm{Z}=\mathrm{N}=8)$
- ${ }^{56} \mathrm{Fe}$ not even-even; most tightly bound is ${ }^{56} \mathrm{Ni}$.

SN I and II light curves provide evidence that $\mathrm{Ni} \rightarrow \mathrm{Co} \rightarrow \mathrm{Fe}$ for $A=56 \rightarrow$ Abundance peaks at ${ }^{56} \mathrm{Fe}$

- For $A>60$, via neutron capture
\checkmark r-process: rapid relative to beta-decay
\checkmark s-process: slow nuclei already tightly bound \rightarrow small cross section for neutron capture (slow compare to beta decays) (Burbidge, Burbidge, Fowler, \& Hoyle; see Clayton)

Fig. 2.4. Abundance $(A=90,160)$

Fig. 2.5. Abundance $(A=140,210)$

Stellar Evolutionary Path

$$
\begin{aligned}
& \begin{array}{l}
\text { Star }=(1 . .8) \mathcal{M}_{\odot}
\end{array} \begin{array}{l}
\text { Mass loss } \uparrow \xrightarrow{\text { Stellar wind }} \text { pf } \\
\text { Less mass } \downarrow \longrightarrow \text { Core }>1.4 \mathcal{M}_{\odot} \xrightarrow{\text { detonation? }} \text { No remnant? }
\end{array} \\
& \text { Star > (8 .. 10) } \mathcal{M}_{\odot} \underset{\substack{20 \text { to } 30 \% \\
\text { mass loss }}}{\text { Core collapse }}<\begin{array}{l}
\text { Core }<1.8 \mathcal{M}_{\odot}, \text {, neutron star + SNR } \\
\text { Core }>1.8 \mathcal{M}_{\odot}, \text { black hole (?); a collapsar }
\end{array} \\
& \leftrightarrow \text { gamma-ray bursts }
\end{aligned}
$$

Black Holes predicted by General Relativity spacetime near a mass is warped

To cal solar eclipse
1.7
\cdots (sun
A full tratment of a $B H$ requined $G R$. But for an electrically neutral, non-rotating $B H$, classical derivations give the pare results as with the relativisitic approad.

	Nonrotating $(J=0)$	Rotating $(J>0)$
Uncharged $(Q=0)$	Schwarzschild	Kerr
Charged $(Q \neq 0)$	$\underline{\text { Reissner-Nordström }}$	Kerr-Newman

General BH metric, with M, Jand $Q=$ Kerr-Newman metric.

The two physical relevant surfaces of a Kerr black hole.

Table 1.4
Compact Objects in the Solar Neighborhood ${ }^{a}$

	Mass Range of Parent Star $\left(M_{\odot}\right)$	Integrated Galactic Birth Rate $\left(\mathrm{yr}^{-1}\right)$	Number Density $\left(\mathrm{pc}^{-3}\right)$	$\frac{\rho}{\rho_{T}}$	$\langle d\rangle$ (pc)
Object	$1-4$	0.16	1.5×10^{-2}	0.070	2.5
White dwarfs	$4-10$	0.021	2.0×10^{-3}	0.020	4.9
Neutron stars	>10	0.0085	8.0×10^{-4}	0.22	6.7
Black holes					

${ }^{a}$ These values are obtained from Eqs. (1.3.17)-(1.3.21).
Note: Nearest known white dwarf: Sirius B, 2.7 pc . Nearest known neutron star: PSR $1929+10$, 50 pc . Nearest known black hole candidate: Cygnus X-1, $\sim 2 \mathrm{kpc}$.

$$
\begin{aligned}
& \text { Size of the Universe } \\
& 13.7 \text { billion yrs } \\
& R_{\text {observable }} \sim 137 \times 10^{8} \times 10^{13} \mathrm{~km} \\
& \sim 1.4 \times 10^{23} \mathrm{~km} \\
& M_{\text {obs }} \sim 10^{\prime \prime} \mathrm{Mo} / \mathrm{gal} \cdot 10^{\prime 2} \text { ga! }\left(t_{\text {dark }}\right. \\
& \text { matter } \\
& \text { + dark energy) } \\
& \sim 10^{23} \mathrm{M} \\
& \left(R_{s} \sim 3 \frac{M}{M_{0}}[\mathrm{~km}]\right) \\
& R_{\text {obs }} \sim R_{s} \\
& \text { The whole Universe is a BH, }
\end{aligned}
$$

Hypernovae, Kilonovae

- Black-hole mergers
- White dwarf merger \rightarrow Type I SN
- Neutron-star mergers \rightarrow gravitational wave radiation \rightarrow spiral inwards ; merging \rightarrow a NS or a BH \rightarrow a short GRB + a kilonovae + r-process elements produced and ejected a kilonova: luminosity 100 x of a classical nova
- Hypernova = superluminous supernova a hypernova: luminosity $>10 \mathrm{x}$ of a standard

Quark Stars / Strange stars
kyperthetical type of stars composed of
quark matter a strange matter
currently 6 "flavors" of quarks
up, down, strange, charm, tep, bettem
spin $1 / 2$
When a neutron star is further comprosed
neutrons \rightarrow break down to up and down
quarles \rightarrow break down
strange quarle
dark
matter candidates?
These highly mathematical \& speculative
Smue recent ebservationo, e.g. in some SNe
\rightarrow existeme of quark stars?

Magnetars
Aagnetars \quad neutron star $w /$ an extremely string $\frac{D}{B}$
(10^{11} teslas n 10^{15} ganse)

> Earth/sun $\sim 1 G$
> Ap/bp
> WDS $\sim 10^{6} \mathrm{G}$
> NS, $\sim 10^{12} G$

[^0]: Figure $11-5$
 Discowering the Universe Seventh Lidition
 02006 W.H. Firemunand Company

[^1]: http://www.exoclimes.com/paper-outlines/exoplanets-and-brown-dwarfs-ii/

[^2]: 1980ApJ... 239L. . 17 S

 ## OBSERVATIONS OF CO IN L1551: EVIDENCE FOR STELLAR WIND DRIVEN SHOCKS

 Ronald L. Snell
 Astronomy Department and Electrical Engineering Research Laboratory, University of Texas at Austin; and Five College Radio Astronomy Observatory, University of Massachusetts at Amherst

 Robert B. Loren
 Electrical Engineering Research Laboratory and McDonald Observatory, University of Texas at Austin
 Richard L. Plambeck
 Radio Astronomy Laboratory, University of California at Berkeley

 #### Abstract

 CO observations reveal the presence of a remarkable, double-lobed structure in the molecular cloud L1551. The two lobes extend for $\sim 0.5 \mathrm{pc}$ in opposite directions from an infrared source buried within the cloud; one lobe is associated with the Herbig-Haro objects HH28, HH29, and HH102. We suggest that the CO emission in the double-lobed structure arises from a dense shell of material which has been swept up by a strong stellar wind from the infrared source. This wind has a velocity of $\sim 200 \mathrm{~km} \mathrm{~s}^{-1}$, and evidently is channeled into two oppositely directed streams. The CO observations indicate that the shell has a velocity of $\sim 15 \mathrm{~km} \mathrm{~s}^{-1}$, a mass of $0.3 M_{\odot}$, and a kinetic temperature of $8-35 \mathrm{~K}$. Its age is roughly 3×10^{4} years. A stellar mass-loss rate of $\sim 8 \times 10^{-7} M_{\odot} \mathrm{yr}^{-1}$ would be sufficient to create such a shell.

[^3]: Fig. 17.7. (a) Computed profiles illustrate the broadening effect of rotation. The profiles are labeled with $r \sin i$. the wavelength is $4243 \AA$, and the line has an equivalent width of 100 mA . (h) These two carly-G giants illustrate the Doppler broadening of the line profiles by rotation.

[^4]: Figure 5.26 A color-magnitude (H-R) diagram of the globular cluster M3, with features mentioned in the text pointed out. Data from Rey et al. (2001).

[^5]: The Astrophysical Journal. 574:L155-L158, 2002 August 1
 O 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

