

- ✓What is a "star"?
- ✓ How hot is the surface of the Sun? How is this known? The Sun is gaseous, so how come it has a "surface"?
- ✓ How hot is the center of the Sun? How is this known?
- ✓ How long can the Sun remain as a shining body? How is this known?
- ✓ Describe the radial structure of the Sun. How is this know?

Stellar Formation and Evolution Syllabus
Instructor: Professor Wen-Ping Chen Office: 906 Class Time: Tuesday evening 5 to 8 scheduled (subject to change) Class venue: Room 914
This course deals with the time variations of the structures of a star's interior and atmosphere. We will discuss the important physical processes governing the life of a star from its birth out of a dense, cold molecular cloud core, to shining with the star's own thermonuclear fuels, to rapid changes in structures when these fuels are no longer available, to the end of a star's life, with matter in extremely compact states.
What it may take for a star billions of years, will take us one semester to cover the following subjects:
 Observational Properties of Stars Molecular Clouds and the Interstellar Medium Cloud Collapse and Fragmentation Stars and Statistical Physics Protostars and Jets Circumstellar Disks and Planet Formation Evolution onto the Main Sequence Binaries and Star Clusters On the Main Sequence Nuclear Reactions Effects of Rotation Instabilities Thermally, Dynamically and Convectively Post-MS Evolution of Low-Mass Stars RG, AGB, HB, PNe Post-MS Evolution of Copheid Variables Compact Objects White Dwarfs, Neutron Stars, and Black holes
Text:
"An Introduction to the Theory of Stellar Structure and Evolution", by Dina Prialnik, Cambridge, 2 nd Ed. 2009

References

All the references you have found useful for the course Stellar Atmosphere and Structure will be also of use in this course. The following are the ones I have been using or were published in recent years Physics of Stellar Evolution and Cosmology, by H. Goldberg & Michael Scadron, 1982, Gordon and Breach Stellar Structure and Evolution, by R. Kippenhahn & W. Weigert, 1990, Springer-Verlag Introduction to Stellar Astrophysics, Vol 3 --- Stellar Structure and Evolution, by Erika Bohm-Vitense, 1992, Cambridge Stellar Structure and Evolution, by Huang, R.Q. 黃潤乾, Guoshin, 1990 This book, originally in Chinese, has an English version, and has recently been revised. The Chinese version (恆星物理) has also been revised The Physics of Stars, by A.C. Phillips, 1994, John Wiley & Sons ✓ Stellar Evolution, by Amos Harpaz, A K Peters, 1994 The Stars --- Their Structure and Evolution, R. J. Tayler, 1994, Cambridge Theoretical Astrophysics, Vol II: Stars and Stellar Systems by Padmanabhan, T., a hefty, mathematical 3 volume set; comprehensive coverage of basic astrophysical processes in vol. 1, stars in vol. 2, and galaxies and cosmology in vol. 3, 2001, Cambridge Evolution of Stars and Stellar Populations, by Maurizio Salaris and Santi, Cassisi, 2005, Wiley ✓ The Formation of Stars, by Steven W. Stahler & Francesco Palla, 2004, Wiley From Dust to Stars, by Norbert S. Schulz, 2005, Spinger ✓ Stellar Physics, 2: Stellar Evolution and Stability, by Bisnovatyi-Kogan, 2nd Ed., 2010, Springer (translated from Russian) For star formation, the book "Molecular Clouds and Star Formation", edited by Chi Yuan (麦拆) & Junhan You (尤峻漢) and published by World Scientific in 1993, should be a good reference. Unfortunately this book is currently out of print, but Prof Yuan kindly donated his editor copy In addition to written midterm (30% grade) and final (30%) exams, there will be homework assignments, plus in-class exercises or projects (35%). For an extensive listing of books on "stars" ... http://www.ericweisstein.com/encyclopedias/books/Stars.html

- To know the properties of various phases of the interstellar matter:
- To understand how stars form out of molecular clouds; under what conditions:
- To understand the physical properties of stars, and to know how these properties change with time as a star evolves;
- To understand the basic physics underlying complex stellar evolution models:
- To know how to interpret observational parameters of stars;
- To understand how stars of different masses evolve and what the end products of their evolution are.

Stellar structure: balance of forces

Stellar evolution: (con)sequence of thermonuclear reactions in different parts of a star

Often used fundamental constants Physical radiation density constant $~~7.55 \times 10^{\text{-16}} \, J \, \text{m}^{\text{-3}} \, \text{K}^{\text{-4}}$ а $3.00 \times 10^8 \text{ m s}^{-1}$ velocity of light С $6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$ G gravitational constant 6.62×10^{-34} J s Planck's constant h $1.38 \times 10^{\text{--}23} \, \text{J K}^{\text{--}1}$ Boltzmann's constant k 9.11×10^{-31} kg m_e mass of electron m_H mass of hydrogen atom 1.67×10^{-27} kg *N_A* Avogardo's number $6.02 \times 10^{23} \text{ mol}^{-1}$ Stefan Boltzmann constant 5.67×10^{-8} W m⁻² K⁻⁴ (= ac/4) σ 8.26×10^3 J K^{-1} kg^{-1} gas constant (k/m_H) R $1.60 \times 10^{-19} \,\mathrm{C}$ charge of electron е

Check out http://pdg.lbl.gov/2006/reviews/astrorpp.pdf

Astronomical

L_{\odot}	Solar luminosity	3.86 x 10 ²⁶ W
M _☉	Solar mass	1.99 x 10 ³⁰ kg
T_{eff}	Solar effective temperature	6
$T_{c \odot}$	Solar Central temperature	$1.6 \ge 10^7 \text{ K}$ (theoretical)
R_{\odot}	Solar radius	6.96 x 10 ⁸ m
m₀	apparent mag of Sun	-26.7 mag (V)
M₀	absolute mag of Sun	+4.8 mag (V)
θ	apparent size of Sun	32'
$< \rho >$	mean density of Sun	1.4 g cm ⁻³
(B-V)	$_{\odot}$ Color of the Sun	0.6 mag
Parse	c (unit of distance)	$3.09 \ge 10^{16} \text{ m}$

Properties of Stars

Vocabulary

- **Luminosity** [erg s⁻¹] L = bolometric luminosity = power
- Spectral luminosity [erg s⁻¹ μ m⁻¹] L_{λ} $d\lambda = -(c/v^2) dv$
- **flux** [erg s⁻¹ cm⁻²] **f**
- flux density [erg s⁻¹ cm⁻² μ m⁻¹] f_{λ} or f_{ν} 1 Jansky (Jy) = 10⁻²³ [erg s⁻¹ cm⁻² Hz⁻¹] f(v=0)=3640 Jy
- Brightness/intensity [erg s⁻¹ cm⁻² sr⁻¹] B
- Specific intensity [erg s⁻¹ cm⁻² sr⁻¹ Hz⁻¹] I_{ν}
- Energy density [erg cm⁻³] $\boldsymbol{u} = (4 \pi/c) J$ J=mean intensity = $(1/4\pi) \int I d \Omega$

$$S_{\nu} [\mu Jy] = 10^{(23.9-AB)/2.5}$$

 $m_{AB} = -2.5 \log_{10} \left(\frac{f_{\nu}}{3631 \text{ Jy}} \right)$

• Magnitude ... apparent, absolute, bolometric, AB

To measure the stellar size

- Angular diameter of sun at 10 pc = $2R_{\odot}/10$ pc = 5×10^{-9} radians = 10^{-3} arcsec
- Even the HST (0.05") barely capable of measuring directly the sizes of stars, except for the nearest supergiants
- Radii of ~600 stars measured with techniques such as interferometry, (lunar) occultation or for eclipsing binaries

Apparent Magnitude $m = -2.5 \log (Flux) + ZeroPoint$

- The Vega system: 0.0 mag (latest ~0.3 mag) at every Johnson band
- Gunn system: no Vega; use of F subdwarfs as standards (metal poor so smooth spectra), e.g., BD + 17 4708
- The AB system: $AB_{\nu} = -2.5 \log_{10} f_{\nu} 48.60$
- STMAG system: used for HST photometry STMAG_{λ} = -2.5 log₁₀ f_{λ} - 21.1

	1	Table 15.7.	. Calibratio	on of MK s	pectral typ	pes.				1	able 15.7	(Continue	ed.)				
Sp	M(V)	B - V	U - B	V - R	R - I	$T_{\rm eff}$	BC	Sp	M(V)	B - V	U - B	V - R	R - I	Teff	BC		
MAI	N SEQUEN	ICE, V						SUP	ERGIANT	S, I						•	
05	-5.7	-0.33	-1.19	-0.15	-0.32	42 000	-4.40	09	-6.5	-0.27	-1.13	-0.15	-0.32	32 000	-3.18		
09	-4.5	-0.31	-1.12	-0.15	-0.32	34 000	-3.33	B2	-6.4	-0.17	-0.93	-0.05	-0.15	17 600	-1.58		
B 0	-4.0	-0.30	-1.08	-0.13	-0.29	30 000	-3.16	B5	-6.2	-0.10	-0.72	0.02	-0.07	13 600	-0.95		
B2	-2.45	-0.24	-0.84	-0.10	-0.22	20 900	-2.35	B8	-6.2	-0.03	-0.55	0.02	0.00	11 100	-0.66		
B5	-1.2	-0.17	-0.58	-0.06	-0.16	15 200	-1.46	A0 A2	-6.3 -6.5	-0.01	-0.38	0.03	0.05	9 980	-0.41		
B8	-0.25	-0.11	-0.34	-0.02	-0.10	11 400	-0.80	A2 A5	-6.6	+0.03 +0.09	-0.25 -0.08	0.07	0.07	9 380 8 610	-0.28 -0.13		
A0	+0.65	-0.02	-0.02	0.02	-0.02	9 7 9 0	-0.30	F0	-6.6	+0.09	+0.08	0.12	0.13	7 460	-0.13		
12	+1.3	+0.05	+0.05	0.08	0.01	9 000	-0.20	F2	-6.6	+0.23	+0.13	0.26	0.20	7 0 3 0	-0.01		
A5	+1.95	+0.15	+0.10	0.16	0.06	8 180	-0.15	F5	-6.6	+0.32	+0.27	0.35	0.23	6 370	-0.03		
FO	+2.7	+0.30	+0.03	0.30	0.17	7 300	-0.09	F8	-6.5	+0.56	+0.41	0.45	0.27	5 750	-0.09		
F2	+3.6	+0.35	0.00	0.35	0.20	7 000	-0.11	G0	-6.4	+0.76~		0.51	0.33	5 3 7 0	-0.15		
F5	+3.5	+0.44	-0.02	0.40	0.24	6 6 5 0	-0.14	G2	-6.3	+0.87	+0.63	0.58	0.40	5 1 9 0	-0.21		
F8	+4.0	+0.52	+0.02	0.47	0.29	6250	-0.16	G5	-6.2	+1.02	+0.83	0.67	0.44	4930	-0.33		
G0.	+4.4	+0.58	+0.06	0.50	0.31	5940	-0.18	G8 K0	-6.1 -6.0	+1.14	+1.07	0.69	0.46	4 700	-0.42		
G2	+4.7	+0.63	+0.12	0.53	0.33	5 790	-0.20	K0 K2	-6.0	+1.25 +1.36	+1.17	0.76 0.85	0.48	4 550 4 310	-0.50		
G5	+5.1	+0.68	+0.20	0.54	0.35	5 560	-0.21	K5	-5.8	+1.50 +1.60	+1.32 +1.80	1.20	0.55	3 990	-0.61 -1.01		
G8	+5.5	+0.74	+0.30	0.58	0.38	5 310	-0.40	MO	-5.6	+1.67	+1.90	1.23	0.94	3 620	-1.29		
KO	+5.9	+0.81	+0.45	0.64	0.42	5 150	-0.31	M2	-5.6	+1.71	+1.95	1.34	1.10	3 370	-1.62		
K2	+6.4	+0.91	+0.64	0.74	0.48	4 830	-0.42	M5	-5.6	+1.80	+1.60:	2.18	1.96	2880	-3.47		
K5	+7.35	+1.15	+1.08	0.99	0.63	4410	-0.72										
M0	+8.8	+1.40	+1.22	1.28	0.91	3 840	-1.38										
M2	+9.9	+1.49	+1.18	1.50	1.19	3 520	-1.89										
M5	+12.3	+1.64	+1.24	1.80	1.67	3 170	-2.73										
GIA	NTS, III																
G5	+0.9	+0.86	+0.56	0.69	0.48	5 0 5 0	-0.34										
G8	+0.8	+0.94	+0.70	0.70	0.48	4800	-0.42										
K0	+0.7	+1.00	+0.84	0.77	0.53	4 6 6 0	-0.50										
K2	+0.5	+1.16	+1.16	0.84	0.58	4 3 9 0	-0.61										
K5	-0.2	+1.50	+1.81	1.20	0.90	4 0 5 0	-1.02										
M0	-0.4	+1.56	+1.87	1.23	0.94	3 690	-1.25							Α	llen's	Astroph	vsic
M2	-0.6	+1.60	+1.89	1.34	1.10	3 540	-1.62										
M5	-0.3	+1.63	+1.58	2.18	1.96	3 380	-2.48							<u> </u>	iantiti	ies (4th eo	ditic

٦

	Tabl	e 15.8. Ca	libration of M	K spectral type	s. ^a							
Sp	${\cal M}/{\cal M}_{\odot}$	R/R_{\odot}	$\log(g/g_{\odot})$	$\log(\bar{\rho}/\bar{\rho}_{\odot})$	$v_{\rm rot}~({\rm kms^{-1}})$	Sp	${\cal M}/{\cal M}_{\odot}$	R/R_{\odot}	$\log(g/g_{\odot})$	$\log(\bar{\rho}/\bar{\rho}_{\odot})$	$v_{\rm rot}~({\rm kms^{-1}})$	
MAI	N SEQUENC	CE, V					NTS, III					
03	120	15	-0.3	-1.5		B0	20	15	-1.1	-2.2	120	
05	60	12	-0.4	-1.5		B5	7	8	-0.95	-1.8	130	
06	37	10	-0.45	-1.45		A0	4	5		-1.5	100	
08	23	8.5	-0.5	-1.4	200	G0	1.0	6	-1.5	-2.4	30	
B0	17.5	7.4	-0.5	-1.4	170	G5 K0	1.1 1.1	10	-1.9	-3.0	< 20	
B3	7.6	4.8	-0.5	-1.15	190	K5	1.1	15 25	-2.3 -2.7	-3.5 -4.1	< 20	
B5	5.9	3.9	-0.4	-1.00	240	MO	1.2	23 40	-2.7	-4.1 -4.7	< 20	
B8	3.8	3.0	-0.4	-0.85	220	MIU	1.2	40	-3.1	-4.7		
A0	2.9	2.4	-0.3	-0.7	180	SUP	ERGIANTS,	I				
A5	2.0	1.7	-0.15	-0.4	170	05	70	30:	-1.1	-2.6		
FO	1.6	1.5	-0.1	-0.3	100	06	40	25:	-1.2	-2.6		
F5	1.4	1.3	-0.1	-0.2	30	08	28	20	-1.2	-2.5	125	
GO	1.05	1.1	-0.05	-0.1	10	B 0	25	30	-1.6	-3.0	102	
G5	0.92	0.92	+0.05	-0.1	< 10	B5	20	50	-2.0	-3.8	40	
KO	0.79	0.85	+0.05	+0.1	< 10	A0	16	60	-2.3	-4.1	40	
K5	0.67	0.72	+0.05	+0.25	< 10	A5	13	60	-2.4	-4.2	38	
MO	0.51	0.60	+0.15	+0.35		F0	12 10	80	-2.7	-4.6	30	
M2	0.40	0.50	+0.13	+0.55		F5 G0	10	100 120	-3.0	-5.0	< 25	
M5	0.21	0.27	+0.2	+1.0		G5	10	120	-3.1 -3.3	-5.2 -5.3	< 25 < 25	
M8	0.06	0.10	+0.5	+1.0 +1.2		KO	12	200	-3.5	-5.5 -5.8	< 25 < 25	
1410	0.00	0.10	+0.5	71.2		K5	13	400	-4.1	-6.7	< 25	
						MO	13	500	-4.3	-7.0	< 25	
						M2	19	800	-4.5	-7.4		
						Note ^a A o	olon indicate	es an uncer	tain value.		llen's <i>Astroj</i> antities (4 th	

	Table	e 15.9. Zero-	age main sequence	2.		
$(B-V)_0$	$(U-B)_0$	M _v	$(B-V)_0$	$(U-B)_0$	M _v	
-0 ^m 33	-1 ^m 20	-5 ^m 2	+0.40	-0.01	+ 3.4	
-0.305	-1.10	-3.6	+0.50	0.00	+ 4.1	
-0.30	-1.08	-3.25	+0.60	+0.08	+ 4.7	
-0.28	-1.00	-2.6	+0.70	+0.23	+ 5.2	
-0.25	-0.90	-2.1	+0.80	+0.42	+ 5.8	
-0.22	-0.80	-1.5	+0.90	+0.63	+ 6.3	
-0.20	-0.69	-1.1	+1.00	+0.86	+ 6.7	
-0.15	-0.50	-0.2	+1.10	+1.03	+ 7.1	
-0.10	-0.30	+0.6	+1.20	+1.13	+ 7.5	
-0.05	-0.10	+1.1	+1.30	+1.20	+ 8.0	
0.00	+0.01	+1.5	+1.40	+1.22	+ 8.8	
+0.05	+0.05	+1.7	+1.50	+1.17	+10.3	
+0.10	+0.08	+1.9	+1.60	+1.20	+12.0	
$(B-V)_0$	$(U-B)_0$	M_v	$(B-V)_0$	$(U-B)_0$	M_v	
+0.15	+0.09	+2.1	+1.70	+1.32	+13.2	
+0.20	+0.10	+2.4	+1.80	+1.43	+14.2	
+0.25	+0.07	+2.55	+1.90	+1.53	+15.5	
+0.30	+0.03	+2.8	+2.00	+1.64	+16.7	Allen's Astrophysi
+0.35	0.00	+3.1	1			<i>Quantities</i> (4 th editi

		Mai	n-Sequen	ce Stars (I	Luminosi	ty Class V	V)				
Sp.	T_e										
Туре	(<i>K</i>)	L/L_{\odot}	R/R_{\odot}	M/M_{\odot}	$M_{\rm bol}$	BC	M_V	U - B	B - V	_	
05	42000	499000	13.4	60	-9.51	-4.40	-5.1	-1.19	-0.33	-	
06	39500	324000	12.2	37	-9.04	-3.93	-5.1	-1.17	-0.33		
07	37500	216000	11.0	_	-8.60	-3.68	-4.9	-1.15	-0.32		
08	35800	147000	10.0	23	-8.18	-3.54	-4.6	-1.14	-0.32		
B0	30000	32500	6.7	17.5	-6.54	-3.16	-3.4	-1.08	-0.30		
B 1	25400	9950	5.2		-5.26	-2.70	-2.6	-0.95	-0.26		
B 2	20900	2920	4.1		-3.92	-2.35	-1.6	-0.84	-0.24		
B 3	18800	1580	3.8	7.6	-3.26	-1.94	-1.3	-0.71	-0.20		
B5	15200	480	3.2	5.9	-1.96	-1.46	-0.5	-0.58	-0.17		
B6	13700	272	2.9		-1.35	-1.21	-0.1	-0.50	-0.15		
B7	12500	160	2.7		-0.77	-1.02	+0.3	-0.43	-0.13		
B 8	11400	96.7	2.5	3.8	-0.22	-0.80	+0.6	-0.34	-0.11		
B9	10500	60.7	2.3	_	+0.28	-0.51	+0.8	-0.20	-0.07		
A0	9800	39.4	2.2	2.9	+0.75	-0.30	+1.1	-0.02	-0.02		
A1	9400	30.3	2.1	-	+1.04	-0.23	+1.3	+0.02	+0.01		
A2	9020	23.6	2.0	_	+1.31	-0.20	+1.5	+0.05	+0.05		
A5	8190	12.3	1.8	2.0	+2.02	-0.15	+2.2	+0.10	+0.15		
A8	7600	7.13	1.5	_	+2.61	-0.10	+2.7	+0.09	+0.25		
F0	7300	5.21	1.4	1.6	+2.95	-0.09	+3.0	+0.03	+0.30		
F2	7050	3.89	1.3	_	+3.27	-0.11	+3.4	+0.00	+0.35		
F5	6650	2.56	1.2	1.4	+3.72	-0.14	+3.9	-0.02	+0.44		
F8	6250	1.68	1.1	_	+4.18	-0.16	+4.3	+0.02	+0.52		

		Mair	n-Sequen	ce Stars (I	uminosit	ty Class V	7)			
Sp.	T_e									
Туре	(K)	L/L_{\odot}	R/R_{\odot}	M/M_{\odot}	Mbol	BC	M_V	U - B	B-V	
GO	5940	1.25	1.06	1.05	+4.50	-0.18	+4.7	+0.06	+0.58	
G2	5790	1.07	1.03		+4.66	-0.20	+4.9	+0.12	+0.63	
Sun ^a	5777	1.00	1.00	1.00	+4.74	-0.08	+4.82	+0.195	+0.650	
G8	5310	0.656	0.96	-	+5.20	-0.40	+5.6	+0.30	+0.74	
K0	5150	0.552	0.93	0.79	+5.39	-0.31	+5.7	+0.45	+0.81	
K1	4990	0.461	0.91	_	+5.58	-0.37	+6.0	+0.54	+0.86	
K3	4690	0.318	0.86	-	+5.98	-0.50	+6.5	+0.80	+0.96	
K4	4540	0.263	0.83		+6.19	-0.55	+6.7	_	+1.05	
K5	4410	0.216	0.80	0.67	+6.40	-0.72	+7.1	+0.98	+1.15	
K7	4150	0.145	0.74		+6.84	-1.01	+7.8	+1.21	+1.33	
M0	3840	0.077	0.63	0.51	+7.52	-1.38	+8.9	+1.22	+1.40	
M1	3660	0.050	0.56	_	+7.99	-1.62	+9.6	+1.21	+1.46	
M2	3520	0.032	0.48	0.40	+8.47	-1.89	+10.4	+1.18	+1.49	
M3	3400	0.020	0.41		+8.97	-2.15	+11.1	+1.16	+1.51	
M4	3290	0.013	0.35	_	+9.49	-2.38	+11.9	+1.15	+1.54	
M5	3170	0.0076	0.29	0.21	+10.1	-2.73	+12.8	+1.24	+1.64	
M6	3030	0.0044	0.24		+10.6	-3.21	+13.8	+1.32	+1.73	
M7	2860	0.0025	0.20		+11.3	-3.46	+14.7	+1.40	+1.80	

			Giant St	ars (Lumi	nosity Cl	ass III)			
Sp. Туре	T_e (K)	L/L_{\odot}	R/R_{\odot}	M/M_{\odot}	M _{bol}	BC	M _V	U - B	B - V
05	39400	741000	18.5	_	-9.94	-4.05	-5.9	-1.18	-0.32
06	37800	519000	16.8	_	-9.55	-3.80	-5.7	-1.17	-0.32
07	36500	375000	15.4		-9.20	-3.58	-5.6	-1.14	-0.32
08	35000	277000	14.3	—	-8.87	-3.39	-5.5	-1.13	-0.31
B0	29200	84700	11.4	20	-7.58	-2.88	-4.7	-1.08	-0.29
BI	24500	32200	10.0		-6.53	-2.43	-4.1	0.97	-0.26
B2	20200	11100	8.6		-5.38	-2.02	-3.4	-0.91	-0.24
B3	18300	6400	8.0		-4.78	-1.60	-3.2	-0.74	-0.20
B5	15100	2080	6.7	7	-3.56	-1.30	-2.3	-0.58	-0.17
B 6	13800	1200	6.1		-2.96	-1.13	-1.8	-0.51	-0.15
B7	12700	710	5.5	0	-2.38	-0.97	-1.4	-0.44	-0.13
B8	11700	425	5.0		-1.83	-0.82	-1.0	-0.37	-0.11
B9	10900	263	4.5	_	-1.31	-0.71	-0.6	-0.20	-0.07
A0	10200	169	4.1	4	-0.83	-0.42	-0.4	-0.07	-0.03
A1	9820	129	3.9		-0.53	-0.29	-0.2	+0.07	+0.01
A2	9460	100	3.7	_	-0.26	-0.20	-0.1	+0.06	+0.05
A5	8550	52	3.3		+0.44	-0.14	+0.6	+0.11	+0.15
A8	7830	33	3.1	_	+0.95	-0.10	+1.0	+0.10	+0.25

F0	7400	27	3.2	_	+1.17	-0.11	+1.3	+0.08	+0.30	
F2	7000	24	3.3		+1.31	-0.11	+1.4	+0.08	+0.35	
F5	6410	22	3.8	_	+1.37	-0.14	+1.5	+0.09	+0.43	
G0	5470	29	6.0	1.0	+1.10	-0.20	+1.3	+0.21	+0.65	
G2	5300	31	6.7		+1.00	-0.27	+1.3	+0.39	+0.77	
G8	4800	44	9.6		+0.63	-0.42	+1.0	+0.70	+0.94	
K0	4660	50	10.9	1.1	+0.48	-0.50	+1.0	+0.84	+1.00	
K1	4510	58	12.5		+0.32	-0.55	+0.9	+1.01	+1.07	
К3	4260	79	16.4	-	-0.01	-0.76	+0.8	+1.39	+1.27	
K4	4150	93	18.7	<u></u>	-0.18	-0.94	+0.8		+1.38	
К5	4050	110	21.4	1.2	-0.36	-1.02	+0.7	+1.81	+1.50	
K 7	3870	154	27.6		-0.73	-1.17	+0.4	+1.83	+1.53	
M0	3690	256	39.3	1.2	-1.28	-1.25	+0.0	+1.87	+1.56	
M1	3600	355	48.6	_	-1.64	-1.44	-0.2	+1.88	+1.58	
M2	3540	483	58.5	1.3	-1.97	-1.62	-0.4	+1.89	+1.60	
M3	3480	643	69.7		-2.28	-1.87	-0.4	+1.88	+1.61	
M4	3440	841	82.0		-2.57	-2.22	-0.4	+1.73	+1.62	
M5	3380	1100	96.7		-2.86	-2.48	-0.4	+1.58	+1.63	
M6	3330	1470	116		-3.18	-2.73	-0.4	+1.16	+1.52	
										Carroll & Ostelie

		Supergia	nt Stars (I	uminosit	y Class Ap	proximat	ely Iab)		
Sp.	T_e (K)	1/1	R/R_{\odot}	M/M_{\odot}	M _{bol}	BC	M_V	U - B	B - V
Туре		L/L_{\odot}							
05	40900	1140000	21.2	70	-10.40	-3.87	-6.5	-1.17	-0.31
06	38500	998000	22.4	40	-10.26	-3.74	-6.5	-1.16	-0.31
07	36200	877000	23.8	_	-10.12	-3.48	-6.6	-1.14	-0.31
08	34000	769000	25.3	28	-9.98	-3.35	-6.6	-1.13	-0.29
B 0	26200	429000	31.7	25	-9.34	-2.49	-6.9	-1.06	-0.23
B 1	21400	261000	37.3	_	-8.80	-1.87	-6.9	-1.00	-0.19
B2	17600	157000	42.8	_	-8.25	-1.58	-6.7	-0.94	-0.17
B 3	16000	123000	45.8	_	-7.99	-1.26	-6.7	-0.83	-0.13
B5	13600	79100	51.1	20	-7.51	-0.95	-6.6	-0.72	-0.10
B6	12600	65200	53.8	-	-7.30	-0.88	-6.4	0.69	-0.08
B7	11800	54800	56.4		-7.11	-0.78	-6.3	-0.64	-0.05
B 8	11100	47200	58.9	_	-6.95	-0.66	-6.3	-0.56	-0.03
B9	10500	41600	61.8		-6.81	-0.52	-6.3	-0.50	-0.02
A0	9980	37500	64.9	16	-6.70	-0.41	-6.3	-0.38	-0.01
Al	9660	35400	67.3	_	-6.63	-0.32	-6.3	-0.29	+0.02
A2	9380	33700	69.7	_	-6.58	-0.28	-6.3	-0.25	+0.03
A5	8610	30500	78.6	13	-6.47	-0.13	-6.3	-0.07	+0.09
A8	7910	29100	91.1		-6.42	-0.03	-6.4	+0.11	+0.14
AU	7910	29100	91.1		0.42	5.05	0.4	, 5.11	10.14

F0	7460	28800	102	12	-6.41	-0.01	-6.4	+0.15	+0.17	
F2	7030	28700	114	_	-6.41	0.00	-6.4	+0.18	+0.23	
F5	6370	29100	140	10	-6.42	-0.03	-6.4	+0.27	+0.32	
F8	5750	29700	174	_	-6.44	-0.09	-6.4	+0.41	+0.56	
G0	5370	30300	202	10	-6.47	-0.15	-6.3	+0.52	+0.76	
G2	5190	30800	218		-6.48	-0.21	-6.3	+0.63	+0.87	
G8	4700	32400	272	_	-6.54	-0.42	-6.1	+1.07	+1.15	
ко	4550	33100	293	13	-6.56	-0.50	-6.1	+1.17	+1.24	
K1	4430	34000	314		-6.59	-0.56	-6.0	+1.28	+1.30	
K3	4190	36100	362		-6.66	-0.75	-5.9	+1.60	+1.46	
K4	4090	37500	386		-6.70	-0.90	-5.8	_	+1.53	
K5	3990	39200	415	13	-6.74	-1.01	-5.7	+1.80	+1.60	
K7	3830	43200	473		-6.85	-1.20	-5.6	+1.84	+1.63	
M0	3620	51900	579	13	-7.05	-1.29	-5.8	+1.90	+1.67	
M 1	3490	60300	672	_	-7.21	-1.38	-5.8	+1.90	+1.69	
M2	3370	72100	791	19	-7.41	-1.62	-5.8	+1.95	+1.71	
M3	3210	89500	967		-7.64	-2.13	-5.5	+1.95	+1.69	
M4	3060	117000	1220		-7.93	-2.75	-5.2	+2.00	+1.76	
M5	2880	165000	1640	24	-8.31	-3.47	-4.8	+1.60	+1.80	
M6	2710	264000	2340		-8.82	-3.90	-4.9	_	_	

	Ad	unted colik	ration of N	TABL		osolute mag	nitudae M.			Ad	opted temp	eratures an	d bolometr	ic correction	s for MK	spectral typ	bes	
				•						$\log T_{\rm eff}$				Bol. Corr	ection			
Sp	ZAMS	v	IV	ш	П	Ib	Iab	Ia	Sp	v		Ш	I–II	v		III	I–II	
05	-4.6	-5.6	-5.8	-6.0	-6.3	-6.6	-6.9	-7.2	05		4.626		4.618		-4.15		-3.80	
06 07	-4.0 -3.9	-5.4 -5.2	-5.7 -5.5	-5.9 -5.8	-6.3 -6.2	-6.6 -6.5	-6.9 -6.8	-7.2 -7.2	06		4.593		4.585		-3.90		-3.55	
08	-3.9	- 5.2	-5.5	-5.8	-6.2	-6.5	-6.8	-7.2	07		4.568		4.556		-3.65		-3.30	
09	-3.5	-4.5	-4.9	-5.3	-5.9	-6.3	-6.6	-7.2	08		4.550		4.535		-3.40		-3.15	
B0	-3.1	-4.0	-4.4	-4.9	-5.6	-6.1	-6.5	-7.2	09		4.525		4.512		-3.15		-2.95	
B1	-2.3	-3.3	-3.9	-4.5	-5.2	-5.9	-6.4	-7.2	B0		4.498		4.431		-2.95		-2.50	
B2	-1.6	-2.5	-3.1	-3.7	-5.0	-5.9	-6.4	-7.2	B1		4.423		4.371		-2.60		-2.15	
B3	-1.0	-1.7	-2.3	-3.0	-4.8	-5.9	-6.4	-7.2	B2 B3		4.362 4.286		4.307 4.243		-2.20		-1.75 -1.40	
B5	-0.1	-0.8	-1.2	-1.7	-4.6	-5.9	-6.4	-7.2	B5 B5		4.286		4.245		-1.85		-0.90	
B6	0.3	-0.5	-0.9	-1.3	-4.4	-5.8	-6.4	-7.2	B5 B6		4.166		4.137		-1.05		-0.90	
B7	0.6	-0.2	-0.6	-1.0	-4.2	-5.8	-6.4	-7.2	B0 B7		4.132		4.068		-0.80		-0.60	
B8	1.0	0.1	-0.3	-0.7	-3.9	-5.8	-6.4	-7.2	B8		4.061		4.041		-0.55		-0.45	
B9	1.4	0.5	0.1	-0.4	-3.6	-5.7	-6.4	-7.2	B9		4.017		4.013		-0.35		-0.35	
A0	1.6	0.8	0.4	-0.1	-3.4	-5.5	-6.4	-7.2	A0		3.982		3.991		-0.25		-0.25	
A1	1.7	1.1	0.7	0.2	-3.2	-5.3	-6.4	-7.2	A1		3.973		3.978		-0.16		-0.16	
A2	1.8	1.3	0.9	0.4	-3.1	-5.2	-6.4	-7.3	A2		3.961		3.964		-0.10		-0.10	
A3 A5	1.9 2.3	1.5 1.9	1.0	0.5 0.8	-3.0 -2.9	-5.1	-6.4	-7.3 -7.5	A3		3.949		3.949		-0.03		-0.03	
A5 A7	2.5	2.3	1.4 1.7	0.8	-2.9	-5.0 -5.0	-6.5 -6.7	-7.7	A5		3.924		3.919		0.02		0.05	
F0	3.0	2.8	2.2	1.5	-2.8	-5.0	-6.9	-7.9	A7 F0		3.903 3.863		3.897 3.869		0.02 0.02		0.09 0.13	
F2	3.2	3.1	2.4	1.5	-2.6	-4.9	-7.0	-8.0	F0 F2		3.865		3.869		0.02		0.13	
F5	3.7	3.6	2.6	2.0	-2.6	-4.8	-7.1	-8.0	F5		3.843		3.813		-0.02		0.08	
F8	4.2	4.1	2.8		-2.5	-4.7	-7.2	-8.1	F8	3.789	51015	3.782	3.778		-0.03		0.03	
G0	4.5	4.4	2.9		-2.4	-4.6	-7.2	-8.2	GÖ	3.774		3,763	3.756		-0.05		0.00	
G2		4.7	3.0	1.1:	-2.4	-4.5	-7.2	-8.2	G2	3.763		3.740	3.732		-0.07		-0.05	
G5		5.1	3.1	1.0	-2.4	-4.4	-7.2	-8.2	G5	3.740		3.712	3.699	-0.09		-0.22	-0.13	
G8		5.6	3.2	0.9	-2.5	-4.3	-7.0	-8.1	G8	3.720		3.695	3.663	-0.13		-0.28	-0.22	
K0		6.0	3.2	0.8	-2.5	-4.3	-6.8	-7.9	K0	3.703		3.681	3.643	-0.19		-0.37	-0.29	
K1		6.2	3.2	0.8	-2.5	-4.3	-6.7	-7.7	K1	3.695		3.663	3.633			-0.43	-0.35	
K2		6.5		0.7	-2.5	-4.3	-6.6	-7.6	K2	3.686		3.648	3.623	-0.30		-0.49	-0.42	
K3		6.7		0.6	-2.5	-4.3	-6.5	-7.5	K3 K4	3.672 3.663		3.628 3.613	3.613			-0.66 -0.86	-0.57 -0.75	
K4		7.0		0.5	-2.6	-4.4	-6.4	-7.4	K4 K5	3.643		3.602	3.585	-0.62		-1.15	-1.17	
K5		7.3		0.3	-2.6	-4.4	-6.2	-7.2	K7	3.602		51002	5.565	-0.89		-1.15	-1.17	
K7 M0		8.1 8.9		0.0 -0.6	-2.7 -2.8	-4.5 -4.6	-6.0 -5.8	-7.0 -6.9	MO	3.591		3.591	3.568	-1.17		-1.25	-1.25	
M0 M1		8.9 9.4		-0.8	-2.8	-4.6	-5.8	-6.9	M1	3.574		3.580	3.556	-1.45		-1.45	-1.40	
M2		10.0		-0.9	-3.0	-4.0	-5.8	-6.7	M2	3.550		3.574	3.544	-1.71		-1.65	-1.60	
M3		10.0		-0.9	-3.0	-4.7	-5.8	-6.7	M3	3.531		3.562	3.518	-1.92		-1.95	-2.0	Straižys &
M4		11.5		-0.6	-3.1	-4.7	-5.8	-6.7	M4	3.512		3.550	3.491	-2.24		-2.4	-2.6	Sti uizys a
M5		13.5		-0.1	-3.1	-4.7	-5.8	-6.7	M5	3.491		3.531	3.470	-2.55		-3.1	-3.3	Kuriliene (198
				0.1	5.1	4.7	5.0	0.7	M6			3.512		-4.4		-4.0		municile (170

<s< th=""><th>nary track</th><th>the evolut</th><th>lerived fror</th><th>LE VI tral types</th><th></th><th>for differe</th><th>log M/M⊙</th><th>llar masses</th><th>Ste</th><th colspan="9">Bolometric absolute magnitudes M_{tot} for MK spectral types</th></s<>	nary track	the evolut	lerived fror	LE VI tral types		for differe	log M/M⊙	llar masses	Ste	Bolometric absolute magnitudes M_{tot} for MK spectral types								
	Ia	Iab	Ib	п	III	IV	v	ZAMS	Sp	Ia	Iab	Ib	П	ш	IV	v	ZAMS	Sp
		1.99	1.92	1.90	1.89	1.85	1.81	1.60	05	-11.0	-10.7	-10.4	-10.3	-10.2	-10.0	-9.8	-8.7	O5
	2.00	1.91	1.87	1.80	1.80	1.76	1.70	1.48	06	-10.8	-10.4	-10.2	-9.9	-9.8	-9.6	-9.3	-8.0	06
	1.92	1.83	1.76	1.71	1.68	1.65	1.59	1.40	07	-10.5	-10.1	-9.8	-9.5	-9.3	-9.1	-8.8	-7.5	07
	1.90	1.76	1.72	1.65	1.60	1.54	1.48	1.34	08	-10.4	-9.8	-9.6	-9.2	-8.9	-8.6	-8.3	-7.2	08
	1.83	1.72	1.66	1.58	1.49	1.45	1.38	1.28	09	-10.2	-9.6	-9.3	-8.9	-8.4	-8.1	-7.6	-6.7	09
	1.70	1.56	1.48	1.40	1.40	1.34	1.30	1.20	B0	-9.7	-9.0	-8.6	-8.1	-7.9	-7.4	-7.0	-6.2	B0
	1.64	1.46	1.38	1.28	1.23	1.18	1.11	1.04	B1	-9.4	-8.6	-8.0	-7.4	-6.8	-6.3	-5.8	-4.9	BI
	1.54	1.38	1.30	1.18	1.08	1.04	0.99	0.92	B2	-9.0	-8.2	-7.6	-6.8	-5.9	-5.3	-4.7	-4.0	B2
	1.45	1.32	1.23	1.11	0.94	0.88	0.84	0.78	B3	-8.6	-7.8	-7.3	-6.2	-4.7	-4.1	-3.6	-2.8	B3
	1.40	1.26	1.18	1.00	0.75	0.72	0.68	0.62	B5	-8.1	-7.3	-6.8	-5.4	-3.0	-2.5	-2.1	-1.4	B5
	1.38	1.26	1.15	0.94	0.68	0.64	0.61	0.56	B6	-7.9	-7.2	-6.6	-5.2	-2.4	-2.0	-1.6	-0.9	B6
	1.36	1.23	1.11	0.91	0.60	0.57	0.53	0.49	B7	-7.8	-7.0	-6.4	-4.8	-1.8	-1.4	-1.0	-0.2	B7
	1.34	1.20	1.08	0.88	0.52	0.49	0.48	0.43	B8	-7.6	-6.9	-6.2	-4.4	-1.2	-0.8	-0.4	0.4	B8
	1.32	1.20	1.04	0.85	0.49	0.45	0.41	0.36	B9	-7.5	-6.8	-6.0	-4.0	-0.8	-0.2	0.1	1.0	B9
	1.30	1.18	1.04	0.81	0.43	0.39	0.35	0.32	A0	-7.4	-6.6	-5.7	-3.6	-0.3	0.2	0.7	1.4	A0
	1.30	1.18	1.00	0.78	0.41	0.36	0.34	0.31	A1	-7.4	-6.6	-5.5	-3.3	-0.1	0.5	0.9	1.6	A1
	1.30	1.15	0.98	0.75	0.39	0.34	0.32	0.29	A2	-7.4	-6.5	-5.3	-3.1	0.1	0.7	1.2	1.7	A2
	1.30	1.11	0.97	0.75	0.36	0.32	0.30	0.27	A3	-7.4	-6.4	-5.2	-3.0	0.4	1.0	1.5	1.9	A3
	1.30	1.11	0.95	0.74	0.33	0.29	0.26	0.23	A5	-7.4	-6.4	-5.0	-2.8	0.8	1.4	1.9	2.3	A5
	1.32	1.15	0.94	0.73	0.30	0.26	0.22	0.20	A7	-7.6	-6.5	-4.9	-2.7	1.1	1.4	2.3	2.6	A7
	1.38	1.20	0.93	0.72	0.23	0.20	0.16	0.16	F0	-7.8	-6.7	-4.8	-2.6	1.6	2.2	2.9	3.0	F0
	1.40	1.20	0.93	0.72	0.20	0.16	0.13	0.13	F2	-7.9	-6.8	-4.8	-2.5	1.8	2.4	3.1	3.2	F2
	1.40	1.26	0.93	0.72	0.18	0.13	0.08	0.08	F5	-7.9	-7.0	-4.7	-2.5	2.0	2.6	3.6	3.7	F5
	1.41	1.28	0.93	0.72		0.11	0.04	0.04	F8	-8.0	-7.1	-4.6	-2.4	2.0	2.8	4.1	4.2	F8
	1.43	1.30	0.93	0.72		0.10	0.02	0.02	G0	-8.1	-7.2	-4.6	-2.4		2.9	4.4	4.4	G0
	1.45	1.30	0.93	0.72	0.33	0.10	0.00	0.00	G2	-8.2	-7.2	-4.6	-2.4	1.0	2.9	4.6	4.6	G2
	1.46	1.32	0.94	0.73	0.39	0.08	-0.02		G5	-8.3	-7.3	-4.5	-2.5	0.8	3.0	5.1		G5
	1.46	1.32	0.94	0.76	0.42	0.08	-0.04		G8	-8.3	-7.2	-4.5	-2.7	0.6	3.1	5.5		G8
	1.45	1.30	0.96	0.78	0.46	0.11	-0.07		K0	-8.2	-7.1	-4.6	-2.8	0.5	3.0	5.8		KO
	1.45	1.30	0.96	0.78	0.46	0.13	-0.10		K1	-8.1	-7.1	-4.6	-2.9	0.4	3.0	5.9		K1
	1.43	1.28	0.98	0.79	0.45		-0.10		K2	-8.0	-7.0	-4.7	-3.0	0.2		6.0		K2
	1.43	1.30	1.00	0.80	0.38		-0.12		K3	-8.0	-7.0	-4.9	-3.1	-0.1		6.2		K3
					0.36		-0.15		K4	-0.0	7.0	7.2	5.1	-0.4		6.4		K4
	1.45	1.30	1.08	0.83	0.37		-0.19		K5	-8.0	-7.0	-5.4	-3.7	-0.9		6.7		K5
							-0.22		K 7	.0.0	7.0	2.4	5.7	0.0		7.3		K7
	1.46	1.32	1.15	0.83	0.48		-0.26		M0	-8.1	-7.0	-5.8	-4.0	-1.8		7.5		M0
	1.48	1.34	1.18	0.83	0.54		-0.30		M1	-8.1	-7.0	-6.0	-4.0	-2.4		7.9		MI
	1.50	1.36	1.18	0.81	0.54		-0.35		M2	-8.2	-7.4	-6.2	-4.5	-2.6		8.3		M2
Charles A	1.56	1.38	1.20	0.84	0.52		-0.40		M3	-8.5	-7.8	-6.7	-4.5	-2.9		8.8		M3
Straižys & Kuriliene (198					0.51		-0.52		M4	-8./ -9.3	-7.8	-0.7	-5.7	-2.9		9.3		M4
17 11 (400					(0.41)		(-0.82)		M5	-9.3	-8.4 -9.1	-7.3	-6.3	-3.2		11.0		M5
Kuriliene (198					(0.40)				M6	-10.0	~9.1	-0.0	-0.5	-3.6		11.0		M6

05	ZAMS		TABLE VII IABLE VII Calibration of MK spectral types in surface gravities (log g) Stellar radii log R/R₀ for different MK spectral types															
	ZAM5	v	IV	ш	п	Ib	Iab	Ia	Sp	ZAMS	v	IV	III	п	Ib	Iab	Ia	
	4.12	3.90	2.96	2.62	3.76	3.74	3.69		05	0.95	1.17	1.21	1.25	1.28	1.30	1.36		
	4.13 4.16	3.90	3.86 3.80	3.82 3.76	3.69	3.74	3.69	3.53	Ŭ6	0.87	1.13	1.19	1.23	1.27	1.33	1.37	1.45	
	4.18	3.85	3.80	3.76	3.64	3.57	3.52	3.45	07	0.82	1.08	1.14	1.18	1.25	1.31	1.37	1.45	
	4.18	3.87	3.80	3.74	3.62	3.53	3.49	3.39	08	0.80	1.02	1.08	1.14	1.23	1.31	1.35	1.47	
	4.17	3.95	3.82	3.74	3.58	3.50	3.49	3.31	09	0.75	0.93	1.03	1.09	1.22	1.30	1.36	1.48	
	4.22	4.00	3.88	3.74	3.39	3.27	3.19	3.05	BO	0.70	0.86	0.94	1.04	1.20	1.32	1.40	1.54	
	4.28	4.00	3.86	3.71	3.31	3.17	3.01	2.87	B1	0.59	0.77	0.87	0.97	1.20	1.32	1.44	1.60	
	4.28	4.06	3.88	3.68	3.19	3.00	2.84	2.68	B2	0.54	0.68	0.80	0.92	1.21	1.37	1.49	1.65	
	4.31	4.06	3.89	3.71	3.12	2.79	2.68	2.49	B3	0.45	0.61	0.71	0.83	1.21	1.43	1.53	1.69	
	4.32	4.10	3.98	3.81	2.90	2.52	2.40	2.22	B5	0.36	0.50	0.58	0.68	1.27	1.55	1.65	1.81	
	4.32	4.09	3.96	3.84	2.77	2.42	2.29	2.13	B6	0.34	0.48	0.56	0.64	1.30	1.58	1.70	1.84	
	4.35	4.07	3.95	3.82	2.77	2.33	2.21	2.02	B7	0.29	0.45	0.53	0.61	1.28	1.60	1.72	1.88	
	4.34	4.07	3.92	3,79	2.79	2.27	2.11	1.97	B8	0.26	0.42	0.50	0.58	1.26	1.62	1.76	1.90	
B9	4.34	4.03	3.94	3.75	2.81	2.20	2.04	1.88	B9	0.23	0.41	0.47	0.59	1.23	1.63	1.79	1.93	
A0	4.32	4.07	3.91	3.75	2.85	2.23	2.01	1.81	A0	0.22	0.36	0.46	0.56	1.20	1.62	1.80	1.96	
A1	4.35	4.10	3.96	3.78	2.88	2.22	1.96	1.76	A1	0.19	0.33	0.41	0.53	1.16	1.60	1.82	1.98	
A2	4.32	4.16	3.98	3.78	2.87	2.23	1.92	1.71	A2	0.20	0.30	0.40	0.52	1.15	1.59	1.83	2.01	
A3	4.34	4.20	4.03	3.83	2.85	2.20	1.86	1.65	A3	0.18	0.26	0.36	0.48	1.16	1.60	1.84	2.04	
	4.36	4.22	4.06	3.86	2.81	2.14	1.74	1.53	A5	0.15	0.23	0.33	0.45	1.18	1.62	1.90	2.10	
	4.36	4.26	4.10	3.86	2.75	2.08	1.65	1.38	A7	0.13	0.19	0.29	0.43	1.21	1.65	1.97	2.19	
	4.32	4.28	4.05	3.83	2.67	2.00	1.51	1.25	F0	0.13	0.15	0.29	0.41	1.24	1.68	2.06	2.28	
	4.30	4.26	4.01	3.81	2.63	1.92	1.39	1.15	F2	0.13	0.15	0.29	0.41	1.26	1.72	2.12	2.34	
	4.32	4.28	3.93	3.74	2.48	1.81	1.22	1.00	F5	0.09	0.11	0.31	0.43	1.30	1.77	2.23	2.41	
	4.39	4.35	3.89		2.38	1.71	1.06	0.83	F8	0.04	0.06	0.33		1.38	1.82	2.32	2.50	
	4.39	4.39	3.84		2.29	1.62	0.95	0.72	G0	0.03	0.03	0.34		1.43	1.87	2.39	2.57	
	4.40	4.40	3.77	3.20	2.20	1.53	0.86	0.61	G2	0.01	0.01	0.38	0.78	1.48	1.92	2.44	2.64	
G5		4.49	3.71	3.07	2.04	1.45	0.71	0.45	G5		-0.04	0.41	0.88	1.56	1.96	2.52	2.72	
G8 K0		4.55 4.57	3.64 3.57	2.95 2.89	1.84 1.74	1.30 1.20	0.60	0.30 0.25	G8		-0.08	0.43	0.95	1.67	2.03	2.57	2.79	
KI KI		4.57	3.57	2.89	1.74	1.16	0.54	0.25	K0		-0.11	0.48	1.00	1.73	2.09	2.59	2.81	
K1 K2		4.55	5.55	2.78	1.59	1.10	0.34	0.23	K1		-0.11	0.50	1.05	1.77	2.11	2.61	2.81	
K2 K3		4.55		2.65	1.59	1.00	0.48	0.19	K2		-0.11		1.12	1.81	2.15	2.61	2.81	
K3 K4		4.56		2.36	1.52	1.00	0.40	0.17	K3		-0.12		1.22	1.85	2.21	2.63	2.83	
K4 K5		4.57		1.93	1.20	0.77	0.35	0.10	K4 K5		-0.15		1.31		0.07	a (a	2.00	
K7		4.62		1.70	1.40	v.,,	0.00	0.10			-0.17		1.44	2.03	2.37	2.69	2.89	
MO		4.61		1.63	1.01	0.61	0.30	0.00	K7		-0.20						2.02	
MI		4.67		1.41	0.84	0.51	0.19	-0.07	M0 M1		-0.22 -0.27		1.64 1.78	2.12 2.21	2.48 2.55	2.72 2.78	2.92 2.99	
M2		4.69		1.31	0.70	0.39	0.09	-0.13						2.21				
M3		4.71		1.12	0.38	0.10	-0.16	-0.34	M2 M3		-0.30		1.83	2.27	2.61	2.85 2.98	3.03 3.16	
M4		4.77		0.98					M3 M4		-0.36 -0.42		1.92	2.44	2.76	2.98	5.10	Straižvs &
M5		5.06		(0.76)					M4 M5		-0.42		(2.04)					Straižys & Kuriliene (198
M6				(0.52)					M6		-0.72		(2.04)					Kuriliene (198

Filter name	λ_{iso}^{b} (μ m)	Δλ ^c (μm)	$(W m^{-2} \mu m^{-1})$	<i>F</i> _ν (Jy)	(photons s ⁻¹ m ⁻² μ m ⁻¹)
V	0.5556 ^d		3.44×10^{-8}	3 540	9.60×10^{10}
J	1.215	0.26	3.31×10^{-9}	1 630	2.02×10^{10}
H	1.654	0.29	1.15×10^{-9}	1050	9.56×10^{9}
Ks	2.157	0.32	4.30×10^{-10}	667	4.66×10^{9}
K	2.179	0.41	4.14×10^{-10}	655	4.53×10^{9}
L	3.547	0.57	6.59×10^{-11}	276	1.17×10^{9}
L'	3.761	0.65	5.26×10^{-11}	248	9.94×10^{8}
M	4.769	0.45	2.11×10^{-11}	160	5.06×10^{8}
8.7	8.756	1.2	1.96×10^{-12}	50.0	8.62×10^{7}
N	10.472	5.19	9.63×10^{-13}	35.2	5.07×10^{7}
11.7	11.653	1.2	6.31×10^{-13}	28.6	3.69×10^{7}
Q	20.130	7.8	7.18×10^{-14}	9.70	7.26×10^{6}
	10-23		$\mathrm{cm}^{-2}\mathrm{Hz}^{-1}$		

Band	λ_0	$d\lambda/\lambda$	$f_{v} (m=0)$	Reference
	μm		Ју	
U	0.36	0.15	1810	Bessel (1979)
В	0.44	0.22	4260	Bessel (1979)
V	0.55	0.16	3640	Bessel (1979)
R	0.64	0.23	3080	Bessel (1979)
Ι	0.79	0.19	2550	Bessel (1979)
J	1.26	0.16	1600	Campins, Reike, & Lebovsky (1985)
Н	1.60	0.23	1080	Campins, Reike, & Lebovsky (1985)
К	2.22	0.23	670	Campins, Reike, & Lebovsky (1985)
g	0.52	0.14	3730	Schneider, Gunn, & Hoessel (1983)
r	0.67	0.14	4490	Schneider, Gunn, & Hoessel (1983)
i	0.79	0.16	4760	Schneider, Gunn, & Hoessel (1983)
Z	0.91	0.13	4810	Schneider, Gunn, & Hoessel (1983)

Notes

^aCohen et al. [1] recommend the use of Sirius rather than Vega as the photometric standard for $\lambda > 20 \ \mu m$ because of the infrared excess of Vega at these wavelengths. The magnitude of Vega depends on the photometric system used, and it is either assumed to be 0.0 mag or assumed to be 0.02 or 0.03 mag for consistency with the visual magnitude.

^bThe infrared isophotal wavelengths and flux densities (except for K_s) are taken from Table 1 of [1], and they are based on the UKIRT filter set and the atmospheric absorption at Mauna Kea. See Table 2 of [1] for the case of the atmospheric absorption at Kitt Peak. The isophotal wavelength is defined by $F(\lambda_{iso}) = \int F(\lambda)S(\lambda) d\lambda / \int S(\lambda) d\lambda$, where $F(\lambda)$ is the flux density of Vega and $S(\lambda)$ is the (detector quantum efficiency) × (filter transmission) × (optical efficiency) × (atmospheric transmission) [2]. λ_{iso} depends on the spectral shape of the source and a correction must be applied for broadband photometry of sources that deviate from the spectral shape of the standard star [3]. The flux density and λ_{iso} for K_s were calculated here. For another filter, K', at 2.11 μ m, see [4].

^cThe filter full width at half maximum.

^d The wavelength at V is a monochromatic wavelength; see [5].

References

- 1. Cohen, M. et al. 1992, AJ, 104, 1650
- 2. Golay, M. 1974, Introduction to Astronomical Photometry (Reidel, Dordrecht), p. 40
- 3. Hanner, M.S., et al. 1984, AJ, 89, 162
- 4. Wainscoat, R.J., & Cowie, L.L. 1992, AJ, 103, 332
- Hayes, D.S. 1985, in Calibration of Fundamental Stellar Quantities, edited by D.S. Hayes, et al., Proc. IAU Symp. No. 111 (Reidel, Dordrecht), p. 225

Allen's *Astrophysical Quantities* (4th edition)

Exercise

Sirius, the brightest star in the night sky, has been measured $m_B = -1.47$, $m_V = -1.47$. The star has an annual parallax of 0.379"/yr.

- 1. What is its distance in parsec?
- 2. What is its absolute V-band magnitude?
- 3. From the absolute magnitude, what spectral type can be inferred for Sirius?
- 4. From the observed (B-V) color, what spectral type can be inferred?
- 5. What kinds of uncertainties/assumptions are associated with the above estimations?

	2015/4/21		sirius
	Portal Simbad	VizieR Aladin X-Match Other Help	
			sirius
	other query Identifier Coordin modes : query quer		put Help ms
	Query : sirius		
	Available data : Basic data • Ider	ntifiers. • Plot & images. • Bibliography. • Measurements	• External archives • Notes • An
	Basic data :		
	* alf CMa Double of	or multiple star	
	Other object types:	<pre>* (* ,BD,GC,HD,HIC,HIP,HR,SAO,UBV) , IR (AKARI ,IR) , PM* (LHS) , V* (NSV) , UV (TD1)</pre>	S,IRC,2MASS,RAFGL) ,** (** ,WDS)
	ICRS coord. (ep=J2000) :	06 45 08.91728 -16 42 58.0171 (Optical) [11.70	10.90 90] A 2007A&A474653V
		· 06 45 08.917 -16 42 58.02 [11.70 10.90 90]	
) : 06 42 56.72 -16 38 45.4 [67.39 63.09 0]	
	Gal coord. (ep=J2000) :	227.2303 -08.8903 [11.70 10.90 90]	21/
	Proper motions mas/yr : Radial velocity / Redshift / cz :	-546.01 -1223.07 [1.33 1.24 0] A 2007A&A47465 V(km/s) -5.50 [0.4] / z(~) -0.000018 [0.000001] /	
	Radial velocity / Redshift / cz :	V(km/s) -5.50 [0.4] / z(~) -0.000018 [0.000001] / 2006AstL327596	
	Radial velocity / Redshift / cz : Parallaxes <i>mas</i> :	V(km/s) -5.50 [0.4] / z(~) -0.000013 [0.000001] / 2006Att32.7596 379.21 [1.53] A <u>2007A6474653V</u> A1V0A C <u>2013V(at1.2035</u> U -1.51 [~] C <u>2002v(at.223700</u>	
	Radial velocity / Redshift / cz : Parallaxes <i>mas</i> : Spectral type:	V(km/s) -5.60 [0.1] / τ(-) -0.000013 [0.000001] / 2005AttL.12.77535 379.31 [1.58] A 2007A5A474.653V A1440A C 2033VC4t	
	Radial velocity / Redshift / cz : Parallaxes <i>mas</i> : Spectral type:	V(km/s) -5.50 [0.4] / z(~) -0.000018 [0.000001] / 2006411127550 379.31 [1.53] A 2007A6A474653V A1V+DA C 2013VCat1.20235 U -1.53 [-] C 2002VCat.223700 B -1.46 [-] C 2002VCat.223700 V -1.45 [-] C 2002VCat.223700	
	Radial velocity / Redshift / cz : Parallaxes <i>mas</i> : Spectral type: Fluxes (8) :	V(km/s) -5.60 [0.1] / τ(-) -0.000013 [0.000001] / 2005AttL.12.77535 379.31 [1.58] A 2007A5A474.653V A1440A C 2033VC4t	
http://simbad.u-strasbg.fr/s	Radial velocity / Redshift / cz : Parallaxes <i>mas</i> : Spectral type: Fluxes (8) :	V(km/s) -5.60 [0.1] / x(-) -0.000013 [0.000001] / 2005A511127535 37.31 [1.50] A 2007A6A474653V A1446A C 2013V(cf	

Exercise

- 1. What is the spectral type of Alpha Scorpii?
- 2. What is its apparent magnitude? Expected absolute magnitude? Bolometric luminosity?
- 3. What is its distance estimated from its apparent magnitude? Measured directly by parallax? Why do these differ?
- 4. What is the expected diameter of the star in km, in R_{\odot} and in AU? What is then the expected angular diameter seen from Earth? Can it be resolved by the *HST*?

(Always show your work clearly, and cite the references.)

To measure the stellar age

Very tricky. Often one relies on measurements of *Mv*, *T*eff, [Fe/H], and then uses some kind of theoretically computed isochrones to interpolate the age (and mass)

Crude diagnostics include

- ✓ Lithium absorption line, e.g., 6707A
- ✓ Chromospheric activities, e.g., X-ray or Ca II emission
- ✓ Evolving off the main sequence
- ... hence subject to large uncertainties

References:

Edvardsson et al., 1993, A&A, 275, 101 Nordström et al., 2004, A&A, 418, 989

Star clusters are good laboratories to study stellar evolution, because member stars in a star cluster
are (almost) of the same age;
are (almost) at the same distance;
evolve in the same Galactic environments;
have the same chemical composition;
are dynamical bound.
Two distinct classes:

globular clusters (100+ in the MW)
open clusters (a few 10³ known in the MW)

How do these two classes differ in terms of shape, size, spatial distribution, number of member stars, and stellar population?

Open Clusters

 10^2 to 10^3 member stars; ~10 pc across; loosely bound; open shape; young population I; located mainly in spiral arms;

>1000 open clusters known in the MW

Globular Clusters

10⁵ to 10⁶ member stars; up to 100 pc across; tightly bound; centrally concentrated; spherical shape; old population II; located in the Galactic halo; 200 globular clusters known in the MW

Molecular Clouds and Star Formation

Stars are formed in molecular cloud cores, whereas planets are formed, contemporaneously, in young circumstellar disks.

http://www.astro.ncu.edu.tw/~wchen/Courses/Stars/Lada1995summerschool.pdf

- Gas, dust + radiation, magnetic fields, cosmic rays (i.e., charged particles)
- Very sparse ----

[star-star distance] / [stellar diameter] ~ $1 \text{ pc}/10^{11} \text{ cm} \sim 3 \times 10^7$:1 or ~1: 10^{22} in terms of volume (space)

- Mass: 99% mass in gas, 1% in dust \sim 15% of total MW visible matter
- Of the gas, 90%, H; 10% He
- Hydrogen: mainly H I (atomic), H II (ionized), and H₂ (molecular)
- Studies of ISM ----
 - Beginning of evolution of baryonic matter "recombination"
 - Stars form out of ISM
 - Important ingredient of a galaxy

Component	T (K)	n (cm ⁻³)	Properties
Hot, intercloud and coronal gas	106	10-4	
Warm intercloud gas	104	0.1	
Diffuse cloud (H I)	10 ²	0.1	Mostly H I; $n_e/n_0 = 10^{-4}$
H II regions	104	>10	
Dark Molecular Clouds	10	> 10 ³	Mostly H ₂ mol. and dust
Supernova Remnants	104~107	>1	
Planetary Nebulae			

Component	u (eV/cm ⁻³)	Properties
Cosmic microwave background	0.265	
FIR radiation from dust	0.31	
Starlight	0.54	
Thermal kinetic energy	0.49	
Turbulent kinetic energy	0.22	
Magnetic field	0.89	
Cosmic rays	1.39	

Exercise

- 1. The star Vega is used to define the zeroth magnitude in all the classical (Vega) photometric systems, e.g., Johnson.
- 2. Plot its spectral energy distribution (SED) from UV to IR.
- 3. What is the spectral type of Vega? What is its effective temperature?
- 4. Compare this in a plot with a blackbody curve of the temperature.
- 5. It was surprising hence when *IRAS* data revealed IR excess of Vega. What are the flux densities observed by *IRAS*? Given the age of Vega, why is this discovery significant?

Band lambda_c		dlambda/lambda	Flux at m=0	Reference				
	um		Jy					
U	0.36	0.15	1810	Bessel (1979)				
B	0.44	0.22	4260	Bessel (1979)				
V	0.55	0.16	3640	Bessel (1979)				
R	0.64	0.23	3080	Bessel (1979)				
Ι	0.79	0.19	2550	Bessel (1979)				
J	1.26	0.16	1600	Campins, Reike, & Lebovsky (1985)				
H	1.60	0.23	1080	Campins, Reike, & Lebovsky (1985)				
K	2.22	0.23	670	Campins, Reike, & Lebovsky (1985)				

http://www.astro.utoronto.ca/~patton/astro/mags.html#conversions

Astronomical Magnitude Systems.pdf

The Local Bubble, a cavity of sparse, hot gas, $\sim 100 \text{ pc}$ across, in the interstellar medium, with H density of 0.05 cm⁻³, an order less than typical in the Milky Way.

Likely caused by a (or multiple) supernova explosion (10-30 Myr ago).

Where is the supernova (remnant)? Check out the Orion-Eridanus Superbubble

Chap 2

29

CO molecules

- simple and abundant. Strong binding energy E=11.1 eV self-shielding against UV field
- with a permanent electric dipole moment; radiating strongly at radio frequencies.
- ¹²C¹⁶O easiest to detect; isotopes ¹³C¹⁶O, ¹²C¹⁸O, ¹²C¹⁷O, ¹³C¹⁸O also useful
- Excitation of CO to the *J*=1 level mainly through collisions with ambient $H_2 X_{CO} = 2 \times 10^{20} \text{ cm}^{-2} [\text{K km/s}]^{-1}$ (Bolatto et al. 2013, ARAA)
- At low densities, each excitation is followed by emission of a photon. At high densities, the excited CO transfers the energy by collision to another H₂ molecule; $n_{\rm crit} \approx 3 \times 10^3$ cm⁻³. Low critical density \rightarrow CO to study <u>large-scale distribution</u> of clouds, as a tracer of H₂
- ${}^{12}C^{16}O$ almost always optical thick; same line from other rare isotopes usually not. $N_H = 10^6 N_{13_{CO}}$

Object	log size scale [cm]
Galactic spiral arm	22
Giant molecular cloud	20
Molecular dense core	17
Protostellar accretion disk	15
Protostar	11
	Myers in You & Yuan (1995), p. 4

Component	log M [M₀]
Molecular clouds	9
H ₂	9
Не	8
СО	7
Young stars	5

Diameter [pc]	Mass [M _o]	Density [cm ⁻³]	T [K]	Velocity Width [km/s]
20-100	$10^5 - 10^6$	10-300	10-30	5-15

Exercise

- 1. What is the BN object (why is it called an "object")? What is its brightness, distance, luminosity, and mass (how are these known)?
- 2. Answer the same for the KL object. What is the relation between the two?
- 3. There is a class of objects called the "Herbig-Haro objects". What are they?
- 4. "Quasi-Stellar Objects (QSOs)

							VI	LI9	u r	Mas	55						
		MAS	S, LUN	INOSI	TY, AND	LIN	E WI	DTH	RELA	TIONS	OF G	ALACTIC	MOLECULAR	CLOUDS			
THE ASTROPHYSICAL JOURNA	u., 319:1	730-741, 19	87 August	15		tronon	ny Progr	am, Stat	e Unive		w York-S	ND A. YAI tony Brook	HIL				
								A	ABSTR	RACT							
		show with a power a con order: CO li cloud $L_{co} \propto$ The clump optica	that the a warm of r of the s stant most s of mag uminosit mass fr c σ_v^s , whi e mass-lip ps in vir ally thin	molecul or hot p size, $\sigma_v \in$ ean surf gnitude, ty $M \propto$ om CO ich is th uminositial equil at a fix	lar clouds hase of int $\propto S^{0.5}$. Con ace densit is found b $(L_{CO})^{0.81}$. luminosit e molecula ty law is a ibrium, ea ed velocity to the Jear	are i terste mbine y of etwee This y for r clou ccourt ccourt ccourt ch w y alor is ma	n or n llar ma ed with 170 <i>M</i> en the relatio individ ud ana nted fo ith a t og the ss at th	ear viri atter. T a virial $_{\odot}$ pc ⁻ cloud unship dual clo log of r by a hermal line of he clun	ial equili- the vel equili- ² and dynam establ ouds a the Tu cloud l inter sight. np der TABL	ailibrium locity lir ibrium, have a nical ma ishes a and for ally-Fish model nal velo The typ nsity and E 1	n and an ne width this sho mass <i>M</i> ss, as n calibrat the Gal er or F consisti city dis bical clu 1 therma	e not com is shown ws that th $f \propto \sigma_v^4$. A easured the ion for m inctic disk, aber-Jacks ing of a la persion, b mp mass il velocity	sis of these measu fined by pressure to be proportion to be proportion to be proportion to be proportion to be proportion to be proportional to be proportional to be proportional to be proportional to be proportional to be proportional to be proportional to be proportional to be	equilibrium al to the 0.5 acterized by p, over four em, and the l molecular uminosity is es. tically thick s effectively	1 5 7 8 7 8 8 8 8		
					G	GALACI	TIC FIRS	r Quadi	rant M	OLECULA	R CLOUD	ATALOG				-	
			(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)		
	(1)	(2)				T_{p}	R	D	z	σ_{ℓ}	σ_b	σ_v	$L_{co}/10^{4}$	$M_{v_{T}}/10^{4}$	Flag		
	• • •	(2) T _{min} -I	.,	bp	v_p	- p							(77.1				
	• • •	• • •	4	b _p (Deg.)	v _p (km·s ^{−1})		(kpc)	(kpc)	(pc)	(Deg.)	(Deg.)	(km·s ⁻¹) (K·km·s ⁻¹ ·pc ²)	(M _☉)			
	• • •	T _{min} -I	(Deg.)	b _p (Deg.) -0.50 0.20	v _p (km·s ⁻¹) 128. 20.	(K) 5.7	(kpc) 1.4 6.2	(kpc) 10.1 15.9		(Deg.)	(Deg.) 0.07 0.21	(km·s ⁻¹) 4.4 4.1	7.27 140.2	(M _☉) 44.4 176.3	T F,V	-	
	• • •	T _{min} -I (K) 4-3	Lp (Deg.)	-0.50	128.	(K) 5.7	1.4	10.1	-89. 56. 0.	0.06	0.07	4.4	7.27	44.4		-	

Jeans length = critical spatial wavelength If perturbation length scale is longer \Rightarrow Medium is decoupled from self-gravity \Rightarrow stable $M_J = \frac{4}{3}\pi R_J^3 \rho$ $R_J = (\frac{15}{4\pi} \frac{kT}{\mu m_H G \rho})^{1/2} \sim \sqrt{\frac{T}{\rho}}$ $M_J = (\frac{\pi kT}{4\mu m_H G})^{3/2} \sqrt{\frac{1}{\rho}} \sim \frac{T^{3/2}}{\rho^{1/2}}$ This is the Jeans mass ... the <u>critical</u> mass for onset of gravitational collapse Note the above does not consider external pressure, or other internal supporting mechanisms.

A spherical symmetric gas cloud with temperature
$$T$$

and external pressure P
For one particle, $F_i = m_i \ddot{r}_i \leftarrow \frac{\partial}{\partial r}$
 $m_i r_i \cdot \ddot{r}_i = m_i \frac{d}{dt} (\dot{r}_i \cdot r_i) - m_i \dot{r}_i \cdot \dot{r}_i$
 $= \frac{1}{2} m_i \frac{d^2}{dt^2} (r_i^2) - m \dot{r}_i^2$
Summing over all particles
 $\frac{1}{2} \frac{d^2}{dt^2} \left[\sum_i m_i r_i^2 \right] - 2 \sum_i \frac{1}{2} m_i \dot{r}_i^2 = \sum_i r_i F_i$
Moment of inertial Kinetic energy

To maintain $2E_K + E_P = 0$, the total energy $E_t = E_K + E_P$ must change. The gravitational energy

$$\Omega \sim -\frac{GM^2}{r} \to d\Omega \sim \frac{dr}{r^2}$$

For contraction, dr < 0, so $d\Omega < 0 \rightarrow$ Then $dE_t = dE_K + d\Omega = \frac{1}{2}\Omega = L\Delta t$

This means to maintain quasistatic contraction, <u>half</u> of the gravitation energy from the contraction is radiated away.

Eventually the cloud becomes dense enough (i.e., optically <u>thick</u>) and contraction leads to temperature increase.

The cloud's temperature increases while energy is taken away \rightarrow negative heat capacity

Roughly, the requirement for a cloud to be gravitational stable is

$$|E_{\text{grav}}| > E_{\text{th}} + E_{\text{rot}} + E_{\text{turb}} + E_{\text{mag}} + \dots$$

For a spherical cloud, $E_{\text{grav}} = -C_{\text{grav}} {}^{GM^2}/_R$, where C_{grav} is a constant depending on the mass distribution (=3/5 for uniform density).

The thermal energy, $E_{\text{th}} = \frac{3}{2} \frac{m}{\mu m_H} k_B T$, where μ is the mean molecular weight of the gas in atomic mass units.

The rotational energy $E_{rot} = C_{rot} M R^2 \omega^2$, where C_{rot} depends on the mass distribution and is 1/5 for uniform density; ω is the (assumed) uniform angular velocity.

The turbulent kinetic energy $E_{turb} = \frac{1}{2} M\sigma^2$, where σ is the mean turbulent velocity.

The magnetic energy $E_{\text{mag}} = \frac{1}{8} \int B^2 \, \mathrm{d}V \approx \frac{1}{6} B^2 R^3$, where *B* is the uniform magnetic field.

For rotational support to be important, $\frac{3}{5} \frac{GM}{R} = \frac{1}{2} I \omega^2 = \frac{1}{2} (\frac{2}{5} M R^2) (\frac{v_{crit}}{R})^2 = \frac{1}{5} M v_{crit}^2$ So $v_{crit} = (3GM/R)^{1/2}$, where v_{crit} is the critical rotation velocity at the equator. Numerically, $v_{crit} = 0.11 \left[\frac{M}{M_{\odot}} \frac{\text{pc}}{R} \right]^{1/2} [\text{km/s}]$ For HI clouds, $v_{crit} = 0.11 \left[\frac{50}{2.5} \right]^{1/2} \approx 0.5 [\text{km/s}]$ Typically, $\omega \approx 10^{-16} \text{ s}^{-1}$, so $v \approx 0.01$ to 0.1 [km/s] \Rightarrow Clouds are generally not rotationally supported.

Method	Medium	Info
Polarization of starlight	Dust	B_{\perp}
Zeeman effect	Neutral hydrogen; a few mol. lines	B_{\parallel}
Synchrotron radiation	Relativistic electrons	B_{\perp}
Faraday rotation	Thermal electrons	B_{\parallel}

<u>Organized</u> magnetic field morphology in the Taurus darkcloud complex superposed on a ¹³CO map (Chapman et al. 2011). <u>Blue lines show polarization</u> measured at optical wavelengths and red lines show near-IR (Hband and I-band) polarization.

Dichroic extinction by dust (optical and near-IR) $\overrightarrow{P} \parallel \overrightarrow{B}$

Faraday Rotation --- rotation of the plane of polarization when light passes through a magnetic field

Circularly polarized light $\rightarrow E$ field rotates \rightarrow force on the charged particles to make circular motion \rightarrow creating its own *B* field, either parallel or in opposite direction to the external field \rightarrow phase difference \rightarrow Change of position angle of the linear polarization

$$\boldsymbol{B} \propto \rho^{1/3}$$
 to $\rho^{1/2}$,

Implying magnetic flux loss.

 \vec{B} confines motion of charged particles.

Molecular clouds \rightarrow most neutral with only a tiny fraction of particles; ionized by cosmic rays or by natural radioactivity

Recall Jeans mass
$$M_J \approx 1.2 \times 10^5 \left(\frac{T}{100 \, K}\right)^{3/2} \left(\frac{\rho_0}{10^{-24} \, \text{g cm}^{-3}}\right)^{-1/2} \frac{1}{\mu^{3/2}} [M_{\odot}]$$

 $\propto \frac{T^{2/3}}{\rho^{1/2}}$

If during collapse, $M_J \downarrow \rightarrow$ subregions become unstable and continue to collapse to smaller and smaller scales (fragmentation).

Since during collapse ρ always \uparrow , the behavior of M_I depends on *T*.

If gravitational energy is radiated away, i.e., $\tau_{\text{cooling}} \ll \tau_{\text{ff}}$ and collapse is **isothermal**, T = const, so $M_J \propto \rho^{-1/2} \rightarrow \text{collapse continues}$

However, once the isothermal condition is no longer valid, e.g., when the cloud becomes optically thick, the collapse is **<u>adiabatical</u>**.

 $T \propto P^{2/5} \propto \rho^{2/3}$

So $M_J \propto \frac{\rho}{\rho^{1/2}} = \rho^{1/2}$, i.e., grows with time (ever more difficult to overcome/collapse), so the collapse halts

For a monatomic idea gas, the adabatic index $\gamma \equiv c_p/c_v = \frac{f+2}{f} = \frac{5/2}{3/2} = 5/3$ $PV^{\gamma} = \text{const}; TV^{\gamma-1} = \text{const};$

Equation of motion for a spherical surface at r is

$$\frac{d^2r}{dt^2} = -\frac{Gm}{r^2}$$

with initial condition $r(0) = r_0$, $\frac{dr}{dt}(0) = 0$, $m = 4\pi r_0^3 \rho_0/3$.

Multiplying both sides by dr/dt, and since $\frac{d}{dt} \left(\frac{dr}{dt}\right)^2 = 2 \frac{dr}{dt} \frac{d^2r}{dt^2}$,

$$\frac{d}{dt}\left(\frac{dr}{dt}\right)^2 = -\frac{2Gm}{r^2}\frac{dr}{dt}$$

Integrating both sides, we get

$$\left(\frac{dr}{dt}\right)^2 = 2Gm\left(\frac{1}{r} - \frac{1}{r_0}\right)$$

74

<text><text><text><text><text><text>

Gravitational energy available Eg ~ GH2 which is released during the contraction of mass M from as to R t KH~ 4H2/L~R3 (: L~R2T4) tff ~ 1 ~ R3/2 For an object already on the main sequence ter at the Ex. For IMO, 1 Lo t_{ff} ~ 10" yr t_{ff} << t_{KH} . When RZ 300 Ro tof Z tKH => protostellar collapse is a dynamical process. $\tau_{\rm ff}\sim 66120/\sqrt{\rho}_{\rm MKS}\sim 35/\sqrt{\rho}_{\rm cgs}[{\rm min}]$ 79

Free-Fall Collapse $m\frac{d^2r}{dt^2} = \frac{GMm}{r^2}$ Dimension analysis $\frac{R}{t^2} \sim \frac{L_1M}{R^2} \implies t_{ff} \sim \frac{1}{\sqrt{4\rho}} \approx \frac{4.3 \times 10^7}{\sqrt{n_{H_0}}} [yrs]$ or $2 E_K + E_P = \cdots < 0$ $t_s = \frac{R}{v_{cound}} \sim \frac{1}{\sqrt{4\rho}}$, $v_s \sim \sqrt{\frac{RT}{\mu}}$ In reality, pt as r & (i.e., density concentration R. g. p. r ") . t ff shorter for smaller r => Collapse proceedo in an inside-out fashion. + + core + accretion Lace ~ GM* Mace/R* 80

Exercise

- 1. For a the sun, i.e., a mass $\mathcal{M} = 1 \mathcal{M}_{\odot}$, a luminosity $\mathcal{L} = 1 \mathcal{L}_{\odot}$, and a radius $\mathcal{R} = 1 \mathcal{R}_{\odot}$, compute the free-fall time scale $\tau_{\rm ff}$ and the Kevin-Helmholtz time scale $\tau_{\rm KH} \approx {}^{G\mathcal{M}^2}/_{RL}$. Which time scale is longer?
- 2. Note that both time scales have different dependence on the size scale. At what size, do the two time scales equal?

Exercise

- 1. Compare the angular momenta of the Sun, Jupiter, and Earth.
- 2. What is the specific angular momentum of the Earth versus Jupiter?
- 3. How round (or flat) is the shape of the Earth, of Jupiter, and of the Sun?

http://www.zipcon.net/~swhite/docs/astronomy/Angular_Momentum.html

$\begin{aligned} & \textbf{Cross sections o} \\ \textbf{e} \text{ For free e}, \textbf{p}^+ \\ & \sigma >> \sigma_{\text{physical}} \text{ because of Coulomb force, need QM} \\ & a \sim \frac{2.5 \times 10^{-2}}{v^2} \text{ cm } (v \text{ in km}) \\ & \text{ If } v_{e^-} \sim 50 \text{ km s}^{-1}, a \sim 10^{-5} \text{ cm for } e^- \cdot e^- \text{ collision} \\ & T = 3 \times 10^4 \text{ K}, < v >\sim 10^3 \text{ km s}^{-1} \\ & \longrightarrow a \sim 2.5 \times 10^{-8} \text{ cm} \\ & \text{ c.f., classical electron radius} \sim 2.8 \times 10^{-13} \text{ cm} \\ & \left[\frac{e_r^2}{r_0} = mc^2 \\ r_0 = \frac{e^2}{mc^2} \sim 2.8 \times 10^{-13} \text{ cm} \right] \\ \end{aligned}$

Stellar Structure

Variables (7): *m*, ρ, T, P, κ, L, and q
Vogt-Russell theorem
the structure of a star is uniquely determined by its mass and the chemical abundance.
In fact, ... by any two variables above, cf. the HRD. It is not really a "theorem" in the mathematical sense, i.e., not strictly valid. It is a "rule of thumb".

 $\ddot{r} = -\frac{Gm}{r^2} - \frac{1}{\rho}\frac{\partial P}{\partial r} = -\frac{Gm}{r^2} - 4\pi r^2 \frac{\partial P}{\partial m}$

Mean molecular weight In a fully ionized gas (in stellar interior), $\mu = 1/2$ (H) ... 2 particles per m_H = 4/3 (He) ... 3 particles per $4 m_H$ $\equiv 2$ (metals) ... 2 particles per m_H $\mu = 4/(6X + Y + 2)$ for a fully ionized gas Adopting the solar composition, $X_{\odot} = 0.747, Y_{\odot} = 0.236, Z_{\odot} = 0.017$ $\Rightarrow \mu \simeq 0.6$ Note recent revision $Z_{\odot} = 0.0152$ (Caffau+11)

At the center of a star in hydrostatic equilibrium $\frac{dP}{dm} = -\frac{Gm}{4\pi r^4}$ Integrating from the center to the surface $P(M) - P(0) = -\int_0^M \frac{Gm \, dm}{4\pi r^4}$ With the boundary conditions, $P(M) \approx 0 \quad P(0) = P_c$ Thus, $P_c = \int_0^M \frac{Gm \, dm}{4\pi r^4} > \int_0^M \frac{Gm \, dm}{4\pi R^4} = \frac{GM^2}{8\pi R^4} = 4.4 \times 10^{13} (\frac{M}{M_{\odot}})^2 (\frac{R_{\odot}}{R})^4 \text{ N m}^{-2}$

Hydrostatic equilibrium $\frac{dP}{dr} = -\frac{Gm(r)}{r^2}\rho, \text{ so } \frac{P}{R} = \frac{GM}{R^2} \frac{M}{R^3} \rightarrow P = \frac{GM^2}{R^4}$ Ideal gas law $P = \frac{\rho}{\mu m_H} kT; \ \rho = \frac{M}{R^3}$ So $P = \frac{M}{R^3} \frac{T}{\mu}, \text{ and } T \sim \frac{\mu GM}{R}$ This should be valid at the star's center, thus $T_* \sim \frac{\mu GM_*}{R_*}$

Opacity

- <u>Bound-bound absorption</u> Excitation of an electron of an atom to a higher energy state by the absorption of a photon. The excited atom then will be de-excited spontaneously, emitting a photon, or by collision with another particle.
- **Bound-free absorption** Photoionization of an electron from an atom (ion) by the absorption of a photon. The inverse process is radiative recombination.
- <u>Free-free absorption</u> Transition of a free electron to a higher energy state, via interaction of a nucleus or ion, by the absorption of a photon. The inverse process is bremsstrahlung.
- <u>Electron scattering</u> Scattering of a photon by a free electron, also known as Thomson (common in stellar interior) or Compton (if relativistic) scattering.
- <u>**H**</u>⁻ <u>absorption</u> Important when < 10⁴ K, i.e., dominant in the outer layer of low-mass stars (such as the Sun)

- Bound-bound, bound-free, and free-free opacities are collectively called Kramers opacity, named after the Dutch physicist H. A. Kramers (1894-1952).
- All have similar dependence $\kappa \propto \rho T^{-3.5}$.
- Kramers opacity is the main source of opacity in gases of temperature $10^4{\sim}10^6$ K, i.e., in the interior of stars up to $\sim 1~M_{\odot}$
- In a star much more massive, the electron scattering process dominates the opacity, and the Kramers opacity is important only in the surface layer.

For Thomson scattering, $\kappa_{\nu} = \frac{8\pi}{3} \frac{r_e^2}{\mu_e m} = 0.20 (1 + X) [\text{cm}^2\text{g}^{-1}]$ is frequency independent, so is the Rossland mean. $\kappa_{es} = 0.20 (1 + X) [\text{cm}^2\text{g}^{-1}]$ Here r_e is the electron classical radius, X is the H mass fraction, and $\mu_e = 2/(1 + X)$

the electron cross section $\sigma = 0.665 \times 10^{-24} \text{ [cm^2]}$

$$T_c \approx \frac{\mu GM}{R}$$

So for a given $T_c, M \rightarrow R \\ \rightarrow L$ $\left\{ L (\propto R^2 T^4) \text{ and } T \right\}$
Main sequence is a run of *L* and *T_c* as a function
of stellar mass, with *T_c* nearly constant.
Why *T_c* \approx constant?
Because H burning at $\sim 10^7$ K
regardless of the stellar mass

In general, for a stable star with a mixture of gas and radiation,

$$\frac{4}{3} \le \gamma \le \frac{5}{3}$$

 $\gamma \to 4/3,$ radiation pressure dominates.

 $\gamma \to 5/3,$ gas pressure dominates.

For an ideal gas,
$$P = \frac{N}{V}kT = \frac{\rho}{\mu m_H}kT$$

 $\frac{dP}{P} = \frac{d\rho}{\rho} + \frac{dT}{T}$ and $PdV + VdP = NkdT$
First law of thermodynamics (conservation of energy)
 $dQ = dU + PdV$
For constant V , $c_V = \left(\frac{dQ}{dT}\right)_V = \frac{dU}{dT}$
 $dQ = dU + NkdT - VdP = \left(\frac{dU}{dT} + Nk\right)dT - VdP$
So for constant $P, c_P = \left(\frac{dQ}{dT}\right)_P = \frac{dU}{dT} + Nk = c_V + Nk$
Hence $c_P = c_V + Nk$,
and $\gamma = c_P/c_V = (Nk + c_V)/c_V$

An isothermal (= constant in temperature) process: internal energy does not change An adiabatic process: dQ = 0 $dQ = c_V dT + P dV = c_V dT + (NkT/V) dV$ $= dT/T + (c_P - c_V)/c_V (dV/V) = 0$ $\log T + (\gamma - 1) \log V = \text{constant}$ $TV^{\gamma - 1} = \text{constant}$ $PV^{\gamma} = \text{constant}$ $P^{1 - \gamma}T^{\gamma} = \text{constant}$

Convective equilibrium (stability vs instability)

A fluid convective "cell" is buoyed upwards.

If temperature inside is higher than surroundings, the cell keeps rising. E_{kin} of particles higher \rightarrow dissipates

Otherwise it sinks back (convectively stable).

The rising height is typified by the mixing length ℓ , or parameterized as the scale height *H*, defined as the pressure (or density) varies by a factor of *e*. Usually

 $0.5 \leq \ell/_H \leq 2.0$

Convection sets in when the adiabatic Compared with surrounding temp. gradient is smaller than temperature gradient Yemp. gradient by radiative equil . Radiation can no longer i,e, $\left(\frac{dT}{dr}\right)_{ad} < \left(\frac{dT}{dr}\right)_{rad}$ transport the energy efficiently enough ➔ Convective instability For an adiabatic process, $PV^{\gamma} = constant$

Since
$$\frac{dP}{dr} = -\frac{Pg}{max}$$
 and $P = \frac{PkT}{dr}$
 $\frac{dT}{dr} \cdot \frac{dP}{drP} \propto -\frac{1}{T} \cdot \frac{dT}{T}$
 $\frac{dT}{dr} \propto \frac{dT/T}{dP/P} = \frac{dRnT}{dRnP}$
 \Rightarrow Criterion for convection equilibrium becomes
 $\left(\frac{dRnT}{dRnP}\right)_{ad} < \left(\frac{dRnT}{dRnP}\right)_{rad}$
With the notation ∇ (nabla)
 ∇ ad $\langle \nabla$ rad

Convection takes place when the temperature gradient is "sufficiently" high (compared with the adiabatic condition) or the pressure gradient is low enough.

Such condition also exists when the gas absorbs a great deal of energy without temperature increase, e.g., with phase change or ionization → when c_v is large or γ is small

In meteorology, dry and cool air tends to be stable, whereas wet and warm air (smaller gamma values) is vulnerable to convection \rightarrow thunderstorm

How to calculate
$$\nabla_{rad}$$
?

$$\frac{dT}{dr} = -\frac{3}{Hac} \cdot \frac{NP}{T^3} \frac{Lr}{Hnr^3} \quad but \frac{dP}{dr} = -9P$$

$$\therefore \frac{dT}{dP} \propto \frac{N}{T^3} \frac{Lr}{r^2}$$

$$\nabla_{rad} \equiv \left(\frac{dRnT}{denP}\right)_{rad} = \frac{dT/T}{dP/P} = \dots = \frac{3N}{16Rac} \frac{P}{T^4} \frac{Lr}{6Mr}$$
For an adiabatic process for an ideal gas

$$0 \quad P = nkT \neq PT$$

$$\frac{dP}{P} = \frac{dP}{P} + \frac{dT}{T}$$

$$(3) \quad N = \frac{(1+n/2)}{r/2} = 1 + \frac{2}{n}$$

$$(3) \quad N = \frac{(1+n/2)}{r/2} = 1 + \frac{2}{n}$$

 $d\theta = c_v dT + P d(\frac{v_p}{r}) = c_v dT - \frac{P}{p^*} dP_{ze}$ $\therefore c_v dT = \frac{P}{p^*} dP$ $c_v \frac{dT}{T} = \frac{P}{p^*} \cdot \frac{dP}{p}$ $c_v \frac{dT}{T} = (c_p - c_v)(\frac{dP}{p} - \frac{dT}{T})$ $\Rightarrow c_p \frac{dT}{T} = (c_p - c_v) \frac{dP}{p}$ $\nabla_{nd} = (\frac{dEnT}{dEnP})_{nd} = (\frac{dT/T}{dEP})_{nd}^{nz} \frac{d.e.j}{r}$ $E:g_{i,r} \text{ for monatomic gases } y_z = \frac{V_j}{r} \quad \nabla_{nd} = c.4$ In practice, if $\gamma = \frac{5}{3}$, the condition for convective stability (no convective) is $(\frac{d\log T}{d\log P}) < 0.4$

Note. Trad of P At purface Trad >0 adways Tad > Trad > No convection! The outermost Rayers B a star are always in radiative equilibrium. Convection occurs either ① Large temperature gradient for radiative equilibrium ③ small adiabatic temperature gradient Ionization satisfies <u>both</u> conditions because

① Opacity ↑

② e[−] receive energy \rightarrow d.o.f. \uparrow , so $\gamma \downarrow \rightarrow \nabla_{ad} \downarrow$

→ Development of hydrogen convective zones

Similarly, there are 1st and 2nd helium convective zones.

For a very low-mass star, ionization of H and He leads to a fully convective star \rightarrow H completely burns off.

For a **sun-like star**, ionization of H and He, and also the large opacity of H⁻ ions \rightarrow a convective envelope (outer 30% radius).

For a **massive star**, the core produces fierce amount of energy \rightarrow convective core

→ a large fraction of material to take part in the thermonuclear reactions

Energy Transport

$$\frac{By \text{ radiation}}{\frac{dT}{dr} = \frac{-3}{4ac}} \frac{KP}{T^3} \frac{Lr}{k\pi r^2} \qquad Lr: \text{ luminosity} \\ K: \text{ opacity} \\ (electron scattering, b-f, f-f, H^{\bullet})$$

$$Note \quad For \text{ radiative transport}$$

$$\nabla_{rad} \equiv \left(\frac{dRnT}{dRnP}\right) = \frac{3K}{16\pi ac} \frac{P}{T^4} \left(\frac{Lr}{4Mr}\right)$$

When a protostar reaches hydrostatic equilibrium, there is a minimum effective temperature (~4000 K) cooler than which (the **Hayashi boundary**) a stable configuration is not possible (Chushiro Hayashi 1961). A protostar \diamond contracts on the Kevin-Helmholtz timescale \diamond is cool and highly opaque \rightarrow fully convective \rightarrow homogenizes the composition A star < 0.5 M_☉ remains on the Hayashi track throughout the entire PMS phase.

I. Appenzeller and W. Tscharn Universitäts-Sternwarte Göttingen	Astron. & Astrophys. 30, 423–430 (1974)
	Summary. The hydrodynamic evolution of a massive rotostar has been calculated starting from a homo- eneous gas and dust cloud of $60 M_{\odot}$ and an initial ensity of 10^{-19} g cm ⁻³ . Initially the collapsing gas loud evolved similar to protostar models of lower mass. About 3.6×10^5 years after the beginning of the collapse small hydrostatic core was formed. About 2×10^4 rears later hydrogen burning started in the center of he hydrostatic core. After another 2.5×10^4 years the collapse of the envelope was stopped and reversed by he heat flow from the interior and the entire envelope was blown off, leaving behind an almost normal main- equence star of about $17 M_{\odot}$. During most of the core's evolution the central region of the protostar would have looked like a cool but luminous infrared point ource to an outside observer. Read this paper!

Exercise

A useful site to download theoretical evolutionary tracks (the "Padova tracks") is the CMD/PARSEC isochrones http://stev.oapd.inaf.it/cgibin/cmd

As homework

- 1. Plot V versus (B–V) for an ensemble of stars (i.e., a star cluster) of ages 1 Myrs, 10 Myr, 100 Myr, and 1 Gyr.
- 2. Compare the *V* versus (*B*–*V*) CMDs of two 100 Myr old star clusters, one with Z=0.01 and the other with Z=0.0001 (extremely metal poor).

Thermonuclear Reactions

- Eddington in 1920s hypothesized that fusion reactions between light elements were the energy source of the stars.
- Stellar evolution = (con) sequence of nuclear reactions
- $E_{\text{kinetic}} \approx kT_c \approx 8.62 \times 10^{-8} T \sim \text{keV}$,
 - but $E_{\text{Coulomb barrier}} = \frac{Z_1 Z_2 e^2}{r} = \frac{1.44 Z_1 Z_2}{r[\text{fm}]} \sim \text{MeV}$, 3 orders higher than the kinetic energy of the particles.
- Tunneling effect in QM proposed by Gamow (1928, Z. Physik, 52, 510); applied to energy source in stars by Atkinson & Houtermans (1929, Z. Physik, 54, 656)

2

George Gamow (1904-1968)

Russian-born physicist, stellar and big bang nucleosynthesis, CMB, DNA, Mr. Thompkins series

1929 U Copenhagen

1960s U Colorado

Stars	$\mathcal{M}/M_{\odot} > 0.08$, core H fusion Spectral types O, B, A, F, G, K, M
Brown Dwarfs	$\begin{array}{l} 0.065 > \mathcal{M}/M_{\odot} > 0.013, \mathrm{core} \mathrm{D} \mathrm{fusion} \\ 0.080 > \mathcal{M}/M_{\odot} > 0.065, \mathrm{core} \mathrm{Li} \mathrm{fusion} \\ \mathrm{Spectral} \mathrm{types} \mathrm{M6.5-9, L, T, Y} \\ \mathrm{Electron} \mathrm{degenerate} \mathrm{core} \\ \checkmark 10 \mathrm{g} \mathrm{cm}^{-3} < \rho_c < 10^3 \mathrm{g} \mathrm{cm}^{-3} \\ \checkmark T_c < 3 \times 10^6 \mathrm{K} \end{array}$
Planets	$\mathcal{M}/\mathrm{M}_{\odot}$ < 0.013, no fusion ever

THE ASTROPHYSICAL JOURNAL, Vol. 158, November 1969 © 1969 The University of Chicago. All rights reserved Printed in U.S.A.

THE MASS-RADIUS RELATION FOR COLD SPHERES OF LOW MASS*

H. S. ZAPOLSKY

University of Maryland, College Park, and Center for Theoretical Physics

AND

E. E. SALPETER

Laboratory of Nuclear Studies, Physics Department, and Center for Radiophysics and Space Research, Cornell University, Ithaca, New York Received 1969 March 14

ABSTRACT

The relationship between mass and radius for zero-temperature spheres is determined for each of a number of chemical elements by using a previously derived equation of state and numerical integration. The maximum radius of a cold sphere is thus found as a function of chemical composition, and a semi-empirical formula for the mass-radius curve is derived.

$$\begin{array}{l} \underbrace{Deuterium \ Burning} \\ \underbrace{Deuterium \ Burning} \\ \stackrel{2}{\rightarrow} \underbrace{H + iH \longrightarrow 3H_e + * (\underline{T > io^6_K})}_{2H(iH, *)^3H_e} \\ \stackrel{2}{\rightarrow} \underbrace{H(iH, *)^3H_e} \\ \underbrace{\Theta_{pP} = 5.5 \ MeV}_{8pP} = \underbrace{H.i9 \times io^7 [D_{H}^{\prime}] (\frac{P}{19 \text{ m}^3}) (\frac{T}{10^6_K})^{''.8}}_{I \text{ lengg}'s'} \\ \underbrace{ISM \ value, \langle D_{H}^{\prime} \rangle \sim 2\times io^5}_{2\times io^5} \\ \end{array}$$

 $\begin{array}{l} n+p \rightarrow D+\gamma \left(\text{production of } D\right) \\ D+D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \qquad \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ D = D \rightarrow {}^{4}He+\gamma \left(\text{destruction}\right) \Rightarrow \text{faster} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ \text{for density of the early} \\ \text{The lower the mass density} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ \text{density of the early} \\ \text{The lower the mass density} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \\ \text{The lower the mass density} \end{array} \\ \begin{array}{l} \text{The lower the mass density} \end{array} \\ \begin{array}{l} \text{density of the early} \\ \text{The lower the mass density} \end{array} \\ \begin{array}{l} \text{The lower the lowe$

21

D/H

- 156 ppm ... Terrestrial seawater (1.56×10^{-4})
- 22~26 ppm ... Jupiter
- 17 ppm ... Saturn
- 55 ppm ... Uranus
- 200 ppm ... Halley's Comet

- $\checkmark p + p \rightarrow {}^{2}He \text{ (unstable)} \rightarrow p + p$
- ✓ Hans Bethe (1939) realized that the weak interaction was capable of converting a proton to a neutron (!) first
- \checkmark Weak interaction \rightarrow very small cross section
- ✓ The neutron is more massive, so this requires energy, i.e., it is an <u>endothermic</u> process, but neutron + proton
 → deuteron (releasing binding energy, so <u>exothermic</u>)

ied 1	group 1 1.00794 10025 220 1 H						_		Tł	ne P	erio	dic Ta	able	ofth	ne E	leme	ents	18 4.002502 milia He
	Hydrogen	2		atomic mass		45 2	6-ato	mic number	alkali	metals	metalloid	ts	13	14	15	16	17	Helium
	6.941 am 3	9.012182 4		zation energy		1.83	+6 ele	ctronegativit	y 📃 alkali	ne metals	nonmeta	ils	80.8 2.04	12.0107 Em 6	14.0067 T	15.9994 8	18.998403 9	20.1797 1
2	Lithium	Be	che	emical symbol	-F	Δ	40 40 40			metals	halogens		B ³	Catton	Netrogen	Oxygen	Faorine	Ne
	14° 24°	10.00		01	Iron	C	+1 oxi	dation states		tion metals anoids	noble ga	ses i elements	10202	101 201 201	10.305.30	10120120	14.24.24	199.948 1
3		24.3050 12 3877 138 12	electron	configuration		r 4s²		t common are bo			** radioactive	elements have	Al	796.5 1.00	30.97696 15 D	C 10	CI	1008
č	Na	Magnostum	3	4	5	6	7	8	9	10	masses in p	12	Aluminium	Silcon	Phosphorus	Sultur	Chionne	Argon
	39.0983 19		44.95591 21	47.867 22	50.9415 23	51.9962 24	54.93804 25	55.845 26	58.93319 27	58.6934 28	63.546 29		69.723 31	72.64 32			79.904 35	83.798 3
4	Rotassium	Calcium	Scandium		Vanadium Wanadium	Chromium	Manganese Manganese	Fe	Coban	Nickel	Copper Miller ar	Zn	Gallum	Germanium	Assanic Miner ar ar	Selenium Inclair ar ar	Br	Krypton
	85.4678 37	87.62 38	88.90585 39	91.224 40	92 90638 41	95.96 42	(98) 43	101.07 44	102.9065 45	106.42 46	107.8682 47	112.441 48	114.818 49				126.9044 53	131.293 5
5	Rubidium		Yttrium (K) 40° 50°		Nobium Nobium	Molyodenum Koj kat kat	Tcchnotium	Ruthonium	Rhodium	Palladium	Ag Shvot	Cadmium Kij 44" Set		Sn *	Sb Antimony (x) Ad" bet Sp	Tellurium Nij Adri Ser Spr	lodine (k) ker ser ser	Xenon Ki Adriariar
	132.9054 55	137.327 56	174.9668 71	178.49 72	180.9478 73	183.84 7710 236 74	186.207 75	190.23 76	192.217 77 000.0 220	195.084 78 870.0 2.28	196.9665 79 mil 254	200.59 80	204.3833 81	207.2 82	208.9804 83	(210) 84	(210) 220 85	(220) 8
6	Caesium (Xel W	Banium	Lutetium (Ne) 4° 67 64	Hf Hafnium	Tantalum	Tungsten Skel er so or	Re Rhenium	Osmium Ital ar tor set	Iridium Die er for ber	Platinum	Au Gold	Hg Mercary (Net arr for for	Thalium	Pb 3	Bismuth Dismuth	Polonium (Rei 47 Sof Gef Apr	Astatine Inel 47 547 647 687	Rn Radon Die er fer førse
	(223) 0.79 87	(226) 88	(252) 103	(251) 104	(262) 105	(265) 106	(254) 107	(277) 108	(268) 109	(271) 110	(272) 111	(285) 112	(284) 113	(289) 114	(288) 115	(292) 116	117	⁽²⁹⁴⁾ 11
	Francium Prej 24	Radium	Lawrencium Inel SP* 7et 7pt	Rf Hutherfordium	Dubnium		Bh	Hassium	Metherium	Darmstadium	Rg	Copernicium	Ununtrium	Flerovium	Ununpentium		Uus Ununseptium	
	Lelec	tron configuratio	n blocks															
				138.90	54 57 140.11 594.4	5 58 140.90 se7.0	76 59 144.24	-1 040.0	61 150.36	17 547.1	1 00.4 1	a 64 158.92	-1 573.0 1		29 0003	124 0007	42 69 173.05 125 900.4	4 70
	s d		<i>p</i>	Lantha					n Sn				Dyspro			Truly)
	/			(227)		or [te] an or	r (tel et de	[36] 4° 64	93 (244)	94 (243)	95 (247)		97 (251)	98 (252)	P (Xe) 47º 0	100 (258)		
		elements 113,115		499.0	10 a 587.0		100 - 1 007.6 1	30 02 004.5	3 55 5847	20 014 578.0 1	30 33 581.0 1	1 DI	30 01 000.0 1	Es		4	30 542.0 1.1	1
	 1 k3/mol 	icial name designat = 96.485 eV. nts are implied to h		Actiniu (hel de 2	m Thoriu	n Protac	tinium Uraniur		ium Plutoni	um Americ	ium Curium	Berkeli	um Californ	ium Einstei	nium Fermiu	im Mende	Nobelia	um i

Exercise

Assuming that the solar luminosity if provided by $4 \,{}^{1}H \rightarrow {}^{4}He$, liberating 26.73 MeV, and that the neutrinos carry off about 2% of the total energy. Estimate how many neutrinos are produced each second from the sun? What is the solar neutrino flux at the earth? (How many neutrinos pass through your body per second?)

The thermonuclear reaction rate,

$$\begin{aligned} & r_{pp} = 3.09 \times 10^{-37} n_p^2 T_6^{-2/3} \exp\left(-33.81 T_6^{-1/3}\right) \\ & (1 + 0.0123 T_6^{1/3} + 0.0109 T_6^{2/3} + 0.0009 T_6) \ [cm^{-3}s^{-1}], \\ & \text{where the factor } 3.09 \times 10^{-37} n_p^2 = 11.05 \times 10^{10} \rho^2 X_H^2 \end{aligned}$$

$$\begin{aligned} & q_{pp} = 2.38 \times 10^6 \rho X_H^2 T_6^{-2/3} \exp\left(-33.81 T_6^{-1/3}\right) \\ & (1 + 0.0123 T_6^{1/3} + 0.0109 T_6^{2/3} + 0.0009 T_6) \ [erg g^{-1}s^{-1}] \end{aligned}$$

		長6.2 氢燃	烧的核反应	
序号 r	反应式		(q,), (MeV)	速率 $N_A < \sigma v >$ (cm ³ mol ⁻¹ s ⁻¹)
1	1 H(p,e ⁺ ν) ² H	1.442	0.265	1.26×10 ⁻²⁰
2	2 H(p, γ) 3 He	5.494		1.85×10^{-3}
3	³ He(³ He,2p) ⁴ He	12.860		2.29×10 ⁻¹³
4	3 He(α , γ) 7 Be	1.588		1.67×10^{-18}
5	⁷ Be(e ⁻ , _v) ⁷ Li	0.862	0,862	*4.59×10 ⁶ s
6	$^7\mathrm{Li}(\mathrm{p},\gamma)^8\mathrm{Be}(\alpha)^4\mathrm{He}$	17.346		3. 21×10 ⁻¹¹
7	7Be(p,γ)8B	0.137		1.38×10^{-14}
8	⁸ B(e ⁺ v) ⁸ Be(a) ⁴ He	18,072	6.710	• 0. 77s
9	¹² C(p, y) ¹³ N	1.944		1.26×10^{-12}
10	¹³ N(e ⁺ y) ¹³ C	2, 221		* 870s
11	¹³ C(p, y) ¹⁴ N	7.551		4.59 $\times 10^{-12}$
12	¹⁴ N(p, γ) ¹⁵ O	7.297		1.30×10 ⁻¹⁴
13	¹⁵ O(e ⁺ v) ¹⁵ N	2.754	0.9965	* 178s
14	¹⁵ N(p, α) ¹² C	4,966		3.62×10 ⁻¹⁰
	¹⁵ N(p, γ) ¹⁶ O	12.128		2.76 $\times 10^{-13}$
	¹⁶ O(p, γ) ¹⁷ F	0.600		2.51×10^{-16}
	¹⁷ F(e ⁺ y) ¹⁷ O	2.762	0.9994	* 95s
	¹⁷ O(p, α) ¹⁴ N	1. 191	0.0004	4.07×10 ⁻¹⁶
	¹⁷ O(p,γ) ¹⁸ F	5,607		3.05×10 ⁻¹⁶
	¹⁸ F(e ⁺ y) ¹⁸ O	1.655	0.3965	* 1. 67s
	¹⁸ O(p, α) ¹⁵ N	3. 980	0.0000	7. 63×10 ⁻¹³
	¹⁸ O(p,γ) ¹⁹ F	7.994		8. 43×10 ⁻¹⁶
	¹⁹ F(p, a) ¹⁶ O	8. 114		 6. 25×10⁻¹⁵
		0.114		6, 25×10
(根据 互作用过程 1968).表中	星的快慢用原子半衰期	表示,根据 F	uller, et al., 19	owler, et al.,1975;弱相 80,1982,1985;Clayton 51×10 ⁷ K,CNO 循环的

Does	28 S; follow the pame scenario ?	
No :	28 S; + 28 S; - 56 Fe? C+C 6x10 K Coulomb barrier becomes extremly high; another nuclear reaction takes place	
eg.	hr atom < e- Elst binding force Photoionization	
Liken	0.3P	
	hr Photodisintegration	48

Nuclear Fuel	Process	T _{threshold} (10 ⁶ K)	Products	Energy per nucleon (MeV)
Н	p-p	~4	Не	6.55
Н	CNO	15	Не	6.25
Не	3α	100	С, О	0.61
С	C + C	600	O, Ne, Na, Mg	0.54
0	0 + 0	1,000	Mg, S, P, Si	~0.3
Si	Nuc. Equil.	3,000	Co, Fe, Ni	<0.18
51	Nuc. Lyun.	5,000	G0, I C, NI	<0.10

```
{}^{56}Fe + 100 \text{ MeV} \rightarrow 13 {}^{4}He + 4 n
```

If $T \uparrow \uparrow \uparrow$, even ${}^{4}He \rightarrow p^{+} + n^{0}$

So stellar interior has to be between a few T_6 and a few T_9 .

<u>Lesson</u>: Nuclear reaction that absorb energy from ambient radiation field (in stellar interior) can lead to catastrophic consequences.

Alternative Energy --- Accretion Energy $\frac{Accretion \ Energy}{L = \frac{GM}{R} \ \dot{m}}$ $L = \frac{GM}{R} \ \dot{m}$ $Th terms \ \partial_{B} \ vhe \ Schoreschild \ radius \ R_{S} = \frac{2GM}{C^{2}}$ $\Rightarrow \ L = \left[\frac{R_{S}}{2R} \right] \ \dot{m} \ c^{2}$ $\stackrel{'}{=} \ ficiency \ ; \ \hat{j} \ as \ R \ \dot{s}$ $Accretion \ is \ highly \ efficient \ onto \ a \ compact \ object.$ For chemical reactions Appically ~ a few eV 2.9. H2 dissociation, E~ 4.48 eV $\therefore \frac{4.48}{2mp} e^{-32} erg g^{-1} + 10^{-9} eff$. For nuclear reactions Appically ~ a few MeV 2.9. HH \rightarrow He, E~ 7 MeV $\therefore \frac{7}{162} erg g^{-1} + 10^{-2} eff$. For accretion process $E \sim 10^{19} erg g^{-1} + 10^{-2} eff$. Ex. a neutron star $R \sim 15 \text{ km}$, $\frac{Rs}{2R} \sim 0.1$ Longan "High-Energy Astrophysic"

Time Scales

Different physical processes inside a star, e.g., nuclear reactions (changing chemical composition) are slow (longer time scales); structural adjustments (dP/dt)take places on relatively shorter time scales.

- ✓ Dynamical timescale
- ✓ Thermal timescale
- ✓ Nuclear timescale
- ✓ Diffusion timescale

Nuclear Timescale Time taken to radiate at a rate of *L* on nuclear energy $4 {}^{1}H \rightarrow {}^{4}He \ (Q = 6.3 \times 10^{18} \text{ erg/g})$ $\tau_{\text{nuc}} = \frac{E_{\text{nuc}}}{L} = 6.3 \times 10^{18} \frac{M}{L}$ $\tau_{\text{nuc}} \approx 10^{11} \left(\frac{M}{M_{\odot}}\right) \left(\frac{L_{\odot}}{L}\right) \text{ [yr]}$ From the discussion above, $\tau_{\text{nuc}} \gg \tau_{\text{KH}} \gg \tau_{\text{dyn}}$

Diffusion Timescale Time taken for photons to randomly walk out from the stellar interior to eventual radiation from the surface $r_e = \frac{1}{4\pi\epsilon_0} \frac{e^2}{m_e c^2}$ ("classical" radius of the electron) $\sigma_{Thomson} = \frac{8\pi}{3} r_e^2 = 6.6525 \times 10^{-29} [m^2]$ for interactions with photon energy $hv \ll m_e c^2$ (electron rest energy) Thus, mean free path $\ell = 1/(\sigma_T n_e)$, where for complete ionization of a hydrogen gas, $n_e = M/(m_p R^3)$. So, $\ell \approx m_p R^3 / \sigma_T M = 4$ [mm] for the mean density. At the core, it is 100 times shorter. $\tau_{dif} \approx 10^4$ [yr] (Exercise: Show this.)

For an isotropic gas

$$P = \frac{1}{3} \int_{0}^{\infty} p v_{p} n(p) dp$$

$$P = \frac{1}{3} \int_{0}^{\infty} p v_{p} n(p) dp$$

$$P = \frac{1}{3} u_{p}$$

$$P$$

64

Radiation Pressure

 $P_{\text{total}} = P_{\text{radiation}} + P_{\text{gas}}$ Since $P_{\text{rad}} \sim T^4 \sim M^4 / R^4$ But $P_{\text{tot}} \sim M^2 / R^4$ $\Rightarrow P_{\text{rad}} / P_{\text{tot}} \sim M^2$

So the more massive of a star, the higher relative contribution by radiation pressure (and γ decreases to 4/3.)

When P_{rad} dominates $\mathcal{F} = \frac{-d P_{rad}/dr}{\kappa \rho} = \frac{4ac}{3} T^3 \frac{dT}{dr} = \frac{L}{4\pi r^2}$ $\frac{dP_{rad}}{dr} \sim \frac{\kappa \rho}{c} \frac{L}{4\pi r^2}$ On the other hand, by definition $\frac{dP_{tot}}{dr} = -\rho \frac{Gm}{r^2}$ $\Rightarrow \frac{dP_{rad}}{dP_{tot}} = \frac{\kappa L}{4\pi c Gm}$

Toward the outer layers, both $P_{gas} \lor$ and $P_{rad} \lor$, so $P_{tot} \lor \lor$, and $dP_{\text{tot}} > dP_{\text{rad}}$. This leads to $\kappa L \leq 4\pi cGm$ At the surface, m = M, P = 0, it is always radiative, so This is the **Eddington luminosity limit** $4\pi cGM$ L < -= Maximum luminosity of a celestial object in balance between the radiation and gravitational force. Numerically, $L_{Edd}/L_{\odot} = 3.27 \times 10^4 \ \mu_e \, M/M_{\odot}$ For X-ray luminosity, scattered by electrons in an optically thin gas, $L_X < 10^{38} \, \text{erg sec}^{-1}$

Eddington limit is the upper limit on the luminosity of an object of mass $M, L \leq \left(\frac{4\pi G m_p}{\sigma_T}\right) M$ $\equiv L_{\rm Edd} \approx 10^{38} M / M_{\odot} [{\rm erg \, s^{-1}}]$ For 1 M_{\odot} , $L_{\rm Edd} \approx 5 \times 10^4 L_{\odot}$, $M_{\rm bol} = -7.0$ For 40 M_{\odot} , $M_{\rm bol} = -11.0$ Eta Carina, $L \approx 5 \times 10^6 L_{\odot}$, $M_{\text{bol}} = -11.6$, $M \approx 120 M_{\odot}$ 66

In general, LEAN = 3.2×10 4 M Ke. [Lo] Inequality is violated LEad can be exceeded if O L TT, s.g., intense thermonuclean burning ② K ÎÎ, e.g. H a He ionization => Hydrostatic equilibrium can no longer maintained . need a different heat tramfer mechanism 68

Stellar Structure $\frac{dP}{dM_r} = -\frac{GM_r}{4\pi r^4}$ $\frac{dr}{dM_T} = \frac{1}{4\pi r^2 \rho}$ $\frac{dT}{dM_r} = \begin{cases} -\frac{3M}{6MR^3ac} \left(\frac{1}{T^3}\right) \left(\frac{L_r}{r^4}\right), \quad \nabla_{rad} < \nabla_{ad} \\ -\frac{\nabla_{ad}}{4R} \left(\frac{T}{p}\right) \left(\frac{GM_r}{r^4}\right), \quad \nabla_{rad} > \nabla_{ad} \end{cases}$ = 2-1 dent (conv.) KER(P.T.M) $\frac{dL_r}{dM_r} = \epsilon(\rho, \tau, \chi)$ 3= + (P.T.M) B.C. 5 M(r=0)=0; L(r=0)=0 {p(r=R)=+; T(r=R) > Teff = c Boundary Conditions . Stellar evolution -> 12 changes At stellar center, Mr=0, r= Lr=0 To compute structural changes with appropriate At stellar surface, $M_r = M$, $\rho = T = 0$ time Steps At a given time, with a given mass Given M => L , Te , Pe → set of (r, T. P. e. L, M) -> platted as evolutionary tracks on HRD S.g. Teff, L

Radius $\frac{R}{R_0} = \frac{R}{R_0} (M_{M_0})$ Luminosity $\frac{L}{L_0} = \frac{L}{L_0} \left(\frac{M}{M_0} \right)$ R ~ M^{0.85} M ± M0 - different structure R ~ M^{0.56} M ± M0 $\frac{L}{L_{0}} \propto \begin{cases} 7^{1.75} (M/H_{0})^{3}, & M \gtrsim 7 H_{0} \\ (M/M_{0})^{4.8}, & 0.4 H_{0} \lesssim H_{0} \lesssim 7 H_{0} \\ 3.85 \\ 0.4 & (M/H_{0})^{1.9}, & M \lesssim 0.4 H_{0} \end{cases}$ Temperature $\frac{T_e}{T_{0,e}} = \frac{T_e}{T_{0,e}} \left(\frac{M/M_0}{M_0} \right)$ To. c ~ 1.44×10 K For MZ Mo, Te changes 2-3x. Approximately, for MZMO, La. M3.5 Main sequence lifetime (H + He) For MS MO, Tet as Mf Epis ~ 0.1 E XM L After this fraction stellar evolution becomes Important, so star not in stable state Eyr] For T_c ~ 1.4×10⁷K , CNO cycle starts to dominate naclear reaction process in the core & a star $T_c < 1.4 \times 10^7 k$, AP chain dominates Epp(p.T)~ 2.4×10/p×2 = 3.350/(T/104) 1/5 [0195' g'] ~ 10' (M/MO) [Yr] Eenel (P.T)~ 44×10 p×2 =15.328 (T/109) seg 5'3') Note M-L. Strong dependence on mass (index B 25) (= strong dep of 6 on T for MZMO

$$dm = \rho \, dr dS = \rho 4\pi r^2 \, dr$$

$$\frac{\partial^2 r}{\partial t^2} = \ddot{r} \, dm$$

$$= -\frac{Gmdm}{r^2} + P(r)dS - \frac{P(r+dr)dS}{P(r) + \frac{\partial P}{\partial r} \cdot dr}$$

$$\psi_{gmdm}$$
The equation of motion is
$$\ddot{r} = -\frac{Gm}{r^2} - \frac{1}{\rho} \frac{\partial P}{\partial r} \quad \text{or} \quad \ddot{r} = \frac{Gm}{r^2} - 4\pi r^2 \frac{\partial P}{\partial m}$$
In case of hydrostatic equilibrium, i.e., $\ddot{r} \to 0$

$$\frac{dP}{dr} = -\rho \frac{Gm}{r^2} < 0$$

Pre-main Sequence Evolution of a 1 Mc star TE < 2×10 s (i.e. 7×10 yr) Teff ~ coust ~ H200K RI=L+ due to ionization of H & He a deep convective envelope Po/p~ const (Hayashi track) Star completely convective in the first robyr Lg/L : energy from gravitational contraction

~ ~ 14.5 , L1 => nuclear reactions (107 98) (cont.) ~ 15 => expanding the core Pet Tet But Te not high enough only H -> 2D -> 3 He "C > "N > "C > "N The rest of PP chains on CNO cycle do not operate yet Note Louis + $Lg \equiv L$ $T \sim 15$, Lg < 0 (:: core expansion)

Enuc 1 > VT1 => A temperary convective core (ICNIH. 9) until 12 c is depleted and PP channos become important Eventually OT & at core, convective core & (1~15.3) TNIS, L+ Lmax

Structure of Star adjusts : Energy sources from gravitational to nuclear processes => 12 C main sequence ! Point 5 short lasting, depletion rapidly -> slight contraction Te Pe high enough for PP reactions to be the sole energy source.

For all stars MZHO => convective core 12 C burning - > recedes For Stars M 21.25 Mo => double luminosity maxima and minima

For 0.5 Mo Stars, Pe, Te not high enough for 12 C burning For M \$ 0.1 Mo (dependent 08 pr) Te not high enough for even H burning => contraction continues -> degenerate core => black awarfs ... nowadays called brown dwarfs

1 Mo Stars on the Main Sequence 4 H -> He n & -> P + -> core contracts (slowly) 8pp ~ PX 2764 H depletion X & but T1, p1 :. 81 => L1 (Faint distant sun dilemma) -> envelope R1

	ROPHYSICAL JC RNATIONAL REVIEW OF SPECTROSCOL ASTRONOMICAL PHYSICS		
North R at	OEDTEN (DED. 1042	NUMBER 2	
VOLUME 96	SEPTEMBER 1942	NUMBER 2	
ON THE E	VOLUTION OF THE MAIN-SEQUEN	CE STARS	
•	M. Śchönberg ¹ and S. Chandrasekhar		
	ABSTRACT		
the central regions is exami	rs on the main sequence consequent to the gradual ned. It is shown that, as a result of the decrease we core (normally present in a star) eventually gi at there is an <u>upper limit (~ 10 ner cent</u>) to the fi se exhausted. Some further remarks on what is t	n the hydrogen content in	
Me	$\approx 0.37 \left(\frac{\mu_{\ell}}{\mu_{c}}\right)^{2} \left(\sim 10-15$	7 in reality)	
Take in	Men 2 Me		

(Point 4,5) Shortly after the MS Enue in a thin shell "Ly 11 between 13% - 20% core experiences gravitational contraction Lg > 0 => vT p -> 1.5 × 10 goin ?, Pdeg important (= 0.46 Protect) convection beyond 63% M -> mixing -> X & const

(Point 5') Paeg = 76% Ptotal Tshen II $\epsilon_{cN} > \epsilon_{pp} \Rightarrow R \uparrow \uparrow$, Teff II $K \uparrow m$ envelope \rightarrow convection for outer 71 20 717. M X ~ coust for outer 29% M

Main Sequence Phase = core H burning Evidence of thermonuclear reactions at a Star's center, i.e., stellar evolution - (solar) nutrinos - heavy elements in evolved stars (isotope ratios \$ YSOs) 'dredge-up' - convective Zone to bring processed materials to surface Stars disappear , 2.9., supernovae

Post-main Sequence Evolution

Hypergiants luminosity class 0; excessive mass loss

Supergiants Ia luminous supergiants; Ib supergiants; $Ia^+ = 0$

Subgiants luminous class IV; between MS turn-off and the red giant branch

Dwarfs luminosity class V = MS stars

Subdwarfs (sd) luminosity class VI, 1.5 to 2 mag lower than MS; lower metallicity

$$\dot{\mathcal{M}} = 4 \pi r^2 \rho(r) v(r) \text{ mass conservation}$$

$$\ddot{r} = -\frac{1}{\rho} \frac{dP}{dr} - \frac{GM}{r^2} = \frac{dv}{dt} = \frac{dv}{dr} \frac{dr}{dt} = v \frac{dv}{dr} \text{ momentum conservation}$$

Massive stars \rightarrow radiation pressure \rightarrow outer atmosphere expands supersonically \rightarrow winds driven by spectral-line opacity in UV.

13

Next Tuesday (May 30) is a holiday, again. A make-up class on June 5 (Monday) at 3 pm? June 7 (Wednesday) at 3 pm?

Stellar Pulsation

	${ m g~cm^{-3}}$	sec	sec
Neutron star	10 ¹⁵	10^{-4}	$3 \ge 10^{-4}$
White Dwarf	107	1	3
RR Lyrae star	10^{-2}	104.5	10 ⁵
Cepheid Variable	10 ⁻⁶	10 ^{6.5}	107

K mechanism — a partially ionized layer
to absorb energy during compression
(and reference energy during expansion)But if there is an
ionization layer,
e.g., He⁺
$$\rightarrow$$
 He⁺⁺In stars, there are 2 ionization Eones
 $- T \sim (1-1.5) \times 10^{6} K$
 $HI \rightarrow HII$, $HeI \rightarrow HeII$
 $HeI \rightarrow HeII$
helium jenization EoneT $\lambda \rightarrow \kappa \lambda$
energy trapped
 \rightarrow expansionTo $\Sigma \sim (4-5) \times 10^{6} K$
HeI \rightarrow HeII
helium jenization EoneEnergy escaped
 \rightarrow Contraction

Normally, TI => K 1 plays a role also in red gianto Core - increased energy sutput Envelope + expansion, cooling + K 1 => Red grants have convective envelopes. of PMS Hayashi tracks The envelope setends from just outside of the H-burning shell to the surface. -> Dredge-up of processed material from deep interior to surface 24

s.g., observations of heavy elements a isotope ratios in evolved stars different from (enrichment) young stars (The a star cluster) => Evidence of stellar evolutions . of nuclear reactions. 25

The Dredge-ups

When H shell burning begins, the He core contracts and heats up, making the shell burn furiously. The input of energy forces the envelope to expand and the star moves up the "red giant branch" (RGB). But the furiously burning shell runs on the CNO cycle and now the envelope becomes convective because of the low temperature, high opacity, and high temperature gradient, and processed material from the core mixes for the first time with the envelope. We call this the first dredge-up which should be visible in the spectrum of the photosphere as an increase in N at the expense of C and O.

27

For stars more than half a solar mass, the (gravitationally) contracting and heating He core will reach ignition temperature for triple alpha, and the star will (after a possibly traumatic He-flash start) begin life on the "helium burning main sequence". When the He is exhausted in the core (the H-burning shell never provides enough He to keep the core going very long) the He begins shell burning, and now the star rapidly moves up the AGB, the Asymptotic Giant Branch. Now begins a second dredge-up where for the first time new elements (C N and O) appear in the star's photosphere. The triple alpha shell is really unstable and generates thermal pulses rather than a clean burn. The C core is nearly degenerate at the C-He boundary. The boundary shrinks, heats up, triple alpha starts, pulses, and the explosion may shut 28

itself down. The pulse is quite muffled by the outer layers of the star. But during a pulse the process can actually initiate more complicated fusion processes including neutron generation which can synthesize heavier elements. So for the first time new elements can be dredged up during the AGB phase of stellar evolution. Now these giant stars all have associated strong stellar winds and so can contribute to the chemical evolution of the cosmos.

29

30

But why wait for a dredge-up? Really massive O stars evolve in a really short time and lose their outer layers due to strong stellar winds really fast. There is a class of stars, the Wolf-Rayet or WR stars whose spectra are helium-rich and hydrogen-deficient which are thought to have lost their outer layers revealing directly the by-products of the CNO cycle (original CNO recycled to mostly N -- WN stars) or even the triple alpha (first production of new elements, mainly C -- WC stars). Almost all WR stars are binary stars which may help the envelope stripping process.

The Dredge-ups H shell burning -> He core f, T 1 11 envelope expands -> red giant branch CNO cycle -> low T, high opacity, VT 1 : convective envelope Material in the core brought up and mixed with envelope => The (first) dredge-up plutosphere observed N ? at the expenses of c and O 31

He flash IE M > 0.5Mo -> He core burning (He "main sequence") (lasting v. short) He shell burning -> asymptotic giant branch (AGB) => The second dredge-up 3 & process -> unstable -> thermal pulses Heavy elements in spectra of evolved stars ↔ YSOS => obs. Yest of Stellar evolution 32

<u>Fermi-Dirac distribution</u> for non-interacting, indistinguishable particles obeying Pauli exclusion principle; applicable to half-integer spin in TE. Examples of fermions include the electron, proton, neutrons, ³He (2 e⁻, 2 p⁺, 1 n⁰)

Bose-Einstein distribution for particles not limited to single occupancy of the same energy state. i.e., that do not obey Pauli exclusion principle; with integer values of spin. Example bosons include ⁴He, the Higgs boson, gauge boson, graviton, meson.

Chemical Potential (µ)

- Temperature governs the flow of energy between two systems.
- Chemical potential governs the flow of particles; from higher chemical potential to the lower

For low-mass stars (0.7-2Mo) Pe is high -> e degeneray sets in before core He burning begins When He burning starts -> Te 1 (but Pe does not) -> e 11 => He flash Evelease ~ 10" Lo in a few seconds Energy absorbed by envelope (being pushed) no observable effects ! 42

For high - mass stais, e.g., & Mo L grav contributes ; L, 1 for Mr < 0.1 M => VT => Later He burning begins before e deg. sets in Shell burning pushes the core and envelope $\rightarrow L_r (r > 0.2) \downarrow$ Eshell II => envelope expands II Ly adds mass until Schönberg - Chaudrasekhar lunt (4) => core contracts, Te 1 -> Eshell 111 pusho envelope, Tets & , Ly Scoust 55

T(- () ~ 7.5 x 10 yr (i.e., v. short) -> Hertesprung gap ~ (g- (b) ~ 5 × 10 yr (b) = tip € RGB = onset of He burning But core is nondegenerate Te ~ 2×108K : core expands, Eure t envelope contraits, Teff ? 57

$$f M_{\Theta} (continued)$$
From $\Theta \rightarrow \Theta$

$$f core l \rightarrow l_{*} l$$

$$Tett f$$
But as Tenvelope $f \rightarrow opacity l \Rightarrow l_{*} f$

MS Stars AGB $M = 1 - 9M_{\odot}$ wind $\rightarrow envelope$ WD $\rightarrow C - 0 \text{ core } 0.6 - 1.1M_{\odot}$ roughly core mass +> MS mass => expect WD mostly 0.6 Mc During AGB, H-shell and He-shell burning bottom of He layer Envelope shed = a random process in pulses 63

If H- shell burning -> WD w/ athin layer 08 H 80% of all DA white dwarfs Il He-shell burning (H lies, no He lies less freq. - wD He layer DB (HeIlie, no H.) 16% metals => expect more DA white awarfs than DBs obs 25% He lines DC (continuous, no lines) DO (He I lives) DQ (C dominated) 64

Origins of DA and non-DA uncertain: (1) exact phase when the last thermal pulse takes place after the AGB phase, or (2) convective mixing, radiative levitation, or diffusion.
 M: o. 7 - 1.0 Mo
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 - He core ≤ 0.4 Mo wD
 MS → R4 + He core ≤ 0.4 Mo wD
 MS → R4 + He core ≤ 0.4 Mo wD
 MS → R4 + He core ≤ 0.4 Mo wD
 MS → R4 + He core ≤ 0.4 Mo wD
 MS → R4 + He core ≤ 0.4 Mo wD

$\mathcal{M} < 0.7 \; \mathrm{M_{\odot}}$

 $< 0.16 \text{ M}_{\odot} \rightarrow \text{no RGB}$ $< 0.5 \text{ M}_{\odot} \rightarrow \tau_{MS} > \tau_{Universe}$ $< 0.5 \sim 0.7 \text{ M}_{\odot} \rightarrow \text{no core He burning}$

Very low-mass stars are completely convective \rightarrow more H to burn $\rightarrow \tau_{MS}$ lengthened

 $\mathcal{M} = 25 - 60 \text{ M}_{\odot}$ Mass loss not sufficient to remove the entire envelope $\mathcal{M} = 40 - 60 \text{ M}_{\odot}$ O type star \Rightarrow blue super giant \Rightarrow yellow supergiant \Rightarrow red supergiant \Rightarrow blue supergiant \Rightarrow WN \Rightarrow supernova $\mathcal{M} = 25 - 40 \text{ M}_{\odot}$ O type star \Rightarrow blue super giant \Rightarrow yellow supergiant \Rightarrow red supergiant \Rightarrow supernova

$\mathcal{M} > 60 \ \mathrm{M}_{\odot}$

Mass loss fierce $\approx 10^{-1}$ M_{\odot} yr⁻¹, rid of almost entire envelope during the LBV stage, left with a WR star, evolving toward a SN.

0 type star \rightarrow 0f star \rightarrow blue super giant

→ luminous blue variable → WN star → WC star → supernova

1. Introduction

Massive stars are essential constituents of stellar populations and galaxies in the near and far Universe. They are among the most important sources of ionizing photons, energy, and some chemical species, which are ejected into the interstellar medium through powerful stellar winds and during their extraordinary deaths as supernovae (SN) and long gamma-ray bursts (GRB). For these reasons, massive stars are often depicted as cosmic engines, because they are directly or indirectly related to most of the major areas of astrophysical research.

Despite their importance, our current understanding of massive stars is still limited. This inconvenient shortcoming can be explained by many reasons on which we elaborate below. First, the physics of star formation mean that massive stars are rare (Salpeter 1955). Moreover, their lifetime is short, of a few to tens of millions of years (e.g., Ekström et al. 2012; Langer 2012). These factors make it challenging to construct evolutionary sequences and relate different classes of massive stars. This is in sharp contrast to what can be done for low-mass stars.

Second, one can also argue that the evolution of massive stars is extremely sensitive to the effects of some physical processes, such as mass loss and rotation (Maeder & Meynet 2000; Heger et al. 2000), that have relatively less impact on the evolution of low-mass stars. However, the current implementation of rotation in one-dimensional codes relies on parametrized formulas, and the choice of the diffusion coefficients has a key impact on the evolution (Meynet et al. 2013). Likewise, mass-loss recipes arising from first principles are only available for main sequence (MS) objects (Vink et al. 2000, 2001) and a restricted range of Wolf-Rayet (WR) star parameters (Gräfener & Hamann 2008). Third, binarity seems to affect the evolution of massive stars, given that a large portion of them are in binary systems that will interact during the evolution (Sana et al. 2012).

Fourth, our understanding of different classes of stars is often built by comparing evolutionary models and observations. However, mass loss may affect the spectra, magnitudes, and colors of massive stars, thus making the comparison between evolutionary models and observations a challenge. In addition to luminosity, effective temperature, and surface gravity, the observables of massive stars can be strongly influenced by a radiatively driven stellar wind that is characteristic of these stars. The effects of mass loss on the observables depend on the initial mass and metallicity, since they are in general more noticeable in MS stars with large initial masses, during the post-MS phase, and at high metallicities. When the wind density is significant, the mass-loss rate, wind clumping, wind terminal velocity, and velocity law have a strong impact on the spectral morphology. This makes the analysis of a fraction of massive stars a difficult task, and obtaining their fundamental parameters, such as luminosity and effective temperature, is subject to the uncertainties that comes from our limited understanding of mass loss and clumping. Furthermore, the definition of effective temperature of massive stars with dense winds is problematic and, while referring to an optical depth surface, it does not relate to a hydrostatic surface. This is caused by the atmosphere becoming extended, with the extension being larger the stronger the wind is. Stellar evolution models are able to predict the stellar parameters only up to the stellar hydrostatic surface, which is not directly reached by the observations of massive stars when a dense stellar wind is present. Since current evolutionary models do not thoroughly simulate the physical mechanisms happening at the atmosphere and wind, model predictions of the evolution of massive stars are difficult to be directly compared to observed quantities, such as a spectrum or a photometric measurement.

Fig. 3. a) HR diagram showing the evolutionary track of a non-rotating star with initial mass of $60 M_{\odot}$ at metallicity Z = 0.014, using our revised values of T_{eff} . The color code corresponds to the evolutionary phases of a massive star, with H-core burning in blue, He-core burning in orange, C-core burning in green, and H and/or He-shell burning in gray. b) Similar to a), but color code according to the spectroscopic phases. Lifetimes of each phase are indicated in parenthesis. c) Evolution of T_{eff} as a function of age. The color code is the same as in a). d) Surface abundances

78

77

Initial Mass Function

The birthrate function B(M, t) is the number of stars per unit volume, with masses between M and M + dM that are formed out of ISM during time interval t and t + dt.

 $B(M,t) dM dt = \psi(t) \xi(M) dM dt$, where $\psi(t)$ is the star formation rate (SFR), and $\xi(M)$ is the initial mass function (IMF).

For the Galactic disk, SFR is $5.0 \pm 0.5 M_{\odot} \text{ pc}^{-2} \text{ Gyr}^{-1}$ integrated over the *z* direction.

IMF: many more low-mass stars than higher mass stars as a result of cloud fragmentation?

- Edwin Salpeter (1955) on solar-neighborhood stars (ApJ, 121, 161) Present-day LF \rightarrow mass-luminosity relation \rightarrow present-day mass function \rightarrow stellar evolution \rightarrow initial mass function α =2.35 or Γ = 1.35
- Glenn E. Miller and John M. Scalo extended work below 1 M_{\odot} (1979, ApJS, 41, 513) $\alpha \approx 0$ for M < 1 M_{\odot}
- Pavel Kroupa (2002, Sci, 295, 82) $\alpha = 2.3 \text{ for } M > 0.5 \text{ M}_{\odot}$ $\alpha = 1.3 \text{ for } 0.08 \text{ M}_{\odot} < M < 0.5 \text{ M}_{\odot}$ $\alpha = 0.3 \text{ for } M < 0.08 \text{ M}_{\odot}$
- A universal IMF among stellar systems (SFRs, star clusters, galaxies) (Bastian et al. 2010, ARAA). But why?

Compact Objects Nuclear energy 4H - He = 0.029 MH mass deficit = 7 x 10 3 9/g : Energy available = mc2 = 6 × 10 2 gg = 1 Chemical energy ~ 100 Kcal => 4 × 10° ang g -1 Gravitational energy 2.9. for 0, 3 Mo G ~ 2×10 eng => 10'5 mg g -' Accretion MG . m

In general Enuc ~ 0.01c2 Egrav ~ 3GM mass SR. 11 as R 11 For very compact objects, large amounts of gravitational energy can be released, perhaps even more than nuclear energy, R & MG ~ 10° cm ~ 150 km, for 1 Mg of. Schwarzschild radius Rs = 24M ~ 3 Km, for 1Mo

Atoms in a white dwarf are fully ionized und. the e gao is degenerate. 1844 Bessel observed the oscillated path of Sirius 1862 Sirino B discoved by Clark M(Sinius B)~2×1033 + orbit R(Sirim B)~ 2× 10° cm ← surface temp. cf Ro~ 7× 10° and radiation $\overline{P}_{\text{StringB}} = \frac{M}{\frac{4}{3}\pi R^3} \sim 0.7 \times 10^5 g \text{ and}^3$ cf (sun ~ 1 gain 3

Within the box, the Schrödinger equation $\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2} E\psi = 0 \rightarrow \psi_n = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$ At the <u>center</u>, ψ_1 , ψ_3 probability \rightarrow max ψ_2 probability = 0 c.f. classical physics \rightarrow same probability everywhere in the box

Consider an atom in a box of volume
$$V = l^3$$

Wave equation $-\frac{\hbar^2}{2m} \nabla^2 \Psi = \xi \Psi$
energies, $\xi_n = \frac{\hbar^2}{2m} (\frac{\pi}{k})^2 [n_x^2 + n_y^2 + n_z^2]$
where πi 's are guantum nos'
any positive integer
In the phase space
 $\xi_F = \frac{\hbar^2}{2m} (\frac{\pi}{k} n_F)^2$
 R_F : radio that separates
filled d empty states

For N electrons one octant
Ne = 2 ×
$$\frac{l}{8}$$
 × $\frac{4}{3}$ π n_{F}^{3} $n_{F} = \left(\frac{3}{\pi}N_{e}\right)^{4/3}$
2 spin states
 $\therefore \quad \mathcal{E}_{F} = \frac{\hbar^{2}}{2m} \left(\frac{\pi}{l^{2}}N_{e}\right)^{2/3} = \frac{\hbar^{2}}{2m} \left(3\pi^{2}\frac{N_{e}}{V}\right)^{2/3}$
 $\mathcal{E}_{F} = \frac{\hbar^{2}}{2m} \left(3\pi^{2}n_{e}\right)^{2/3} \sim n_{e}$
electron concentration
Fermi energy: the highest filled energy level at temperature zero

The total energy
$$\overline{o}_{\overline{b}}$$
 the system in the ground State

$$U_{R} = 2 \sum_{n \le n_{F}} \mathcal{E}_{n} = 2 \times \frac{i}{8} \times 4 \overline{n} \int_{0}^{n_{F}} n^{2} \mathcal{E}_{n} dn$$

$$= \frac{\overline{n}^{2}}{2m} \left(\frac{\overline{n}}{R}\right)^{2} \int_{0}^{n_{F}} n^{4} dn \qquad \mathcal{E}_{n} = \frac{\overline{n}^{2}}{2m} \left(\frac{\pi n}{R}\right)^{2}$$

$$= \frac{\overline{n}^{3}}{10m} \left(\frac{\overline{n}}{R}\right)^{2} n_{F}^{5} = \cdots = \frac{3}{5} Ne \mathcal{E}_{F}$$

Phase of matter	Particles	E _F	$T_F = E_F / k_B [\text{K}]$
Liquid ³ He	atoms	$4 \times 10^{-4} \text{eV}$	4.9
Metal	electrons	2-10 eV	5×10^{4}
White dwarfs	electrons	0.3 MeV	3×10^{9}
Nuclear matter	nucleons	30 MeV	3×10^{11}
Neutron stars	neutrons	300 MeV	3×10^{12}

For any nonrelativistic particles

$$PV = \frac{2}{3} N E_{R} \implies P = \frac{2}{3} n E_{R}$$
For nonrelativistic degenerate gas

$$E_{R} = \frac{3}{5} E_{F} = \frac{3}{5} (3\pi^{2})^{\frac{2}{3}} \frac{\hbar^{2}}{2m} n_{e}^{\frac{2}{3}}$$

$$\implies P_{deg} \sim 1.004 \times 10^{13} (\frac{P}{\mu e})^{\frac{5}{3}} [dynes ani^{2}]$$

$$\mu_{e} \approx 2 \text{ with no H}$$

Degenerate State

$$\begin{aligned}
E_{n} &= \frac{\hbar^{2}}{2m} \left(\frac{n\pi}{k}\right)^{2} \implies E_{f} &= \frac{\hbar^{2}}{2m} \left(\frac{n\pi\pi}{k}\right)^{2} &= \frac{\hbar^{2}}{2m} \left(3\pi^{2}ne\right)^{2/3} \\
\text{Total Ne } &= 3 \cdot \frac{1}{3} \cdot \frac{4}{3}\pi n_{F}^{3} &= \frac{\pi}{3}n_{F}^{3} \implies n_{F} = (\frac{3}{\pi}ne_{F}^{3})^{2} \\
\text{Uncertainty Principle } &= \sqrt{a^{3}}p \lesssim h^{3} \\
\text{Uncertainty Principle } &= \sqrt{a^{3}}p \lesssim h^{3} \\
\text{Uncertainty Principle } &= ne \cdot h^{3} \implies p_{F} = \left(\frac{3h^{3}}{8\pi}ne_{F}^{3}\right)^{1/3} \\
\text{Pressure Theorem Theorem P = } \frac{1}{3}\int_{0}^{\infty}n(e_{F}) \forall P dP \\
&= \frac{1}{3}\int_{0}^{P_{F}} \frac{5\pi^{2}}{m_{e}} \frac{p}{m_{e}} p dP \\
&= \frac{3\pi}{3m_{e}h^{3}} \frac{1}{5} p_{F}^{2} = \frac{8\pi}{15m_{e}h^{3}} p_{F}^{2}
\end{aligned}$$
Non-relativistic
$$Pressure and Momentum \\
P = \frac{1}{3}\int_{0}^{\infty}n(p) v p dp
\end{aligned}$$

For Stars M 5 0.8 Ma Page enough to support the envelope -> core contracts slowly, TI little -> envelope expands gradually Star moves upwards on H-R diagram Originally, the structure of the stan LTT -T ~ 5x 10 K, atoms completely ionized

Why does a red giant puff off? As envelope f, $T \downarrow (cooling)$, $E_K \downarrow$ and $H^+ + e^- recombine$ $H^+ + e^- \longrightarrow H + f$ \Rightarrow Energy source ! So enter envelope (beyond recombination layers) $\Delta T/\Delta r f$ pushing the envelope $\Delta T/\Delta r f$ pushing the envelope Δt the same time, gravity $E_g \not\rtimes //r^2 \downarrow \downarrow$ Recombination $f \Rightarrow \bot f$, $\nabla T f$, $E_g \downarrow$ $\Rightarrow T \downarrow \downarrow \Rightarrow$ Recombination $ff \dots$ "Runaway" process \Rightarrow Envelope 'blown 'away

Mechanical Pressure P = Pions + Pelectrons + Prad + · If the gas non degenerate PI + Pe = Pgas = k PT • Il gas degenerate PI: ideal gas Pe : degenerate eq. & state · Il photon gas PI + Pe « Prad= iat "

Nete Above needs mudifications T 11, e.g. T > 10 % pt. e pair production - ptt, particle interaction ext ideal gas - B, addition of Pmag Radiation pressure $Prad = \frac{1}{3}aT^4$ For Pgas = Prod => T = 3.20×107 (C/µ) ~ 3.6×107 1/3 $\boldsymbol{P}_{\text{ideal gas}} \propto \rho T/\mu$

Nonrelativistic, complete degeneracy - PNR, e ~ 1.004×10'3 (P/He) 5/3 Edynes mi =] of NR, non-dogenerate case, i.e., ideal gas - Pideal ~ PT So, as p1 => Pideal -> Pdeg and at relatively low temperature

Rgas = Pions + Per = (-1 + -1) ... = -----... 1 = 1 + 1 = 0.61 for 0 of. 1/2 = 1/2 (1+x) for @ Z Xi Zi Laverage # 08 free electrons i Ai per nucleon 7 $\left(\frac{\rho}{\mu_e}\right) \xrightarrow{5/3} \rightarrow \rho \tau \quad \sigma \quad \tau \sim \rho^{2/3}$ Perit 2 2.4×10 T 18 and Sets in

Relativistic complete degeneracy Total energy ~ moc2 Poc Perit = 7.3 × 10 [3 anis] where relativistic kinetics has to be used Note p > 10 going tor a degerate gas to be relativistic , T > 10 K to be completely degenerate. Condition that satisfy both price. Trie? probably exist mly in very late stages of stellar evolution Almost in all other cases, nonrelativistic is ck 1

... need evaluation of each parameter ... $\mathcal{N}_{e} = \frac{8\pi}{\hbar^{3}} \int_{0}^{\infty} \frac{p^{2} dP}{1 + exp\left[\frac{5}{hT} - \frac{\psi}{J}\right]}$ $\mathcal{P}_{e} = \frac{8\pi}{3\hbar^{3}} \int_{0}^{\infty} p^{3} \frac{\partial}{\partial} 2cp \int \frac{dP}{1 + exp\left[\frac{E}{hT} - \frac{\psi}{J}\right]}$ $\mathcal{U}_{e} = -\frac{8\pi}{\hbar^{3}} \int_{0}^{\infty} \frac{EP^{2} dP}{1 + exp\left[\frac{E}{hT} - \frac{\psi}{J}\right]}$

In the non-rel. case E= P2/2 me $ne = \frac{8\pi}{h^{3}} \int \frac{P^{2} dP}{[+exp[\frac{P^{2}}{2} - \psi]} = \frac{8\pi}{h^{3}} (2m_{e}kT) a(\psi)$ where $a(\psi) = \int_{1+exp[\eta^2-\psi]}^{\infty} d\eta$ where R = P/(2mekt)'s $N_{ote} : n_e \sim \tau^{3/2} a(\psi)$ So, $\psi \equiv \psi (n_e \tau^{-3/2})$ (rel. case ()

Define Fermi-Dirac Integral

$$F_{\mu}(\psi) = \int_{0}^{\infty} \frac{u^{\nu}}{1+e^{u-\psi}} du$$

$$R_{e} = \frac{4\pi}{h^{3}} (2m_{e}k_{T})^{3/2} F_{1/2}(\psi)$$
In general, the condition may be neither
highly relativistic, nor completely nonreletivistic.
The pressure can be expressed as

$$P = K f(x)$$

$$f(x) = \cdots \qquad x = P_{e}/mec$$

	Table 15.1 Numerical values for Fermi-Dirac functions $F_{1/2},F_{3/2}$ (after MLDOUGALL STONER, 1939) F_2,F_3 (after HILLEBRANDT, 1989)				
	ø	$\frac{3}{2}F_{3/2}(\Psi)$	$F_{1/2}(\Psi)$	$F_2(\Psi)$	F3(\$)
Tabulation of	-4.0	0.016179	0.016128	0.036551	0.109798
	-3.5	0.026620	0.026480	0.060174	0.180893
Induitation of	-3.0	0.043741	0.043366	0.098972	0.297881
	-25	0.071720	0.070724	0.162540	0.490154
Π	-2.0	0.117200	0.114588	0.266290	0.805534
Hermi infeorais	-1.5	0.190515	0.183802	0.434606	1.321232
Fermi integrals	-1.0	0.307232	0.290501	0.705194	2.160415
	-0.5	0.489773	0.449793	1.134471	3.516135
	0.0	0.768536	0.678094	1.803249	5.683710
	0.5	1.181862	0.990209	2.821225	9.100943
	1.0	1.774455	1.396375	4.328723	14.393188
	1.5	2,594650	1.900833	6,494957	22.418411
	2.0 2.5	3.691502	2.502458	9.513530	34.307416
	2.5	5.112536	3.196598	13.596760	51.496218
	3.0	6.902476	3.976985	18.970286	75.749976
	3.5	9.102801	4.837066	25.868717	109.179565
	4.0	11.751801	5.770726	34,532481	154.252522
	4.5	14,88489	6.77257	45.20569	213,80007
	5.0	18.53496	7.83797	58.13474	291.02151
	5.5	22.73279	8,96299	73.56744	389.48695
	6.0	27.50733	10,14428	91,75247	513.13900
	6.5	32,88598	11.37898	112.93904	666.29376
	7.0	38.89481	12.66464	137,37668	853.64147
	7.5	45.55875	13.99910	165.31509	1080.24689
	8.0	52,90173	15.38048	197.00413	1351.54950
	8.5	60.94678	16.80714	232,69369	1673.36371
	9.0	69.71616	18.27756	272.63375	2051.87884
	9.5	79.23141	19,79041	317.07428	2493.65928
	10.0	89.51344	21.34447	366.26528	3005.64445
	10.5	100.58256	22,93862	420,45675	3595.14883
	11.0	112,45857	24.57184	479.89871	4269.86200
	11.5	125.16076	26.24319	544.84118	5037.84863
	12.0	138,70797	27.95178	615.53418	5907.54847
	12.5	153,11861	29.69679	692.22772	6887.77637
	13.0	168.41071	31,47746	775.17183	7987.72229
	13.5	184.60190	33,29308	864.61653	9216.95127
	14.0	201.70950	35.14297	960.81184	10585.40346
	14.5	219,75048	37.02649	1064.00779	12103.39411
	15.0	238.74150	38,94304	1174,45439	13781.61356
	15.5	258,69893	40.89206	1292,40167	15631.12726
	16.0	279.63888	42.87300	1418.09966	17663.37576
	16.5	301.57717	44.88535	1551.79837	19890.17470
	17.0	324,52939	46.92862	1693.74783	
	17.5	348.51087	49.00235	1844.19805	22323.71482
	18.0	373.53674	51.10608	2003.39907	24976.56198
	18.5	399.62188	53.23939	2171.60091	27861.65710
	19.0	426.78099	55.40187		30992.31625
	19.5	455.02855	57.59313	2349.05358 2536.00711	34382.23057
	20.0	484.37885	59.81279	2732.71153	38045.46629
	and the	-0-27003	37.61217	2/32/11/33	41996.46477

For partial degeneracy : Fermi - Dirac function see: clayton Radiation pressure $P_{rad} = \frac{1}{3}aT^{4}$ $P_{gao} = P_{rad} \Rightarrow T = 3.20 \times 10^{7} (P/\mu)^{3}$

$$P_{\text{ideal gas}} \propto \rho T/\mu$$

$$P_{e,deg}^{NR} = 1.00 \times 10^{13} \left(\frac{\rho}{\mu_e}\right)^{5/3} \text{ [cgs]}$$

$$P_{e,deg}^{ER} = 1.24 \times 10^{15} \left(\frac{\rho}{\mu_e}\right)^{4/3} \text{ [cgs]}$$

$$P_{\text{rad}} = \frac{1}{3} \alpha T^4$$
Non-Relativistic, Non-Degenerate (i.e., ideal gas)
Non-Relativistic, Extremely Degenerate

Extremely Relativistic, Extremely Degenerate

$$R_{R} = D \quad P \sim p^{\frac{4}{3}}$$

$$R_{R$$

From nonrelativistic to relativistic degeneracy In a completely degenerate gas, the equation of State $P \sim \rho^{5/3} NR$ $r = P \sim \rho^{4/3} ER$ $P \sim \rho T$ State Hydrostatic equilibrium requires P~ Mª

In the non relativistic case There is a solution in case of NR. $\mathbb{P} \sim \left[\frac{M^2}{R^4}\right] \sim \rho^{5/3} \sim \left(\frac{M}{R^3}\right)^{5/3} \sim \left[\frac{M^{5/3}}{R^5}\right]$ => R~ M" \therefore $R \downarrow \infty M \uparrow for wDs$ The more massive of a WD, the smaller of its size. Numerically log(R) = - 1/2 log(M) - 5/2 log(µe) - 1.397 (Lang) Vol. 1 For 1 Mo, R = 0.0126 Ro 2 ~ 7 × 10⁵ g om³ what happens in the ER case?

Total kinetic energy ER = Ne = (NR) degeneracy $p \approx \Delta p$ and $\Delta p \propto x = h$ $M_e = \frac{Ne}{R^3}$, $\Delta p \sim \frac{h}{h} \sim \frac{h}{n^{-1/3}}$ $\overline{t}_{k} = \frac{Ne(\Delta \Phi)^{2}}{2m_{e}} = \frac{Ne^{5/3}}{2m_{e}} \frac{\hbar^{2}}{R^{2}} \frac{\mu}{m_{e}} \frac{I}{m_{e}} \frac{I}{m_{e}} \frac{M}{m_{H}} \left(Ne = \frac{MZ}{Am_{H}} \approx \frac{I}{2} \frac{M}{m_{H}} \right)$

Virial theorem (Equipartion)

$$E_{p} = \left| \frac{GM^{2}}{R} \right|^{2} \approx 2 E_{K} \Rightarrow R \approx \frac{\hbar^{2}}{GM_{e}} \cdot \frac{\pi^{3}}{M_{e}}^{3}$$
Note $M^{3}R \approx count$
 $\frac{R}{R_{\odot}} \approx \frac{1}{74} \left(\frac{M_{\odot}}{M} \right)^{1/3}$
The luminosity $L = 4\pi R^{2} \sigma T_{eff}^{4} \approx \frac{1}{74^{2}} \left(\frac{M_{\odot}}{M} \right)^{2/3} \left(\frac{T_{eff}}{6000} \right)^{4}$ [L_O]
So a WD with $M = 0.4 M_{\odot}$ and $T_{eff} = 10^{4} K$
has $L = 3 \times 10^{-3} L_{\odot}$

 $\frac{\text{Gravity}}{g = \frac{GM}{R^2} \approx 74^2 \left(\frac{M}{M_{\odot}}\right)^{5/3} \frac{GM_{\odot}}{R_{\odot}^2}}$ For a WD with $M = 0.4 \text{ M}_{\odot}$, $g = 4 \times 10^7 \text{ cm s}^{-2}$ $\frac{\text{Gravitational Red shift}}{\lambda} = \left(1 - \frac{2GM}{Rc^2}\right)^{-1/2} \approx \frac{GM}{Rc^2} \approx 74 \left(\frac{M}{M_{\odot}}\right)^{4/3} \frac{GM_{\odot}}{R_{\odot}c^2}$

In case of
$$\overline{cR}$$
, $\overline{cR} = N_e \ Pc$ There is no solution in case of ER.
 $\overline{cR} = N_e \frac{\overline{h} N_e^{\prime 3}}{R} \cdot c = \frac{M'^3 \overline{h} c}{m_H^{M'3} \cdot R}$
 $\overline{cp} = \left/\frac{GM'^2}{R}\right|$
 $\overline{cR} \approx \overline{cp}$, R cancels out; no solution for
 $H \equiv M(R)$
 $P = \frac{M^2}{R^4}$ (if) = $\rho^{4/3} = \left(\frac{M}{R^3}\right)^{4/3}$ > no solution

□ For degenerate gas, M_{WD} ↑, R_{WD} ↓ □ For $M_{WD} = 1 M_{\odot}$, $R_{WD} = 0.02 R_{\odot}$ □ There is an upper limit to the mass $M_{\text{limit}} \approx \left(\frac{\hbar c}{GM_{H}^{4/3}}\right)^{3/2} \approx 2 M_{\odot}$ $\mu_{e} = 1 \text{ (for H)}$ = 2 (for He) = 56/26 = 2.15 $M_{\text{limit}} \approx \frac{5.836}{\mu_{e}^{2}} M_{\odot}$ $M_{\text{limit}} \text{ (Fe)} = 1.26 M_{\odot}$ Weinberg (1972) $M_{\text{limit}} \approx 1.2 M_{\odot}$, Later value $M_{\text{limit}} \approx 1.44 M_{\odot}$

White Dwarf Cooling

- □ WDs are supported by electron degeneracy pressure. With no sustaining energy source (such as fusion), they continue to cool and fade
 → very faint
- □ The luminosity of the faintest WDs in a star cluster $\leftarrow \rightarrow$ cooling theory \rightarrow age
- The age of the oldest globular cluster
 = lower limit of the age of the universe

Limiting V=30

White Dwarf Cooling Evolutions of a White Dwarf Mestel 1952 outer layer, p+0, T+0 Core ation, energy from thermal energy of ions deg. isothemal Degenerate gas ~ metal ; v. good conductor => isothermal core

1952MNRAS.112..583M ON THE THEORY OF WHITE DWARF STARS I. THE ENERGY SOURCES OF WHITE DWARFS L. Mestel (Communicated by F. Hoyle) (Received 1952 May 9) Summary Present theories of the origin of white dwarfs are discussed; it is shown that all theories imply that there can be no effective energy sources present in a white dwarf at the time of its birth. The temperature distribution of a white dwarf is then discussed on the assumption that no energy liberation occurs within the star, and that it radiates at the expense of the thermal energy of the heavy particles present. In the resulting picture, a white dwarf consists of a degenerate core containing the bulk of the mass, surrounded by a thin, non-degenerate envelope. The energy flow in the core is due to the large conductivity of the degenerate electrons, while the high opacity of the outer layer keeps down the luminosity to a low level. Estimates of the ages of observed white dwarfs are given and interpreted. Finally, it is shown that white dwarfs may accrete energy sources and yet continue to cool off, provided the temperature at the time of accretion is not too high; this suggests a possible model for Sirius B.

In the envelope,

$$\begin{array}{l}
\textcircled{0} \quad \frac{dP}{dr} = -P \frac{GM}{r^2} \quad (i.e. \ M(r) \rightarrow M) \\
\textcircled{0} \quad \frac{dT}{dr} = -\frac{3}{4ac} \frac{KP}{T^3} \frac{L}{4\pi r^2} \quad (i.e. \ F(r) \rightarrow L) \\
\textcircled{0} \quad K = K_0 \ P \ T^{-3.5} = K_0 \frac{\mu m_H}{R} \ P \ T^{-4.5} \quad \text{Ideal gas} \\
\textcircled{0} \quad \pi to \ \textcircled{0} \quad , \ \text{and} \quad \mathbb{O}/(2)
\end{array}$$

 $\frac{dP}{dT} = \frac{GM\,i6\,\pi\,ac}{3\,\kappa L}\,T^{3} = \frac{i6\,\pi\,ac\,G\,M\,T^{3}}{3\,\kappa_{o}\,\mu\,m_{H}\,PT^{-4.5}}\,\frac{R}{L}$ $= \frac{i6}{3}\,R_{1}\,\frac{M}{LP}\,T^{+7.5}$ $= \frac{i6}{3}\,R_{1}\,\frac{M}{LP}\,T^{-7.5}$ $= \frac{i6}{3}\,R_{1}\,\frac{M}{LP}\,T^{-5.5}$ $= \frac{i6}{4\pi}\,\frac{\kappa_{P}}{16}\,\frac{L}{4\pi\tau^{2}}\,(i.e,\,Mers+M)$ $= \frac{i6}{4\pi}\,\frac{\kappa_{P}}{16}\,\frac{L}{4\pi\tau^{2}}\,(i.e,\,Mers+M)$ $= \frac{i6}{4\pi}\,\frac{\kappa_{P}}{16}\,\frac{L}{4\pi\tau^{2}}\,(i.e,\,Mers+M)$ $= \frac{i6}{4\pi}\,\frac{\kappa_{P}}{16}\,\frac{L}{4\pi\tau^{2}}\,(i.e,\,Mers+M)$ $P d P = \frac{16}{3} \kappa_1 \frac{M}{L} T^{7.5} d T$ < integrate inward, $\frac{1}{2}P^2 = \frac{16}{3}K_1 \frac{M}{2} \frac{7^{8.5}}{8.5} \qquad T \rightarrow 0, P \rightarrow 0 \text{ as purface}$

 $P = \cdots \left(\frac{M}{L} \tau^{8.5}\right)^{\prime 2}$ $\frac{1}{2}P^2 = \frac{16}{3}\kappa_1 \frac{M}{2} \frac{T}{8.5}$ P(T)= (= K,) (=) + 12 T + 12/4 This is the general radiative zero solutions to the outer envelope (atmosphere) of stars 5 (1) $P(T) = K_2 \left(\frac{M}{T}\right)^{1/2} T^{1/4}$

At
$$T_b$$
, e^- ; ideal gas pressure = degenerate gas

$$Pe = \left(\frac{k}{\mu m_H} \left(\frac{T}{p}\right)\right)_b^b = P_{alg} = K_i^\prime \left(\frac{P}{p}\right)_{jka}^{5/3}$$

$$P = K_a^\prime P_{alg}^{5/3}$$

$$\frac{L}{L_{\odot}} = 6.4 \times 10^{-3} \frac{\mu}{\mu_e^2} \frac{M}{M_{\odot}} \frac{1}{r_c} T_c^{3.5} \iff \text{chemical composition and opacity}$$

$$\begin{array}{c} \text{Numerically, with constants}(\mu, \mu e, k_s') + \mu \text{ical} \\ \text{fir a WD} \\ \frac{L/L_0}{M/k_0} \approx 6.8 \times 10^3 \left(\frac{T_c}{10^7 \text{K}}\right)^{3.5} \\ \text{er} \quad \boxed{T_c} \approx 4 \times 10^7 \left(\frac{L/L_0}{M/M_0}\right)^{3/7} \text{(k)}} \\ \end{array}$$

$$\begin{array}{c} \text{fir a WD} \\ \text{$$

Energy source:
$$E_{\text{thermal}}^{\text{ions}} = (3/2) \frac{M}{\mu_I m_H} kT$$

Luminosity $L = -d E_{\text{thermal}}^{\text{ions}} / dt$
 $= -(3/2) \frac{M}{\mu_I m_H} k dT_c / dt$ $dL = \kappa M \frac{7}{2} T_c^{5/2} \frac{dT_c}{dt}$
(5) $L = -\frac{3}{7} \frac{M}{\mu m_H} k \frac{T_c}{L} dL$
 $= M T_c^6$
 $L = -\frac{M T_c}{M T_c} \frac{dL}{dt}$
 $L = -\frac{M T_c}{M T_c} T_c^7$
Colory rate III as T_c

\$ lower-mass WD, evolves plowlier Cooling timescale, from Te', L' to Te, aL Integrate (5) Terol = 0.6 k M (Te - Te') If Te' >> Te $\left(\frac{Te'}{L'} \sim Te'^{-2.5}\right) \Rightarrow \frac{Te}{L} >> \frac{Te'}{L'}$ Teool = 2.5 × 10 (M/Mo) [yr]

 $\frac{\text{Core Temperature}}{M \approx M_{\odot}, {}^{L}/L_{\odot}} \approx 10^{-4} - 10^{-2} \quad \text{B} \quad \Rightarrow T_{c} \approx 10^{6} \text{ K}$ $\stackrel{\land}{\triangleq} \Rightarrow \rho_{b} \approx 10^{3} \text{ g cm}^{-3}$ $\frac{\text{Envelope}}{\ell \approx \frac{P}{\rho g} \approx \frac{kT}{\mu g}}$ $T \sim 10^{6} \text{ K}, \ l \approx 1 - 10 \text{ km}$ $\text{Envelope mass} < 4\pi R^{2} l \rho_{b} \approx 2 \times 10^{-4} \text{ M}_{\odot}, \text{ is indeed small}$

THE ASTROPHYSICAL JOURNAL, 574:L155-L158, 2002 August 1 © 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE WHITE DWARF COOLING SEQUENCE OF THE GLOBULAR CLUSTER MESSIER $4^{\rm t}$

BRAD M. S. HANSEN,^{2,3} JAMES BREWER,⁴ GREG G. FAHLMAN,^{4,5} BRAD K. GIBSON,⁶ RODRIGO IBATA,⁷ MARCO LIMONGI,⁸ R. MICHAEL RICH,² HARVEY B. RICHER,⁴ MICHAEL M. SHARA,⁹ AND PETER B. STETSON¹⁰ Received 2002 March 5; accepted 2002 June 26; published 2002 July 11

ABSTRACT

We present the white dwarf sequence of the globular cluster M4, based on a 123 orbit *Hubble Space Telescope* exposure, with a limiting magnitude of $V \sim 30$ and $I \sim 28$. The white dwarf luminosity function rises sharply for I > 25.5, consistent with the behavior expected for a burst population. The white dwarfs of M4 extend to approximately 2.5 mag fainter than the peak of the local Galactic disk white dwarf luminosity function. This demonstrates a clear and significant age difference between the Galactic disk and the halo globular cluster M4. Using the same standard white dwarf models to fit each luminosity function yields ages of 7.3 \pm 1.5 Gyr for the disk and 12.7 \pm 0.7 Gyr for M4 (2 σ statistical errors).

• The WD envelope is typically thin, ${\sim}1\%$ of the total WD radius.

- DA WD: layer of $M_{\rm He} \sim 10^{-2} M_{\rm WD}$ outside the CO core, then an outer layer $M_{\rm H} \sim 10^{-4} M_{\rm WD}$
- A non-DA WD layer of $M_{\rm He} \sim 10^{-2} 10^{-3} M_{\rm WD}$

<section-header>

An iron nucleus is most compact between protons and neutrons \rightarrow further fusion does not release energy

→ iron core collapses (D \sim 3000 km, collapses in \sim 0.1 s)

Stage	Central temperature (K)	Central density (kg/m³)	Duration of stage
Hydrogen fusion	4×10^7	$5 imes 10^3$	$7 imes 10^{6}~{ m yr}$
Helium fusion	2×10^8	7×10^{5}	5×10^5 yr
Carbon fusion	6×10^{8}	2×10^8	600 yr
Neon fusion	1.2×10^{9}	4×10^9	1 yr
Oxygen fusion	$1.5 imes 10^{9}$	$1 imes 10^{10}$	6 mo
Silicon fusion	2.7×10^{9}	3×10^{10}	1 d
Core collapse	5.4×10^{9}	3×10^{12}	0.2 s
Core bounce	2.3×10^{10}	4×10^{17}	millisecond
Supernova explosion	about 109	varies	10 second

Iron core collapse \rightarrow 5 billion K \rightarrow photodisintegration by energetic gamma rays

The star spends millions of years on the main sequence, synthesizing simple nuclei such as H and He to iron, then takes less than a second to disintegrate back to protons, neutrons and electrons.

Density of the core \nearrow , reaching 4×10^{17} kg/m³ (cf density of a nucleus) in < 1 s \rightarrow even the electron degenerate pressure cannot support the core $\rightarrow e^- + p^+ \rightarrow n^o + \nu$

Core supported by <u>neutron</u> degenerate pressure \rightarrow a neutron star

Core bounces → supernova explosion + supernova remnant

Gum Nebula is the largest SNR in the sky, originated from a supernova explosion perhaps a Myr ago.

Gum Nebula has a angular extent > 40 deg \rightarrow linear size more than 2300 ly across \rightarrow The closest part from Earth ~300 ly

	Supe	PHOV	ae m r	listory
• OB associ	ation in Sco	rnius-(Centaur	115
Solar syst	em within 1	50 lv 2	2 Myr ag	go; should have
experience	ced SN explo	sions	ingi ag	
experience	1			
	Table 10.1 Histori	ical supernov	/ae	
	Galaxy:		Distance	
	Name	Year	\times 3000 ly	the second second
	Milky Way:			
	Lupus	1006	1.4	
	<u> </u>	1054	2.4	
	Crab			
	Crab 3C 58	1181(?)	2.6	
		1181(?) 1572	2.6 2.5	
	3C 58	. ,		
A	3C 58 Tycho	1572	2.5	
0	3C 58 Tycho Kepler	1572 1604	2.5 4.2	

SN 1987A First observed 24 Feb, 1987 not quite SNI pre SN progenitor observed and sp. classified Sanduleak - 69 202 Sp = B 3 I L~1.1×10 LO; Teff~16,000K (M~ 16-22 Mg) Pop I but metal-poor Neutrino evento (kamiokande) detected hours before SN visible

Elements observed m SNI spectra ~ maximum ~ 6 months cubelass o, Mg, Si, S, ca, Fe Fe. Co SNIA O, Ca, Mg SNIL O, Ca, Fe SNIC He, Fe, Ca O. Mg Hansen + Kawaler

- The energy source of the type Ia supernovae comes from nuclear fusion. The explosion produces various radioactive isotopes , e.g., nickel becomes cobalt.
- So far, a few thousands SNe have been detected in external galaxies.
- Applying the statistics, the Milky Way should have occurred one type Ia SN every 36 years, and one type II SN every 44 years.
- Each century, therefore, we should have seen about 5 supernovae. So, what happened?
- Which star is most likely the next? In the solar neighborhood?

Supernovae M > 8 Mo core carbon burning -> 160, 20 N, Na, 12 Mg and 24 Mg ... Eventually 54 Fe, she and 56 N; "iron" core Three critical processes 1) Neutrino cooling Solar neutrino flux At this stage, a lot of 25 $= 7 \times 10^{10} / \text{cm}^2/\text{s}$ Ex. dung Si burning, a 20 Mg Neutrino mass - 20MO ~ 4.4× 10 mg 5' < 0.32 eV for the sum of Lp ~ 3.1× 10 mg 5' masses of 3 known flavors

2) Photodisintegration Energetic photons disintegrate iron nuclei 18 th to & particles and potens This is an endothermic process; i.e. takes energy away and lowers pressure support at the core 56 Fet & -> 13 "He + 4 m "He+x + 2p+ + 2n

3. Neutronization possible inverse & decay pt + e -> nº + v ne 1 => Parg 1 2 escape => cooling => A rapid collapse of the core 方文を作 Note exothermic releasing energy

Outer core/mantle collapses supersonically (free fall) V~ 70,000 Km 5 inner core collape homologously (infall speed a distance to center) Subsonically Inner core collapses until Per 8×10 8 cm 3 This is 3x Prucleus -> nuclear reactions produce rupulsive force (cannot "squeeze "anymore) This sends an outgoing pressure wave through the infalling material

Two possibilities when the shocks propagates through the inner core -> photo disintegration (i) If the iron core is small, shock emerges energetically -> an explosion on the outer material prompt hydrodymemic explosion This can explain the explosion of MS stars with $8 \sim 12 M_{\odot}$, ending with a core < 1.2 M $_{\odot}$. But the progenitor of SN1987A had 20 M $_{\odot}$ \rightarrow need

an alternative mechanism to explain more massive SNe

(ii) If the core is massive , inner shock stalls Perit > 1.5 x 10" gom material becomes so deuse that even Vs accretion cannot escape -> formation of a shock neutrine sphere of protostars of photosphere of a when p > Cerit Thiff > Three fall Thus deposito some energy to the inner shock -> explosion delayed-explosion mechanism

Roughly if original mass <25 Mo, can be supported neutron pressure; may survive the explosion -> a neutron star IL M > 25 Mo -> collapse to a black hole

Neutrino Tropping
Mean free path
$$\lambda = 1/n\sigma$$

Cross Section $\sigma = \sigma_0 E^2$
For neutrinos, $\sigma_0 \sim 2 \times 10^{-44} \text{ Lem}^2 J$
 $E = relative energy in unit$
 $\sigma_0 = rest mass$
In Read $\rho = 11.344 \text{ gcm}^3$, $A = 208$
A neutrino $\sigma_0 + MeV$, or $E = 2$, $\lambda \sim 3.8 \times 10^{\circ}$ on
 $\sim 380 \text{ Ry}$

In a collapsing Stellar core P~4× 10 4 gom3 Neutrinos have ~ 150 Mev, or E~300 $\rightarrow \lambda = 2.2 \text{ orm}$ So if R~ 10 Km, the mean free time, or diffusion time Tats

Supernova Observationo L peak ~ 10- 10 LO Time before peak (rising time) ~ 2 wks Shell expansion 2 ~ 5-10 × 10 × 10 × ms supernova remnant (SNR) Landing ~ 10 yrs Etotal ~ 10 - 10 Ergs = Ephotono + Encutrinos + Ekinetia usually minor (~1%) predominant cooling core -> a neutron star Prio 4 gamis, Mr Mo

- 1932 Chadwick discovered the neutron.
- Landau thought neutron stars might exist.
- 1934 Baade & Zwicky suggested neutron stars as remnants of supernova explosions.
- 1939 Oppenheimer & Volkoff proposed the first model for neutron stars, with estimates of masses and sizes.
- 1967 Hewish & Bell discovered the pulsar.
- Gold & Pacini proposed pulsars as fast spinning, highly magnetized neutron stars.

Mass limit of neutron degenerate stars uncertain because of uncertain Ees at P > Paulean, ranging from 0.7 Mo for non-interacting neutrons (Tolman - Oppenheimer - Volkoff kunt) up to ~ 2.5 Mo R~ lokm { B ~ 10^{'3}G Spin down from periods ~ ms A pulsar

Some SNRs host no pulsars. - ust enough e, not strong enough B? - we are not in the ' light house beam'? - neutron Star destroyed completely neutron Star "Kicked out" some NSs (a pulsars) have space motion ~ 1000 Kms

Annu. Rev. Astron. Astrophys. 1992. 30: 359–89 TYPE Ia SUPERNOVAE AS STANDARD CANDLES

David Branch

Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019

G. A. Tammann

Astronomisches Institut der Universität Basel, Venusstrasse 7, CH-4102 Binningen, Switzerland, and European Southern Observatory, Karl-Schwarzschild-Str. 2, D-8049 Garching/München, Germany

Type I No H im spectra Located in spirals or ellipticals If in spirals, usually NOT in arms but some seen near HE regions or arms -> Ib Ia Standard model A wid close to chandrasekhar limit a mass losing companion + -> accretion onto wD -> Rwo 1 -> T 1. If heat not carried away => ignition of c, o, ... thermonuclear explosion

Fate 56 WD depends on accretion rate and MWD · partial explosion w/ a wed left behind · disrupt completely; no Stellar remnant . NS? Population I progenitor SNIa~ 80% of Type I $M_{peak} \sim -17 mag$ All SNIa lighteurves similar -> standard candles Averaged 1 SNI/100 yrs in a spiral

Type I M_{peak} ~ -19 mag with hydrogen lines in spectra Found in spiral arms on Irr. If formed in the same arm timescale < 10 xr => M>10 Mo progenitor Stondard model End of massive star evolution gravitational collapse Population I progenitor Fate -> NS, BH

Ann. Rev. Astron. Astrophys. 1986. 24: 205-53

THE PHYSICS OF SUPERNOVA EXPLOSIONS¹

S. E. Woosley

Board of Studies in Astronomy and Astrophysics, Lick Observatory, University of California, Santa Cruz, California 95064

Thomas A. Weaver

Special Studies Group, Lawrence Livermore National Laboratory, Livermore, California 94550

¹ The US Government has the right to retain a nonexclusive royalty-free license in and to any copyright covering this paper.

Main sequence mass	Helium core mass	Iron core mass	Explosion energy ^b (10 ⁵⁰ erg)	Residual baryon mass ^b	Neutron star mass ^b	Heavies ejected $(Z \ge 6)$
11	2.4	c	3.0	1.42	1.31	~0
12	3.1	1.31	3.8	1.35	1.26	0.96
15	4.2	1.33	2.0	1.42	1.31	1.24
20	6.2	1.70	_		_	2.53
25	8.5	2.05	4.0	2.44	1.96	4.31
35	14	1.80	·		_	9.88
50	23	2.45		_		17.7
75	36	d	s	3 -5	BH?	30?
100	45	~2.3 ^d	≥4		BH?	39?

Table 1 Presupernova models and ex	plosions ^a
------------------------------------	-----------------------

^a All masses given in units of M_{\odot} . ^b All except for 100 M_{\odot} determined by Wilson et al. (1985). ^c Never developed iron core in hydrostatic equilibrium. ^d Pulsational pair instability at oxygen ignition.

Woosley & Weaver

Energy released in a core collapse R: RWD(0.01 Ro) -> RNS(10 Km) A Egrav ~ GHO2 ~ 3×10 2005 10% used up by nuclear processes rest to radiation and ejecting material (luminosity & neutrinos)

- So far thousands of SNe have been detected in external galaxies.
- In the Milky Way, a type Ia SN is expected every 36 years, and a type II SN is expected every 44 years. Then each century should see about 5 SNe.

Notable Historical supernovae in the Milky Way					
SN 1006	Lupus	Ia	–7.5 mag, brightest in history		
SN 1054	Taurus	Π	Chinese SN; Crab Nebula as the SNR		
SN 1572 C	assiopeia	Ia	Tycho's Nova		
SN 1604 0	phiuchus	Ia	Kepler's Star		
SN 1680 C	assiopeia	IIb	Not observed, Cas A as the SNR		


```
Cosmic abundance and stellar/galaxy evolution (Burbidge, E. M.,
Burbidge, G. R., Fowler, W. A., & Hoyle, F. (1957)
Big Bang \rightarrow H:He=10:1
<u>Stellar Interior</u>
10^7 \text{ K} \rightarrow \text{p-p}, CNO (fusing proton, in a proton rich or neutron
poor gas) (p process)
```

10⁸ K → triple-alpha to C → continue to fuse α particles → mass number multiples of 4 by fusing (α process)

 4×10^9 K \rightarrow nuclear equilibrium \rightarrow V, Cr, Mn and elements of the iron group (e process)

Explosive events

Neutron capture rapidly (compared to the competing β decays) \rightarrow neutron-rich isotopes (r process) e, g., the radioactive elements ²³⁵U, ²³⁸U, at the expense of the iron group

Neutron capture slowly (compared to the competing β decays) \rightarrow neutron-rich isotopes (s process)

Black Holes predicted by General Relativity Spacetime near a mass is warped Total solar eclipse A full tratment of a BH required GR. But for an electrically neutral, non-rotating BH, classical derivations give the same results as with the relativisitic approach.

Object	Mass Range of Parent Star (M_{\odot})	Integrated Galactic Birth Rate (yr ⁻¹)	Number Density (pc ⁻³)	$\frac{\rho}{\rho_T}$	(<i>d</i> (po
White dwarfs	1-4	0.16	1.5×10^{-2}	0.070	2.:
Neutron stars	4-10	0.021	2.0×10^{-3}	0.020	4.
Black holes	> 10	0.0085	8.0×10^{-4}	0.22	6.

Size of the Universe 13. 7 billion yrs Robservable ~ 137 × 10 × 10 km ~ 1.4 × 10 23 Km Mobs ~ 10" Mo/gal · 10" gal. (+ dark matter + dark energy ~ 10²³ Mo $\left(R_{s}\sim3\frac{M}{M_{6}}\left[kmj\right]\right)$ Robs ~ Rs The whole Universe is a BH 1

Hypernovae, Kilonovae

- Black-hole mergers
- White dwarf merger \rightarrow Type I SN
- Neutron-star mergers → gravitational wave radiation → spiral inwards; merging → a NS or a BH → a short GRB + a kilonovae + r-process elements produced and ejected a kilonova: luminosity 100 x of a classical nova
- Hypernova = superluminous supernova a hypernova: luminosity > 10 x of a standard

Magnetars Quark Stars / Strange Stars A neutron star w/ an extremely strong B hyperthetical type of Stars composed of (10" testas n 10" games) quark matter on Strange matter Earth/sun ~ 1 G currently 6 "flavors" of quarks AP/Bp ~ 10g up, down, Strange, charm. wDs ~ 10 G top, bettem spin 1/2 NSS ~ 10' 6 when a neutron star is further compressed collapse -> energy sources neutrons -> break down to up and down i) Egrav ~ 0.2 Met ~ 10 Ergs quarks -> break down · 11) Ent ~ 2 2 R ~ 10 295 Igs R Strange quark B links the fast spinning core to the dark matter candidates ? outlying envelopes magnetic breaking These highly mathematical & speculative D ~ 20 km; spin : several times /s Some recent observations , e.g. in some SNe Trim spans short , \$ 10 4 yr B decays -> existence of quark stars ?

