Stellar Atmosphere and Structure ${ }^{66}$ Stars ${ }^{99}$

Wen Ping Chen 陳文屏
NCU／Astronomy 中央大學 天文研究所

Stellar Atmosphere and Structure ---

Instructor: Professor Wen-Ping Chen
Class Time: Thursday 2 to 5 pm
Classroom: Room 914; online

Office: S4, Room 906
Office Hours: Please check my schedule posted on my door

This course covers the interior structures and atmospheres of stars. We will discuss the important physical processes governing the stability of a star ("stellar structure") and how emerging photons interact with the stellar atmosphere that we observe to derive the stellar parameters. We will deal with the "static" stellar properties, but not the formation processes or how these properties evolve with time, i.e., stellar evolution, which will be the subjects of the subsequent course in the next semester.

Textbook: "An Introduction to the Theory of Stellar Structure and Evolution", by Dina Prialnik, Cambridge, 2 ${ }^{\text {nd }}$ Ed. 2009

In addition to the midterm (30\% grade) and final (30\%) exams, there will be homework assignments, plus in-class exercises and perhaps projects (40\%).

For numerical modeling of atmospheres or interiors --- at least for some of the homework problems --simple computer coding is required.
. Stellar Observational Properties; Gas Properties
. Radiative Transfer
Blackbody Radiation
Emission, Absorption, and Source Function
Equation of Transfer and its Solutions/Approximations

```
.Stellar Atmospheres
    Opacities (Kramers, Rosseland)
    Equations of State
    Absorption and Spectral Lines
    Line Formation
.Stellar Interiors
    Hydrostatic Equilibrium
    Mass Distribution
    Lane-Emden Equation
    Radiative, Thermal, and Convective Equilibrium
    Energy Generation; Thermonuclear Reactions
    (Degenerate Matter)
```


References

\checkmark The Internal Constitution of the Stars，Arthur S．Eddington，1926， 1988 reprint，Cambridge U Press
\checkmark An Introduction to the Study of Stellar Structure，S．Chandrasekhar，1939，1967，Dover
\checkmark Principles of Stellar Evolution and Nucleosynthesis，Donald Clayton，1968，1983，U．Chicago Press
\checkmark Introduction to Stellar Atmospheres and Interiors，Eva Novotny，1973，Oxford U Press，an old
but very comprehensive book on the subject
\checkmark Stellar Atmospheres，Dimitri Mihalas，1978，W．H．Freeman \＆Company
\checkmark The Fundamentals of Stellar Astrophysics，George W．Collins，1989，Freeman
\checkmark Stellar Structure and Evolution，R．Kippenhahn \＆W．Weigert，1990，Springer－Verlag
\checkmark Stellar Structure and Evolution，Huang，R．Q．黄潤乾，Guoshin，1990， originally published in Chinese（恆星物理）．
\checkmark Introduction to Stellar Astrophysics，Vol 3 －－－Stellar Structure and Evolution，Erika Bohm－Vitense， 1992，Cambridge
\checkmark The Observation and Analysis of Stellar Photospheres，David Gray，1992，Cambridge U Press
\checkmark The Stars，Evry Scharzman and Françoise Praderie，1993，Springer－Verlag，translated by A．R．King
\checkmark Compendium of Practical Astronomy，Vol 2，Stars and Stellar Systems，G．D．Roth（ed），1993， Springer－Verlag
\checkmark 恆星大氣物理，汪珍如，區欽岳，1993，高等教育出版社
\checkmark The Physics of Stars，A．C．Phillips，1994，John Wiley \＆Sons
\checkmark The Stars：Their Structure and Evolution，R．J．Tayler，1994，Cambridge
\checkmark Supernovae and Nucleosynthesis，David Arnett，1996，Princeton
\checkmark Advanced Stellar Astrophysics，William K．Rose，1998，Cambridge
\checkmark Theoretical Astrophysics，Vol II：Stars and Stellar Systems，Padmanabhan，T．，a hefty，mathematical
3 volume set；a comprehensive coverage of basic astrophysical processes in vol．1，stars in vol．2，and galaxies and cosmology in vol．3，2001，Cambridge
\checkmark Stars and Stellar Evolution，K．S．De Boer \＆W．Seggewiss，Ed．，2008，EDP Science
\checkmark Stellar Physics，2：Stellar Evolution and Stability，Bisnovatyi－Kogan，2nd Ed．，2010，Springer （translated from Russian）
\checkmark Theory of stellar Atmospheres，Ivan Hubeny \＆Demitri Mihalas，2015，Princeton U Press
\checkmark The Structure and Evolution of Stars，J．J．Eldridge \＆Chrostopher A．Tout，2019，World Scientific
\checkmark Stars and Stellar Processes，Mike Guidry，2019，Cambridge

Digital copy available on the internet

Contents

Preface to the second editionPreface to the first editionXill
I Observational background and basic assumption 1
1.1 What is a star? 1
1.2 What can we learn from observations? 2
1.3 Basic assumptions 6
1.4 The $\mathrm{H}-\mathrm{R}$ diagram: a tool for testing stellar evolution 9
2 The equations of stellar evolution 15
2.1 Local thermodynamic equilibrium 16
2.2 The energy equation 17
2.3 The equation of motion 19
2.4 The virial theorem 21
2.5 The total energy of a star 23
2.6 The equations governing composition changes 25
2.7 The set of evolution equation 28
2.8 The characteristic timescales of stellar evolution 29
3 Elementary physics of gas and radiation in stellar interiors 34
3.1 The equation of state 35
3.2 The ion pressure 37
3.3 The electron pressure 38
3.4 The radiation pressure 42
3.5 The internal energy of gas and radiation 43
3.6 The adiabatic exponent 44
3.7 Radiative transfer 46
4 Nuclear processes that take place in stars 51
4.1 The binding energy of the atomic nucleus 51
4.2 Nuclear reaction rates 53
4.3 Hydrogen burning I: the $p-p$ chain 57
4.4 Hydrogen burning II: the CNO bi-cycle 59
4.5 Helium burning: the triple- α reaction 61
4.6 Carbon and oxygen burning 63
4.7 Silicon burning: nuclear statistical equilibrium 65
4.8 Creation of heavy elements: the s - and r-processes 66
4.9 Pair production 67
4.10 Iron photodisintegration 68
5 Equilibrium stellar configurations - simple models 70
5.1 The stellar structure equations 70
5.2 What is a simple stellar model? 71
5.3 Polytropic models 72
5.4 The Chandrasekhar mass 77
5.5 The Eddington luminosity 78
5.6 The standard model 80
5.7 The point-source model 83
6 The stability of stars 87
6.1 Secular thermal stability 88
6.2 Cases of thermal instability 89
6.3 Dynamical stability 92
6.4 Cases of dynamical instability 94
6.5 Convection 96
6.6 Cases of convective instability 98
6.7 Conclusion 103
7 The evolution of stars - a schematic picture 104
7.1 Characterization of the $(\log T, \log \rho)$ plane 105
7.2 The evolutionary path of the central point of a star in the $(\log T, \log \rho)$ plane 110
7.3 The evolution of a star, as viewed from its centre 113
7.4 The theory of the main sequence 116
7.5 Outine of the structure of stars in late evolutionary stages 122
7.6 Shortcomings of the simple stellar evolution picture 126
8 Mass loss from stars 130
8.1 Observational evidence of mass loss 130
. 2 The mass loss equations 131
8.3 Solutions to the wind equations - the isothermal case 136
8.4 Mass loss estimates 139
8.5 Empirical solutions 142
9 The evolution of stars - a detailed picture 144
9.1 The Hayashi zone and the pre-main-sequence phase 145
9.2 The main-sequence phase 151
9.3 Solar neutrinos 155
9.4 The red giant phase 160
.5 Helium burning in the core 165
9.6 Thermal pulses and the asymptotic giant branch 168
9.7 The superwind and the planetary nebula phase 173
9.8 White dwarfs: the final state of nonmassive stars 177
9.9 The evolution of massive stars 182
9.10 The H-R diagram - Epilogue 186
10 Exotic stars: supernovae, pulsars and black holes 189
10.1 What is a supernova? 189
10.2 Iron-disintegration supernovae: Type II - the fate of massive stars 103
10.3 Nucleosynthesis during Type II supernova explosions 197
10.4 Supernova progenies: neutron stars - pulsar 200
10.5 Carbon-detonation supernovae: Type Ia 204
10.6 Pair-production supernovae and black holes - the fate of very massive stars 205
II Interacting binary stars 208
11.1 What is a binary star? 208
11.2 The general effects of stellar binarity 211
1.3 The mechanics of mass transfer between stars 216
11.4 Conservative mass transfer 219
11.6 Cataclysmic phenomena: Nova outbursts 223
2 The stellar life cycle 231
12.1 The interstellar medium 231
12.2 Star formation 232
12.3 Stars, brown dwarfs and planets 236
12.4 The initial mass function 239
A. 259
Appendix C - Solutions to all the exercises270
factors 300
Bibliography308

Class Schedule 2023 Fall

$\#$	Date	
01	$09 / 14$	
02	$09 / 21$	
03	$09 / 28$	Holiday eve
04	$10 / 05$	
05	$10 / 12$	
06	$10 / 19$	
07	$\mathbf{1 0 / 2 6}$	Midterm Exam
08	$11 / 02$	
09	$11 / 09$	

\#	Date	
10	$11 / 16$	U. Sports Days
11	$11 / 23$	
12	$11 / 30$	
13	$12 / 07$	
14	$12 / 14$	
15	$12 / 21$	
16	$\mathbf{1 2 / 2 8}$	Final Exam
17	$01 / 04$	Exam review
18	$01 / 11$	Supple. materials

Stellar structure: stability; balance of forces

Stellar evolution:

 temporal changes of structure(con)sequence of thermonuclear reactions in different parts of a star, and at different epochs as
 the star ages

Frequently used fundamental constants

Physical

$a \quad$ radiation density constant $7.55 \times 10^{-16}\left[\mathrm{~J} \mathrm{~m}^{-3} \mathrm{~K}^{-4}\right]$
c velocity of light
$3.00 \times 10^{8}\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$
G gravitational constant
$6.67 \times 10^{-11}\left[\mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}\right]$
h Planck's constant
$6.62 \times 10^{-34}[\mathrm{~J} \mathrm{~s}]$
k Boltzmann's constant
$1.38 \times 10^{-23}\left[\mathrm{~J} \mathrm{~K}^{-1}\right]$
m_{e} mass of electron
$9.11 \times 10^{-31}[\mathrm{~kg}]$
m_{H} mass of hydrogen atom
$1.67 \times 10^{-27}[\mathrm{~kg}]$
N_{A} Avogardo's number
$6.02 \times 10^{23}\left[\mathrm{~mol}^{-1}\right]$
σ Stefan Boltzmann constant
$5.67 \times 10^{-8}\left[\mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}\right](=a c / 4)$
$R \quad$ gas constant (k / m_{H})
$8.26 \times 10^{3}\left[\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}\right]$
$e \quad$ charge of electron
$1.60 \times 10^{-19}[\mathrm{C}] \quad 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$

Astronomical

L_{\odot}	Solar luminosity	$3.86 \times 10^{26} \mathrm{~W}$
M_{\odot}	Solar mass	$1.99 \times 10^{30} \mathrm{~kg}$
$T_{\text {eff } \odot} \odot$	Solar effective temperature	$5780 \mathrm{~K}($ observed $)$
$T_{\mathrm{c}, \odot}$	Solar Central temperature	$1.6 \times 10^{7} \mathrm{~K}$ (theoretical)
R_{\odot}	Solar radius	$6.96 \times 10^{8} \mathrm{~m}$
$\mathrm{~m}_{\odot}$	apparent mag of Sun	$-26.7 \mathrm{mag}(\mathrm{V})$
M_{\odot}	absolute mag of Sun	$+4.8 \mathrm{mag}(\mathrm{V})$
θ	apparent size of Sun	32^{\prime}
$<\rho>$	mean density of Sun	$1.4 \mathrm{~g} \mathrm{~cm}^{-3}$
$(B-V)_{\odot}$	color of the Sun	$0.6 \mathrm{mag}^{2}$
Parsec	unit of distance	$3.09 \times 10^{16} \mathrm{~m}$

Galactic Ecology

Properties of Stars

Brightness

- Luminosity $\left[\mathrm{erg} \mathrm{s}^{-1}\right] L=$ bolometric luminosity $=$ power

- Spectral luminosity $\left[\mathrm{erg} \mathrm{s}^{-1} \mu \mathrm{~m}^{-1}\right] \boldsymbol{L}_{\lambda}$

$$
\mathrm{d} \lambda=-\left(\frac{c}{v^{2}}\right) \mathrm{d} v
$$

- Flux $\left[\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2}\right] f$
- Flux density $\left[\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mu \mathrm{~m}^{-1}\right.$] f_{λ} or $f_{v} \quad f_{v}=\left(\frac{\lambda^{2}}{c}\right) f_{\lambda}$

$$
\begin{aligned}
1 \text { Jansky }(\mathrm{Jy}) & =10^{-23}\left[\mathrm{erg} \mathrm{~s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1}\right] \\
& =10^{-26}[\mathrm{~W} \mathrm{~m} \\
& =10^{-7}\left[\text { photons m} \mathrm{m}^{-2} \mathrm{~s}^{-1}(\lambda / d \lambda)\right]
\end{aligned} \quad f\left(m_{V}=0\right)=3640 \mathrm{Jy}
$$

- Brightness/intensity $\left[\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{sr}^{-1}\right] \boldsymbol{B}$
- Specific intensity $\left[\mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{sr}^{-1} \mathrm{~Hz}^{-1}\right] \boldsymbol{I}_{v}$

Solar radio astronomers

- Energy density $\left[\mathrm{erg} \mathrm{cm}^{-3}\right] \boldsymbol{u}=(4 \pi / \mathrm{c}) \mathrm{J}$
use the solar flux unit 1 s.f.u. $=10^{4} \mathrm{Jy}$
- Mean intensity $J=(1 / 4 \pi) \int I d \Omega \quad$ Pay attention to the subscript and unit.

Magnitude $m_{1}-m_{2}=2.5 \log \left(I_{2} / I_{1}\right)$

100 times the intensity $\rightarrow 5 \mathrm{mag}$ difference The brighter the intensity, the smaller the magnitude value

Apparent Magnitude $\quad m=-2.5 \log$ (Flux) + ZeroPoint

- The Vega system: 0.0 mag (latest $\sim 0.3 \mathrm{mag}$) at every Johnson band

$$
m_{\mathrm{V}}^{\odot}=-26.74 \mathrm{mag}
$$

- Gunn system: no Vega; use F subdwarfs as standards (metal poor so with smooth spectra), e.g., BD +174708
- The AB system: $m_{\mathrm{AB}}=-2.5 \log _{10}\left(\frac{f_{v}}{3631 \mathrm{Jy}}\right)=-2.5 \log _{10}\left(f_{v} / \mathrm{Jy}\right)+8.90$

$$
\text { or }=-2.5 \log _{10}\left(f_{v}\left[\mathrm{erg} \mathrm{~s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1}\right]\right)-48.60
$$

- STMAG system: used for HST photometry

$$
\text { STMAG }_{\lambda}=-2.5 \log _{10} f_{\lambda}-21.1
$$

Band	lambda_c	dlambda/lambda	Flux at m=0	
	\&mu			Jy
U	0.36	0.15	1810	
B	0.44	0.22	4260	
V	0.55	0.16	3640	
R	0.64	0.23	3080	
I	0.79	0.19	2550	
J	1.26	0.16	1600	
H	1.60	0.23	1080	
K	2.22	0.23	670	
g	0.52	0.14	3730	
r	0.67	0.14	4490	
i	0.79	0.16	4760	
Z	0.91	0.13	4810	

Conversions among magnitude systems:

Conversion from AB magnitudes to Johnson magnitudes:
The following formulae convert between the AB magnitude systems and those based on Alpha Lyra:

```
V = V(AB) +0.044
B = B(AB) +0.163
Bj = Bj (AB) + 0.139
R = R(AB) +-0.055
I = I(AB) +-0.309
g = g(AB) +0.013
r=r(AB)+0.226
i = i(AB) +0.296
Rc = Rc(AB) +-0.117
Ic = Ic(AB) +-0.342
```

```
(+/- 0.004)
```

(+/- 0.004)
(+/- 0.004)
(+/- 0.004)
(+/- INDEF)
(+/- INDEF)
(+/- INDEF)
(+/- INDEF)
(+/- INDEF)
(+/- INDEF)
(+/- 0.002)
(+/- 0.002)
(+/- 0.003)
(+/- 0.003)
(+/- 0.005)
(+/- 0.005)
(+/- 0.006)
(+/- 0.006)
(+/- 0.008)

```
(+/- 0.008)
```

Source: Frei \& Gunn 1995

Specific Intensity I_{v} or simply "intensity", or "brightness", is the amount of radiation energy per unit frequency interval at v per unit time interval per unit area per unit solid angle passing into the specified direction at a position P.

$$
I_{v}(\theta)=\lim _{\substack{\Delta v \rightarrow 0 \\ \Delta \mathrm{t} \rightarrow 0 \\ \Delta \sigma \rightarrow 0 \\ \Delta \omega \rightarrow 0}} \frac{\Delta \mathrm{E}_{v}}{\Delta v \Delta \mathrm{t} \Delta \sigma \Delta \omega \cos \theta}
$$

In cgs unit, I_{v} [$\mathrm{ergs} \mathrm{s}^{-1} \mathrm{~Hz}^{-1} \mathrm{~cm}^{-2} \mathrm{Sr}^{-1}$]
Because $\Delta \omega \rightarrow 0$, the energy does not diverge. The intensity is independent of the distance from the source (i.e., light ray).

Motion

Velocity components:
radial velocity V_{R}, and tangential V_{T}
Proper motion (apparent angular motion in the sky), μ_{α} and μ_{δ}, e.g., mas per year along RA and Decl.
V_{T} is a function of distance given $\left(\mu_{\alpha}, \mu_{\delta}\right)$
V_{R} is distance independent (to the first order, a long distance reduces the signal hence the accuracy).

Our Sun ---- the best studied star

Physical properties of stars

Basic parameters to compare between theories and observations

- Mass (M)
- Luminosity (L)
- Radius/size (R)
- Effective temperature (T_{e}) $L=4 \pi R^{2} \sigma T_{e}^{4}$
- Distance \rightarrow measured flux $F=L / 4 \pi d^{2}$
M, R, L and T_{e} not independent
$-L$ and $T_{\text {eff }} \rightarrow$ Hertzsprung-Russell (HR) diagram or color-magnitude diagram (CMD)
- L and $M \rightarrow$ mass-luminosity relation

Hot stars --- peaked at short wavelengths (UV); mainly He lines, some H lines

Warm stars --- peaked in the visible wavelengths; H lines prominent

Cool stars --- peaked at long wavelengths (IR); molecular lines/bands

Stars:

$\mathrm{M}>0.08 \mathcal{M}_{\odot}$

Brown Dwarfs:

$$
0.08 \mathcal{M}_{\odot}>\mathrm{M}>13 \mathcal{M}_{\mathrm{j}}
$$

$$
\mathcal{M}_{\text {Jupiter }} \approx 0.001 \mathcal{M}_{\odot}
$$

Planet-mass Objects: $\mathrm{M}<13 \mathcal{M}_{\mathrm{J}}$

To measure the stellar distance

Directly by trigonometric parallax

- Nearest stars $d>1 \mathrm{pc} \rightarrow p<1$ "

For a star at $d=100 \mathrm{pc}, p=0.01$ "

- Ground-based observations limited to angular resolution ~1"; HST has 0.05", JWST?

http://astronomy.swin.edu.au/cosmos/T/Trigonometric+Parallax

For $\theta \rightarrow 0, \ell=d \theta$

$1 \ell=1 \mathrm{au}^{1.5 \times 10^{13} \mathrm{~cm}}$

$$
\begin{gathered}
d=1 \mathrm{pc} \quad 3 \times 10^{18} \mathrm{~cm} \\
206265 \approx 2 \times 10^{5}
\end{gathered}
$$

- Gaia is a space telescope to measure accurate astrometry (i.e., position), 20 microarcsecond ($\mu \mathrm{as}$) at 15 mag and 200μ as at 20 mag, of 10^{9} stars (1\% of the Milky Way galaxy).
- With multi-epoch (~ 70) data, this affords parallax (distance), and space motion information of a star.
- Accurate photometry is also provided.

Otherwise, the distance is estimated

- Spectroscopic parallax: Stars with the same spectra are assumed to have identical set of physical parameters. For example, a G2V star should have the same absolute magnitude as the Sun.
- By comparison of the apparent brightness of an object with known brightness of that particular kind of objects

$$
m_{\lambda}-M_{\lambda}=5 \log d_{\mathrm{pc}}-5+A_{\lambda}(d)
$$

A_{λ} is usually unknown; it depends on the intervening dust grains that scatter and absorb the star light, so also depends on the distance to the object.

- Main-sequence fitting; moving-cluster method; pulsating variables
- Other methods for Galactic molecular clouds, galaxies, etc.
- The apparent magnitude is a measure of the relative observed flux density of a celestial object with a filter

$$
m_{\lambda}=-2.5 \log \left(\frac{f_{\lambda}}{f_{\lambda, 0}}\right)
$$

A larger mag value \rightarrow fainter Flux ratio of $100 \rightarrow$ magnitude difference of 5 For the same object, flux drops with distance squared

$$
m_{d 1}-m_{d 2}=5 \log \left(\frac{d 2}{d 1}\right)
$$

- The absolute magnitude is a measure of the intrinsic (absolute) brightness of a celestial object. It is defined numerically as the apparent magnitude of an object that would have if it were viewed from a distance of 10 parsecs.

$$
m_{\lambda}-M_{\lambda}=5 \log d_{\mathrm{pc}}-5
$$

To measure the stellar size

- Angular diameter of sun seen at 10 pc $=2 \mathrm{R}_{\odot} / 10 \mathrm{pc}=5 \times 10^{-9}$ radians $=10^{-3} \operatorname{arcsec}$
- The $\operatorname{HST}(0.05$ ") barely capable of measuring directly the sizes of stars, except for the nearest
 supergiants
- Radii of ~ 600 stars measured with techniques such as interferometry, (lunar) occultation or for eclipsing binaries

Lunar occultation

Beaver \& Eitter (1979)
$\underset{\theta=0 \text { FIG. 1.-A }-A \text { comparison of the (crosses) observed points and the (line) theoretical pattern for the Aldebaran } \lambda=7460 \AA \text { record with }}{ }$

Optical interferometery, e.g., CHARA array ($6 \times 1 \mathrm{~m}, \theta \approx 200 \mu \mathrm{as}$)

To measure the stellar temperature

- What is $T_{\text {eff }}$? What is the "surface" of a star?
- What is Tanyway? Temperature is ill-defined, often defined by other physical quantities through an equation, i.e., a physical law, e.g., by radiation (blackbody, brightness, color), by particles (excitation, ionization, kinetic, electron), by conductive ...
- Only in thermal equilibrium are all these temperatures the same.
- Photometry (spectral energy distribution) gives a rough estimate of T, e.g., fluxes/magnitudes measured at different wavelengths, such as the "standard" Johnson system UBVRI
- There are many photometric systems, using broad bands, intermediate bands, special bands, at optical or infrared

Band	U	B	V	R	I
λ / nm	365	445	551	658	806
$\Delta \lambda / n m$	66	94	88	138	149

Running (slope) between B and V bands, i.e., the ($B-V$) color (index) \rightarrow photospheric temperature The larger the value of ($B-V$), the redder (cooler) the star.

An unreddened 0-type star $(B-V)=-0.3$
A late M-type star has $(B-V)=+1.65$

For the Sun, $(B-V)_{\odot}=+0.656 \pm 0.005$

Hertzsprung-Russell (HR) Diagram (theory)

Color-Magnitude Diagram (CMD) (observation, a proxy of the HRD)

- Calibration for $B-V=f\left(T_{e}\right)$
- The observed $(B-V)$ must be corrected for interstellar extinction in order to derive the intrinsic stellar $(B-V)_{0}$
- Need more accurate determination of T by spectroscopy and stellar atmosphere models, e.g., with the Kurucz's model

Color Excess

$$
\begin{aligned}
E_{B-V} & =(B-V)_{\text {observed }}-(B-V)_{\text {intrinsic }} \\
& =(B-V)-(B-V)_{0}
\end{aligned}
$$

The Kurucz (Kurucz \& Castelli) grids of model atmospheres
http://kurucz.harvard.edu/grids.html http://wwwuser.oats.inaf.it/castelli/

Figure 1.8 Theoretical monochromatic flux emerging form an A type star with $T_{\text {eff }}=8000 \mathrm{~K}$. The first four Balmer absorption lines, as well as the Balmer jump, are identified in this figure. Thousands of other absorption atomic lines can also be seen. This theoretical flux was obtained with the Phoenix stellar atmosphere code (Hauschildt, P.H., Allard, F. and Baron, E., The Astrophysical Journal, 512, 377 (1999)) while using the elemental abundances found in the Sun. The flux at the surface of a blackbody with $T=8000 \mathrm{~K}$ (dotted curve) is also shown.

Different temperature, elements (at different excitation and ionization states) \rightarrow different set of spectral lines

Line ratios \rightarrow Temperature

I --- neutral atoms; II --- ionized once; III --- ionized twice; ...
e.g., $\mathrm{HI}=\mathrm{H}^{0} \ldots \mathrm{H}$ II $=\mathrm{H}^{+} .$. He III $=\mathrm{He}^{+2} \ldots \mathrm{Fe}$ XXVI $=\mathrm{Fe}^{+25}$

Brown dwarfs and Planetary Objects

Using imaging photometry (time saving) to trace spectral features

One of the SDSS color-color diagrams

To measure the stellar luminosity

- Absolute Magnitude M defined as apparent magnitude of a star if it were placed at a distance of $10 \mathrm{pc} \quad M_{\mathrm{V}}^{\odot}=+4.83 \mathrm{mag} \quad m_{\mathrm{V}}^{\odot}=-26.74 \mathrm{mag}$
$m_{\lambda}-M_{\lambda}=5 \log \left(d_{\mathrm{pc}}\right)-5$ But there is extinction ... $m_{\lambda}-M_{\lambda}=5 \log \left(d_{\mathrm{pc}}\right)-5+A_{\lambda} \quad d_{\mathrm{pc}}=1 / p^{\prime \prime}$
Bolometric magnitude - the absolute magnitude integrated over all wavelengths. We define the bolometric correction
Bolometric Correction

$$
B C=M_{\mathrm{bol}}-M_{\mathrm{v}}
$$

$$
M_{\mathrm{bol}}^{\odot}=+4.74 \mathrm{mag}
$$

is a function of the spectral type (min for F type stars, why?) and luminosity of a star.
That is, one can apply a BC (always negative, why?) to a star to estimate its luminosity (from the photosphere).

Total energy flux of the Sun received immediately outside the Earth atmosphere ($d=1 \mathrm{au}$)

$$
\begin{aligned}
f_{\odot} & =1.3608(5) \times 10^{6}\left[\mathrm{erg} \mathrm{~s}^{-1} \mathrm{~cm}^{-2}\right] \\
& =1.3608\left[\mathrm{~kW} / \mathrm{m}^{2}\right](\text { solar "constant" })
\end{aligned}
$$

\checkmark Including radiation at all frequency
\checkmark Varied $<0.2 \%$ in the past 400 years; varying duing 11-year sunspot cycles
\checkmark Much lower billions of years ago (why?)

Two-Color Diagrams

$$
(U-B) \text { versus }(U-B)
$$

Figure 8. $(U-B)$ vs. $(B-V) \mathrm{TCD}$ of the stars with polarimetric data. The symbols are the same as in Figure 7. The ZAMS from Schmidt-Kaler (1982) is shifted along a normal reddening vector with a slope of $E(U-B) / E(B-V)=$ shifted along a normal reddening vector with a slope of $E(U-B) / E(B-V)=$
0.72 . The TCD shows a variable reddening in the cluster region with $E(B-$ $V)_{\text {min }} \sim 0.5 \mathrm{mag}$ and $E(B-V)_{\max } \sim 0.9$ mag.

Spitzer/IRAC and 2MASS color-color diagram for the sources (black dots) in IC 1805. Class I sources are shown with red squares and Class II with blue diamonds. Magenta triangles mark the transition disk candidates.

Panwary +17

Table 7.5. Filter wavelengths, bandwidths, and flux densities for Vega. ${ }^{a}$

Filter name	$\lambda_{\text {iso }} b$ $(\mu \mathrm{~m})$	$\Delta \lambda^{c}$ $(\mu \mathrm{~m})$	F_{λ} $\left(\mathrm{W} \mathrm{m}^{-2} \mu^{-1}\right)$	F_{ν} (Jy)	m^{2} $($ photons s -1 $\left.\mathrm{~m}^{-2} \mu \mathrm{~m}^{-1}\right)$
V	0.5556^{d}	\ldots	3.44×10^{-8}	3540	9.60×10^{10}
J	1.215	0.26	3.31×10^{-9}	1630	2.02×10^{10}
H	1.654	0.29	1.15×10^{-9}	1050	9.56×10^{9}
K_{s}	2.157	0.32	4.30×10^{-10}	667	4.66×10^{9}
K	2.179	0.41	4.14×10^{-10}	655	4.53×10^{9}
L	3.547	0.57	6.59×10^{-11}	276	1.17×10^{9}
L^{\prime}	3.761	0.65	5.26×10^{-11}	248	9.94×10^{8}
M	4.769	0.45	2.11×10^{-11}	160	5.06×10^{8}
8.7	8.756	1.2	1.96×10^{-12}	50.0	8.62×10^{7}
N	10.472	5.19	9.63×10^{-13}	35.2	5.07×10^{7}
11.7	11.653	1.2	6.31×10^{-13}	28.6	3.69×10^{7}
Q	20.130	7.8	7.18×10^{-14}	9.70	7.26×10^{6}

$$
\begin{aligned}
1 \text { Jansky } & =10^{-23} \mathrm{erg} \mathrm{~s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \\
& =1.51 \times 10^{7} \text { photons s}
\end{aligned}
$$

Allen's Astrophysical Quantities (4 ${ }^{\text {th }}$ edition $_{5}$)

Band	λ_{0}	$d \lambda / \lambda$	$f_{v}(m=0)$	Reference
	$\mu \mathrm{m}$	Jy		
U	0.36	0.15	1810	Bessel (1979)
B	0.44	0.22	4260	Bessel (1979)
V	0.55	0.16	3640	Bessel (1979)
R	0.64	0.23	3080	Bessel (1979)
I	0.79	0.19	2550	Bessel (1979)
J	1.26	0.16	1600	Campins, Reike, \& Lebovsky (1985)
H	1.60	0.23	1080	Campins, Reike, \& Lebovsky (1985)
K	2.22	0.23	670	Campins, Reike, \& Lebovsky (1985)
g	0.52	0.14	3730	Schneider, Gunn, \& Hoessel (1983)
r	0.67	0.14	4490	Schneider, Gunn, \& Hoessel (1983)
i	0.79	0.16	4760	Schneider, Gunn, \& Hoessel (1983)
z	0.91	0.13	4810	Schneider, Gunn, \& Hoessel (1983)

Notes

${ }^{a}$ Cohen et al. [1] recommend the use of Sirius rather than Vega as the photometric standard for $\lambda>20 \mu \mathrm{~m}$ because of the infrared excess of Vega at these wavelengths. The magnitude of Vega depends on the photometric system used, and it is either assumed to be 0.0 mag or assumed to be 0.02 or 0.03 mag for consistency with the visual magnitude.
${ }^{b}$ The infrared isophotal wavelengths and flux densities (except for K_{s}) are taken from Table 1 of [1], and they are based on the UKIRT filter set and the atmospheric absorption at Mauna Kea. See Table 2 of [1] for the case of the atmospheric absorption at Kitt Peak. The isophotal wavelength is defined by $F\left(\lambda_{\text {iso }}\right)=\int F(\lambda) S(\lambda) d \lambda / \int S(\lambda) d \lambda$, where $F(\lambda)$ is the flux density of Vega and $S(\lambda)$ is the (detector quantum efficiency) \times (filter transmission) \times (optical efficiency) \times (atmospheric transmission) [2]. $\lambda_{\text {iso }}$ depends on the spectral shape of the source and a correction must be applied for broadband photometry of sources that deviate from the spectral shape of the standard star [3]. The flux density and $\lambda_{\text {iso }}$ for K_{s} were calculated here. For another filter, K^{\prime}, at $2.11 \mu \mathrm{~m}$, see [4].
${ }^{c}$ The filter full width at half maximum.
${ }^{d}$ The wavelength at V is a monochromatic wavelength; see [5].

References

1. Cohen, M. et al. 1992, AJ, 104, 1650
2. Golay, M. 1974, Introduction to Astronomical Photometry (Reidel, Dordrecht), p. 40
3. Hanner, M.S., et al. 1984, AJ, 89, 162
4. Wainscoat, R.J., \& Cowie, L.L. 1992, AJ, 103, 332
5. Hayes, D.S. 1985, in Calibration of Fundamental Stellar Quantities, edited by D.S. Hayes, et al., Proc. IAU Symp. No. 111 (Reidel, Dordrecht), p. 225

Table 15.7. Calibration of $M K$ spectral types.

Sp	$M(V)$	$B-V$	$U-B$	$V-R$	$R-I$	$T_{\text {eff }}$	BC
MAIN SEQUENCE, V							
O5	-5.7	-0.33	-1.19	-0.15	-0.32	42000	-4.40
O9	-4.5	-0.31	-1.12	-0.15	-0.32	34000	-3.33
B0	-4.0	-0.30	-1.08	-0.13	-0.29	30000	-3.16
B2	-2.45	-0.24	-0.84	-0.10	-0.22	20900	-2.35
B5	-1.2	-0.17	-0.58	-0.06	-0.16	15200	-1.46
B8	-0.25	-0.11	-0.34	-0.02	-0.10	11400	-0.80
A0	+0.65	-0.02	-0.02	0.02	-0.02	9790	-0.30
A2	+1.3	+0.05	+0.05	0.08	0.01	9000	-0.20
A5	+1.95	+0.15	+0.10	0.16	0.06	8180	-0.15
F0	+2.7	+0.30	+0.03	0.30	0.17	7300	-0.09
F2	+3.6	+0.35	0.00	0.35	0.20	7000	-0.11
F5	+3.5	+0.44	-0.02	0.40	0.24	6650	-0.14
F8	+4.0	+0.52	+0.02	0.47	0.29	6250	-0.16
G0	+4.4	+0.58	+0.06	0.50	0.31	5940	-0.18
G2	+4.7	+0.63	+0.12	0.53	0.33	5790	-0.20
G5	+5.1	+0.68	+0.20	0.54	0.35	5560	-0.21
G8	+5.5	+0.74	+0.30	0.58	0.38	5310	-0.40
K0	+5.9	+0.81	+0.45	0.64	0.42	5150	-0.31
K2	+6.4	+0.91	+0.64	0.74	0.48	4830	-0.42
K5	+7.35	+1.15	+1.08	0.99	0.63	4410	-0.72
M0	+8.8	+1.40	+1.22	1.28	0.91	3840	-1.38
M2	+9.9	+1.49	+1.18	1.50	1.19	3520	-1.89
M5	+12.3	+1.64	+1.24	1.80	1.67	3170	-2.73
GIANTS							
G5	+0.9	+0.86	+0.56	0.69	0.48	5050	-0.34
G8	+0.8	+0.94	+0.70	0.70	0.48	4800	-0.42
K0	+0.7	+1.00	+0.84	0.77	0.53	4660	-0.50
K2	+0.5	+1.16	+1.16	0.84	0.58	4390	-0.61
K5	-0.2	+1.50	+1.81	1.20	0.90	4050	-1.02
M0	-0.4	+1.56	+1.87	1.23	0.94	3690	-1.25
M2	-0.6	+1.60	+1.89	1.34	1.10	3540	-1.62
M5	-0.3	+1.63	+1.58	2.18	1.96	3380	-2.48

Table 15.7. (Continued.)

$S p$	$M(V)$	$B-V$	$U-B$	$V-R$	$R-I$	$T_{\text {eff }}$	$B C$
SUPERGIANTS, I							
O9	-6.5	-0.27	-1.13	-0.15	-0.32	32000	-3.18
B2	-6.4	-0.17	-0.93	-0.05	-0.15	17600	-1.58
B5	-6.2	-0.10	-0.72	0.02	-0.07	13600	-0.95
B8	-6.2	-0.03	-0.55	0.02	0.00	11100	-0.66
A0	-6.3	-0.01	-0.38	0.03	0.05	9980	-0.41
A2	-6.5	+0.03	-0.25	0.07	0.07	9380	-0.28
A5	-6.6	+0.09	-0.08	0.12	0.13	8610	-0.13
F0	-6.6	+0.17	+0.15	0.21	0.20	7460	-0.01
F2	-6.6	+0.23	+0.18	0.26	0.21	7030	-0.00
F5	-6.6	+0.32	+0.27	0.35	0.23	6370	-0.03
F8	-6.5	+0.56	+0.41	0.45	0.27	5750	-0.09
G0	-6.4	+0.76	+0.52	0.51	0.33	5370	-0.15
G2	-6.3	+0.87	+0.63	0.58	0.40	5190	-0.21
G5	-6.2	+1.02	+0.83	0.67	0.44	4930	-0.33
G8	-6.1	+1.14	+1.07	0.69	0.46	4700	-0.42
K0	-6.0	+1.25	+1.17	0.76	0.48	4550	-0.50
K2	-5.9	+1.36	+1.32	0.85	0.55	4310	-0.61
K5	-5.8	+1.60	+1.80	1.20	0.90	3990	-1.01
M0	-5.6	+1.67	+1.90	1.23	0.94	3620	-1.29
M2	-5.6	+1.71	+1.95	1.34	1.10	3370	-1.62
M5	-5.6	+1.80	$+1.60:$	2.18	1.96	2880	-3.47

Table 15.8. Calibration of MK spectral types. ${ }^{a}$

$S p$	$\mathcal{M} / \mathcal{M}_{\odot}$	R / R_{\odot}	$\log (g / g \odot)$	$\log \left(\bar{\rho} / \bar{\rho}_{\odot}\right)$	$v_{\text {rot }}\left(\mathrm{km} \mathrm{s}^{-1}\right)$
MAIN SEQUENCE, V					
O3	120	15	-0.3	-1.5	
O5	60	12	-0.4	-1.5	
O6	37	10	-0.45	-1.45	
O8	23	8.5	-0.5	-1.4	200
B0	17.5	7.4	-0.5	-1.4	170
B3	7.6	4.8	-0.5	-1.15	190
B5	5.9	3.9	-0.4	-1.00	240
B8	3.8	3.0	-0.4	-0.85	220
A0	2.9	2.4	-0.3	-0.7	180
A5	2.0	1.7	-0.15	-0.4	170
F0	1.6	1.5	-0.1	-0.3	100
F5	1.4	1.3	-0.1	-0.2	30
G0	1.05	1.1	-0.05	-0.1	10
G5	0.92	0.92	+0.05	-0.1	<10
K0	0.79	0.85	+0.05	+0.1	<10
K5	0.67	0.72	+0.1	+0.25	<10
M0	0.51	0.60	+0.15	+0.35	
M2	0.40	0.50	+0.2	+0.8	
M5	0.21	0.27	+0.5	+1.0	
M8	0.06	0.10	+0.5	+1.2	

Table 15.8. (Continued.)

Sp	$\mathcal{M} / \mathcal{M}_{\odot}$	R / R_{\odot}	$\log \left(g / g_{\odot}\right)$	$\log \left(\bar{\rho} / \bar{\rho}_{\odot}\right)$	$v_{\text {rot }}\left(\mathrm{km} \mathrm{s}^{-1}\right)$
GIANTS, III					
B0	20	15	-1.1	-2.2	120
B5	7	8	-0.95	-1.8	130
A0	4	5		-1.5	100
G0	1.0	6	-1.5	-2.4	30
G5	1.1	10	-1.9	-3.0	<20
K0	1.1	15	-2.3	-3.5	<20
K5	1.2	25	-2.7	-4.1	<20
M0	1.2	40	-3.1	-4.7	
SUPERGIANTS, I					
O5	70	$30:$	-1.1	-2.6	
O6	40	$25:$	-1.2	-2.6	
O8	28	20	-1.2	-2.5	125
B0	25	30	-1.6	-3.0	102
B5	20	50	-2.0	-3.8	40
A0	16	60	-2.3	-4.1	40
A5	13	60	-2.4	-4.2	38
F0	12	80	-2.7	-4.6	30
F5	10	100	-3.0	-5.0	<25
G0	10	120	-3.1	-5.2	<25
G5	12	150	-3.3	-5.3	<25
K0	13	200	-3.5	-5.8	<25
K5	13	400	-4.1	-6.7	<25
M0	13	500	-4.3	-7.0	
M2	19	800	-4.5	-7.4	

Note
${ }^{a}$ A colon indicates an uncertain value.

Table 15.9. Zero-age main sequence.

$(B-V)_{0}$	$(U-B)_{0}$	M_{v}	$(B-V)_{0}$	$(U-B)_{0}$	M_{v}
$-0 \mathrm{~m}_{33}$	$-1 \mathrm{~m}_{20}$	$-5 \mathrm{~m}_{2}$	+0.40	-0.01	+3.4
-0.305	-1.10	-3.6	+0.50	0.00	+4.1
-0.30	-1.08	-3.25	+0.60	+0.08	+4.7
-0.28	-1.00	-2.6	+0.70	+0.23	+5.2
-0.25	-0.90	-2.1	+0.80	+0.42	+5.8
-0.22	-0.80	-1.5	+0.90	+0.63	+6.3
-0.20	-0.69	-1.1	+1.00	+0.86	+6.7
-0.15	-0.50	-0.2	+1.10	+1.03	+7.1
-0.10	-0.30	+0.6	+1.20	+1.13	+7.5
-0.05	-0.10	+1.1	+1.30	+1.20	+8.0
0.00	+0.01	+1.5	+1.40	+1.22	+8.8
+0.05	+0.05	+1.7	+1.50	+1.17	+10.3
+0.10	+0.08	+1.9	+1.60	+1.20	+12.0
$(B-V)_{0}$	$(U-B)_{0}$	M_{v}	$(B-V)_{0}$	$(U-B)_{0}$	M_{v}
+0.15	+0.09	+2.1	+1.70	+1.32	+13.2
+0.20	+0.10	+2.4	+1.80	+1.43	+14.2
+0.25	+0.07	+2.55	+1.90	+1.53	+15.5
+0.30	+0.03	+2.8	+2.00	+1.64	+16.7
+0.35	0.00	+3.1			

Allen's Astrophysical Quantities (4 ${ }^{\text {th }}$ edition)

Effective Temperature, Bolometric Correction

 and Absolute LuminosityMain Sequence Stars LC $=\mathbf{V}$

Effective temperature, T_{e}, color index, $(C I)_{o}=(U-B)_{o},(B-V)_{o}$ or $(R-I)_{o}$, absolute visual magnitude, M_{V}, bolometric correction, BC , absolute luminosity, L, in units of the solar value, L_{\odot}, for main sequence stars, or luminosity class LC $=$ V. Schmidt-Kaler (1982).

Sp	$\log \mathrm{T}_{\text {eff }}$	$\begin{aligned} & \mathrm{T}_{\text {eff }} \\ & \left({ }^{\circ} \mathrm{K}\right) \end{aligned}$	$\begin{aligned} & (C I)_{o} \\ & (\mathrm{mag}) \end{aligned}$	$\begin{gathered} \mathrm{M}_{\mathrm{V}} \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} \mathrm{BC} \\ (\mathrm{mag}) \end{gathered}$	$\begin{aligned} & \mathrm{M}_{\mathrm{bol}} \\ & (\mathrm{mag}) \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \left(L_{\odot}\right) \end{gathered}$
$(U-B){ }_{\text {o }}$							
O3	4.720	52500	-1.22	-6.0	-4.75	- 10.7	1.4×10^{6}
4	4.680	48000	- 1.20	- 5.9	-4.45	- 10.3	9.9×10^{5}
5	4.648	44500	- 1.19	- 5.7	-4.40	- 10.1	7.9×10^{5}
6	4.613	41000	- 1.17	- 5.5	-3.93	-9.4	4.2×10^{5}
7	4.580	38000	- 1.15	- 5.2	-3.68	- 8.9	2.6×10^{5}
8	4.555	35800	- 1.14	-4.9	-3.54	- 8.4	1.7×10^{5}
9	4.518	33000	- 1.12	-4.5	-3.33	- 7.8	9.7×10^{4}
B0	4.486	30000	- 1.08	-4.0	- 3.16	- 7.1	5.2×10^{4}
1	4.405	25400	-0.95	- 3.2	- 2.70	- 5.9	1.6×10^{4}
2	4.342	22000	-0.84	- 2.4	- 2.35	- 4.7	5.7×10^{3}
3	4.271	18700	-0.71	- 1.6	- 1.94	- 3.5	1.9×10^{3}
5	4.188	15400	-0.58	- 1.2	- 1.46	- 2.7	8.3×10^{2}
6	4.146	14000	-0.50	-0.9	-1.21	- 2.1	500
7	4.115	13000	-0.43	-0.6	-1.02	- 1.6	320
8	4.077	11900	-0.34	-0.2	-0.80	- 1.0	180
9	4.022	10500	- 0.20	+0.2	-0.51	-0.3	95
$(B-V){ }_{\text {o }}$							
AO	3.978	9520	-. 0.02	+0.6	-0.30	+0.3	54
1	3.965	9230	+0.01	+1.0	-0.23	+0.8	35
2	3.953	8970	+0.05	+1.3	-0.20	+1.1	26
3	3.940	8720	+0.08	+1.5	-0.17	+1.3	21

Effective Temperature, Bolometric Correction and Absolute Luminosity

Main Sequence Stars LC $=\mathrm{V}$

Sp	$\log \mathrm{T}_{\text {eff }}$	$\begin{aligned} & \mathrm{T}_{\text {eff }} \\ & \left({ }^{\circ} \mathrm{K}\right) \end{aligned}$	$\begin{aligned} & (C I)_{o} \\ & (\mathrm{mag}) \end{aligned}$	$\stackrel{\mathrm{M}_{\mathrm{V}}}{(\mathrm{mag})}$	$\underset{(\mathrm{mag})}{\mathrm{BC}}$	$\begin{aligned} & \mathrm{M}_{\mathrm{bol}} \\ & (\mathrm{mag}) \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \left(\mathrm{~L}_{\odot}\right) \end{gathered}$
$(B-V){ }_{0}$							
A5	3.914	8200	+0.15	+1.9	-0.15	+1.7	14
7	3.895	7850	+0.20	+2.2	-0.12	+2.1	10.5
8	3.880	7580	+0.25	+2.4	-0.10	+2.3	8.6
F0	3.857	7200	+0.30	+2.7.	-0.09	+2.6	6.5
2	3.838	6890	+0.35	+3.6	-0.11	+3.5	2.9
5	3.809	6440	+0.44	+3.5	- 0.14	+3.4	3.2
8	3.792	6200	+0.52	+4.0	-0.16	+3.8	2.1
G0	3.780	6030	+0.58	+4.4	-0.18	+4.2	1.5
2	3.768	5860	+0.63	+4.7	-0.20	+4.5	1.1
5	3.760	5770	+0.68	+5.1	-0.21	+4.9	0.79
8	3.746	5570	+0.74	+5.5	- 0.40	+5.1	0.66
K0	3.720	5250	+0.81	+5.9	-0.31	+5.6	0.42
1	3.706	5080	+0.86	+6.1	-0.37	+5.7	0.37
2	3.690	4900	+0.91	+6.4	-0.42	+6.0	0.29
3	3.675	4730	+0.96	+6.6	-0.50	+6.1	0.26
4	3.662	4590	+1.05	+7.0	-0.55	+6.4	0.19
5	3.638	4350	+1.15	+7.4	-0.72	+6.7	0.15
7	3.609	4060	+1.33	+8.1	- 1.01	+7.1	0.10
$(R-I){ }_{0}$							
M0 1	3.585 3.570	3720	+0.92 +1.03	+8.8 +9.3	-1.62	+7.4 +7.7	6.1×10^{-2}
2	3.554	3580	+1.17	+9.9	- 1.89	+8.0	4.5×10^{-2}
3	3.540	3470	+1.30	+10.4	- 2.15	+8.2	3.6×10^{-2}
4	3.528	3370	+1.43	+11.3	- 2.38	+8.9	1.9×10^{-2}
5	3.510	3240	+1.61	+12.3	-2.73	+9.6	1.1×10^{-2}
6	3.485	3050	+1.93	+13.5	-3.21	+10.3	5.3×10^{-3}
7	3.468	2940	+2.1	+14.3	- 3.46	+10.8	3.4×10^{-3}
8	3.422	2640	+2.4	+16.0	-4.1	+11.9	1.2×10^{-3}

Lang "Astrophysical Data: Planets and Stars" (1992)

Effective Temperature, Bolometric Correction and Absolute Luminosity

$$
\text { Giant Stars LC }=\text { III }
$$

Effective temperature, $\mathrm{T}_{\text {eff }}$, color index, $(C I)_{o}=(U-B)_{o},(B-V)_{o}$ or $(R-I)_{o}$, absolute visual magnitude, M_{V}, bolometric correction, BC , absolute luminosity, L, in units of the solar value, L_{\odot}, for giant stars, or luminosity class LC $=$ III. Schmidt-Kaler (1982).

Sp	$\log \mathrm{T}_{\text {eff }}$	$\mathrm{T}_{\text {eff }}$ $\left({ }^{\circ} \mathrm{K}\right)$	$(C I)_{o}$ (mag)	M_{V} (mag)	BC (mag)	$\mathrm{M}_{\mathrm{bol}}$ (mag)	L $\left(\mathrm{L}_{\odot}\right)$
			$(U-B)_{o}$				
O 3	4.698	50000	-1.22	-6.6	-4.58	-11.2	2.1×10^{6}
4	4.658	45500	-1.20	-6.5	-4.28	-10.8	1.5×10^{6}
5	4.628	42500	-1.18	-6.3	-4.05	-10.3	9.9×10^{5}
6	4.596	39500	-1.17	-6.1	-3.80	-9.9	6.5×10^{5}
7	4.568	37000	-1.14	-5.9	-3.58	-9.5	4.4×10^{5}
8	4.541	34700	-1.13	-5.8	-3.39	-9.2	3.4×10^{5}
9	4.505	32000	-1.12	-5.6	-3.13	-8.7	2.2×10^{5}
BO	4.463	29000	-1.08	-5.1	-2.88	-8.0	1.1×10^{5}
1	4.381	24000	-0.97	-4.4	-2.43	-6.8	3.9×10^{4}
2	4.308	20300	-0.91	-3.9	-2.02	-5.9	1.7×10^{4}
3	4.234	17100	-0.74	-3.0	-1.60	-4.6	5.0×10^{3}
5	4.177	15000	-0.58	-2.2	-1.30	-3.5	1.8×10^{3}
6	4.150	14100	-0.51	-1.8	-1.13	-2.9	1.1×10^{3}
7	4.120	13200	-0.44	-1.5	-0.97	-2.5	700
8	4.095	12400	-0.37	-1.2	-0.82	-2.0	460
9	4.042	11000	-0.20	-0.6	-0.71	-1.3	240
			$(B-V)_{o}$				
$\mathrm{A0}$	4.005	10100	-0.03	+0.0	-0.42	-0.4	106
1	3.977	9480	+0.01	+0.2	-0.29	-0.1	78
2	3.954	9000	+0.05	+0.3	-0.20	+0.1	65
3	3.935	8600	+0.08	+0.5	-0.17	+0.3	53

Effective Temperature, Bolometric Correction and Absolute Luminosity

Giant Stars LC $=$ III

Sp	$\log \mathrm{T}_{\text {eff }}$	$\begin{aligned} & \mathrm{T}_{\text {eff }} \\ & \left({ }^{\circ} \mathrm{K}\right) \end{aligned}$	$\begin{aligned} & (C I)_{o} \\ & (\mathrm{mag}) \end{aligned}$	$\underset{(\mathrm{mag})}{\mathrm{M}_{\mathrm{V}}}$	$\underset{(\mathrm{mag})}{\mathrm{BC}}$	$\begin{aligned} & \mathrm{M}_{\mathrm{bol}} \\ & (\mathrm{mag}) \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \left(\mathrm{~L}_{\odot}\right) \end{gathered}$
$(B-V)_{o}$							
A5	3.908	8100	+0.15	+0.7	-0.14	+0.6	43
7	3.884	7650	+0.22	+1.1	-0.10	+1.0	29
8	3.873	7450	+0.25	+1.2	- 0.10	+1.1	26
F0	3.854	7150	+0.30	+1.5	- 0.11	+1.4	20
2	3.837	6870	+0.35	+1.7.	-0.11	+1.6	17
5	3.811	6470	+0.43	+1.6	-0.14	+1.6	17
8	3.789	6150	+0.54		-0.16		
G0	3.767	5850	+0.65	+1.0	-0.20	+0.8	34
2	3.737	5450	+0.77	+0.9	-0.27	+0.6	40
5	3.712	5150	+0.86	+0.9	-0.34	+0.6	43
8	3.690	4900	+0.94	+0.8	-0.42	+0.4	51
K0	3.676	4750	+1.00	+0.7	-0.50	+0.2	60
1	3.663	4600	+1.07	+0.6	-0.55	+0.1	69
2	3.646	4420	+1.16	+0.5	-0.61	-0.1	79
3	3.623	4200	+1.27	+0.3	-0.76	-0.5	110
4	3.602	4000	+1.38	+0.0	-0.94	-0.9	170
5	3.596	3950	+1.50	-0.2	- 1.02	- 1.2	220
7	3.586	3850	+1.53	-0.3	- 1.17	-1.5	280
$(R-I){ }_{o}$							
M0	3.580 3.570	3800 3720	+0.90 +0.96	-0.4	- 1.25	- 1.6	330 430
2	3.559	3620	+1.08	-0.6	- 1.62	- 2.2	550
3	3.548	3530	+1.30	-0.6	- 1.87	- 2.5	700
4	3.535	3430	+1.60	-0.5	- 2.22	- 2.7	880
5	3.522	3330	+1.91	-0.3	- 2.48	- 2.8	930
6	3.510	3240	+2.20	-0.2	- 2.73	- 2.9	1070

Effective Temperature, Bolometric Correction

 and Absolute LuminositySupergiant Stars LC = I

Effective temperature, $\mathrm{T}_{\text {eff }}$, color index, $(C I)_{o}=(U-B)_{o},(B-V)_{o}$ or $(R-I)_{o}$, absolute visual magnitude, M_{V}, bolometric correction, BC , absolute luminosity, L , in units of the solar value, L_{\odot}, for supergiant stars, or luminosity class approximately LC \approx Iab. Schmidt-Kaler (1982).

Sp	$\mathrm{log} \mathrm{T}_{\text {eff }}$	$\mathrm{T}_{\text {eff }}$ $\left({ }^{\circ} \mathrm{K}\right)$	$(C I)_{o}$ (mag)	M_{V} (mag)	BC (mag)	$\mathrm{M}_{\mathrm{bol}}$ (mag)	L $\left(\mathrm{L}_{\odot}\right)$
			$(U-B)_{o}$				
O 3	4.675	47300	-1.21	$-6.8:$	-4.41	$-11.2:$	2.2×10^{6}
4	4.644	44100	-1.19	$-6.7:$	-4.17	$-10.9:$	1.6×10^{6}
5	4.605	40300	-1.17	-6.6	-3.87	-10.5	1.1×10^{6}
6	4.591	39000	-1.16	-6.5	-3.74	-10.2	9.0×10^{5}
7	4.553	35700	-1.14	-6.5	-3.48	-10.0	7.1×10^{5}
8	4.535	34200	-1.13	-6.5	-3.35	-9.8	6.2×10^{5}
9	4.513	32600	-1.13	-6.5	-3.18	-9.7	5.3×10^{5}
B 0	4.415	26000	-1.06	-6.4	-2.49	-8.9	2.6×10^{5}
1	4.318	20800	-1.00	-6.4	-1.87	-8.3	1.5×10^{5}
2	4.267	18500	-0.94	-6.4	-1.58	-8.0	1.1×10^{5}
3	4.209	16200	-0.83	-6.3	-1.26	-7.6	7.6×10^{4}
5	4.133	13600	-0.72	-6.2	-0.95	-7.2	5.2×10^{4}
6	4.114	13000	-0.69	-6.2	-0.88	-7.1	4.9×10^{4}
7	4.085	12200	-0.64	-6.2	-0.78	-7.0	4.4×10^{4}
8	4.048	11200	-0.56	-6.2	-0.66	-6.9	4.0×10^{4}
9	4.012	10300	-0.50	-6.2	-0.52	-6.7	3.5×10^{4}
A0	3.988	9730	$(U-B)_{o}$	-0.38	-6.3	-0.41	-6.7
1	3.965	9230	-0.29	-6.4	-0.32	-6.7	3.5×10^{4}
2	3.958	9080	-0.25	-6.5	-0.28	-6.7	3.6×10^{4}
3	3.943	8770	-0.14	-6.5	-0.21	-6.7	3.5×10^{4}

Effective Temperature, Bolometric Correction
and Absolute Luminosity
Supergiant Stars LC $=$ I

Sp	$\log \mathrm{T}_{\text {eff }}$	$\begin{aligned} & \mathrm{T}_{\text {eff }} \\ & \left({ }^{\circ} \mathrm{K}\right) \end{aligned}$	$\begin{aligned} & (C I)_{o} \\ & \text { (mag) } \end{aligned}$	$\begin{gathered} \mathrm{M}_{\mathrm{V}} \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} \mathrm{BC} \\ \text { (mag) } \end{gathered}$	$\begin{aligned} & \mathrm{M}_{\mathrm{bol}} \\ & (\mathrm{mag}) \end{aligned}$	$\begin{gathered} \mathrm{L} \\ \left(\mathrm{~L}_{\odot}\right) \end{gathered}$
$(U-B){ }_{o}$							
A5	3.930	8510	-0.07	-6.6	-0.13	-6.7	3.5×10^{4}
7	3.911	8150	+0.00	-6.6	-0.06	-6.7	3.3×10^{4}
8	3.900	7950	+0.11	-6.6	-0.03	-6.6	3.2×10^{4}
$(B-V){ }_{0}$							
F0	3.886	7700	+0.17	-6.6	-0.01	-6.6	3.2×10^{4}
2	3.866	7350	+0.23	-6.6	- 0.00	-6.6	3.1×10^{4}
5	3.839	6900	+0.32	-6.6	-0.03	-6.6	3.2×10^{4}
8	3.785	6100	+0.56	-6.5	-0.09	-6.6	3.1×10^{4}
G0	3.744	5550	+0.76	-6.4	-0.15	-6.6	3.0×10^{4}
2	3.716	5200	+0.87	-6.3	-0.21	-6.5	2.9×10^{4}
5	3.686	4850	+1.02	-6.2	-0.33	-6.5	2.9×10^{4}
8	3.663	4600	+1.15	-6.1	-0.42	-6.5	2.9×10^{4}
K0	3.645	4420	+1.24	-6.0	-0.50	-6.5	2.9×10^{4}
1	3.636	4330	+1.30	-6.0	-0.56	-6.6	3.0×10^{4}
2	3.628	4250	+1.35	-5.9	-0.61	-6.5	2.9×10^{4}
3	3.611	4080	+1.46	- 5.9	-0.75	-6.6	3.3×10^{4}
4	3.597	3950	+1.53	-5.8	-0.90	-6.7	3.4×10^{4}
5	3.585	3850	+1.60	- 5.8	- 1.01	-6.8	3.8×10^{4}
7	3.568	3700	+1.63	-5.7	-1.20	-6.9	4.1×10^{4}
$(R-I){ }_{\text {o }}$							
M0	3.562 3.550	3650 3550	+0.96 +1.04	-5.6 -5.6	-1.29 -1.38	-6.9 -7.0	4.1×10^{4} 4.4×10^{4}
2	3.538	3450	+1.15	- 5.6	-1.62	- 7.2	5.5×10^{4}
	3.505	3200	+1.37	- 5.6	- 2.13	- 7.7	5.6×10^{4}
	3.474	2980	+1.59	- 5.6	-2.75	- 8.3	1.6×10^{5}
5	3.446	2800	+1.80	-5.6	-3.47	-9.1	3.0×10^{5}
6	3.415:	2600:	+2.02:	-5.6	-3.90	- 9.5	4.5×10^{5}

Lang "Astrophysical Data: Planets and Stars" (1992)

Table B. 1 Averaged Absolute Visual Magnitude Calibration for the Early-type Stars

SpT	V	IV	III	II	Ib	Iab	Ia
O2-3	-5.6	\ldots	-6.0	-6.8
O4	-5.5	\ldots	-6.4:	...	\ldots	\ldots	-7.0
O5	-5.5	...	-6.4 \cdot	\ldots	-7.0
O6	-5.3	...	-5.6	\ldots	-6.3:	\ldots	-7.0
06.5	-5.3	...	-5.6	\ldots	-6.3:	...	-7.0
07	-4.8	...	-5.6	-5.9	-6.3:	...	-7.0
07.5	-4.8	\ldots	-5.6	-5.9	-6.3:	\ldots	-7.0
O8	-4.4	\ldots	-5.6	-5.9	-6.2:	-6.5	-7.0 .
O8.5	-4.4	...	-5.6	-5.9	-6.2 :	-6.5	-7.0
O9	-4.3	-5.0	-5.6	-5.9	-6.2	-6.5	-7.0
09.5	-4.1	-4.7	-5.3	-5.9	-6.2	-6.5	-7.0,
09.7	-5.9	-6.2	-6.5	-7.0
B0	-4.1	-4.6	-5.0	-5.6	-5.8		-7.0
B1	-3.5	-3.9	-4.4	-5.1	-5.7		-7.0
B2	-2.5	-3.0	-3.6	-4.4	-5.7		-7.0
B3	-1.7	-2.3	-2.9	-3.9	$-5: 7$		-7.0
B4	-1.4	-2.0	-2.6	-3.9	-5:7		-7.0
B5	-1.1	-1.6	" -2.2	-3.7	-5.7		-7.0
B6	-0.9	-1.3	-1.9	-3.7	-5.7		-7.1
B7	-0.4	-1.3	-1.6	-3.6	-5.6		-7.1
B8	0.0	-1.0	-1.4	-3.4	-5.6	-	-7.1
B9	0.7	-0.5	-0.8	-3.1	-5.5		-7.1
A0	1.4	0.3	-0.8	-2.8	-5.2		-7.1
A1	1.6	0.3	-0.4	-2.6	-5.1		-7.3
A2	1.9	0.5	-0.2	-2.4	-5.0		-7.5
A3	2.0	0.7	0.0	-2.3	-4.8		-7.6
A5	2.1	1.2	0.3	-2.1	-4.8		-7.7
A7	2.3	1.5	0.5	-2.0	-4.8		-8.0
A9	2.5	1.6	0.6	-2.0	-4.8		-8.3
F0	2.6	1.7	0.6	-2.0	-4.7		-8.5
F1	2.8	1.8	0.6	-2.0	-4.7		-8.5

Table B. 1 Continued

SpT	V	IV	III	II	Ib	Iab	Ia
F2	3.0	1.9	0.6	-2.0	-4.6		-8.4
F3	3.1	1.9	0.6	-2.0	-4.6	-8.3	
F4	3.3	2.0	0.7	-2.0	-4.6	-8.3	
F5	3.4	2.1	0.7	-2.0	-4.4	-8.2	
F6	3.7	2.2	0.7	-2.0	-4.4	-8.1	
F7	3.8	2.3	0.6	-2.0	-4.4	-8.1	
F8	4.0	2.4	0.6	-2.0	-4.3	-8.0	
F9	4.2	2.6	0.6	-2.0	-4.2	-8.0	

Tåble B. 2 Averaged Absolute Visual Magnitude Calibration for the Late-type Stars

SpT	V	IV	IIIb	IIIab	IIIa	II	Ib	Ia
G0	4.4	2.8		0.6		-2.0	-4.1	-8.0
G1	4.5	2.9		0.5		-2.0	-4.1	-8.0
G2	4.7	3.0		0.4		-2.0	-4.0	-8.0
G3	4.9	3.0		0.4	\cdots	-1.9	-4.0	-8.0
G4	5.0	3.1		0.4		-1.9	-3.9	-8.0
G5	5.2	3.2		0.4		-1.9	-3.9	-8.0
G6	5.3	3.2		0.4		-1.9	-3.8	-8.0
G7	5.5	3.2		0.3		-1.9	-3.8	-8.0
G8	5.6	3.2	0.8	0.3	-0.4	-1.9	-3.7	-8.0
G9	5.7	3.2	0.8	0.25	-0.4	-2.0	-3.7	-8.0
K0								
K.9	3.2	0.7	0.2	-0.5	-2.0	-3.6	-8.0	
K1	6.1		0.6	0.1	-0.6	-2.1	-3.6	-8.0
K2	6.3		0.6	0.1	-0.7	-2.1	-3.6	-8.0
K3	6.9		0.4	-0.1	-0.8	-2.2	-3.6	-8.0
K4	7.4		0.3	-0.2	-1.0	-2.3	-3.7	-8.0
K5	8.0		0.1	-0.4	-1.1	-2.5	-3.8	-8.0
K7	8.5		0.0	-0.5	-1.2	-2.5	-3.8	-7.7
M0	9.2		-0.2	-0.7	-1.3	-2.6	-3.9	-7.3
M1	9.7		-0.3	-0.8	-1.5	-2.7	-4.1	-7.3
M2	10.6		-0.6	-1.1	-1.7	-2.9	-4.2	-7.0
M3	11.6		-0.8	-1.3	-1.9			
M4	12.9		-1.1	-1.6	-2.2			
M5	14.5							
M6	16.1							

Table B. 3 Effective Temperature (K) Calibration for the Early-type Stars

SpT	Dwarfs	Giants	Supergiants	Table B. 3 Continued			
O3	44852	42942	42233				
O4	42857	41486	40422				
O5	40862	39507	38612	SpT	Dwarfs	Giants	Supergiants
O5.5	39865	38003	37706				
O6	38867	36673	36801	F0	7250	7350	7200
06.5	37870	35644	35895	F1	7120	7200	7050
07	36872	34638	34990	F1	7120	7200	7050
07.5	35874	33487	34084	F2	7000	7050	6960
O8	34877	32573	33179	F3	6750	6840	6770
O8.5	33879	31689	32274	F5	6550	6630	6570
O9	32882	30737	31368	F7	6250	6330	6280
09.5	31884	30231	304,63	F8	6170	6220	6180
B0	29000	29000		F9	6010	6020	5980
B1	24500	24500					
B2	19500	21050	18000				
B3	16500	16850					
B5	15000	14800	13600 ,				
B7	13000	13700					
B8	11500	13150	11100		.		
B9	10700	11731					
A0	9800	10000	9900		-		
A1	9500	9500			-		
A2	8900	9000	9000				
A3	8520	8500	8400				
A5	8150	8000	8100				
A7	7830	7750	7800				
A9	7380	7450					

Spfective Temperature (K) Calibration for the La			
SpT	Dwarfs	Giants	Supergiants
G0	5900	5800	5590
G1	5800	5700	5490
G2	5750	5500	5250
G5	5580	5200	5000
G8	5430	4950	4700
G9	5350		
K0	5280	4810	4500
K1	5110	4585	4200
K2	4940	4390	4100
K3	4700	4225	
K5	4400	3955	
K7	4130		3840
M0			
M0	3759	3845	3790
M1	3624	3750	3745
M2	3489	3655	3660
M3	3354	3560	3605
M4	3219	3460	
M5	3084	3355	3450
M6	2949	3240	
M7	2814	3100	
M8	2679	2940	
M9	2544	2755	
L0	2409		
L1	2274		
L2	2139		
L3	2004		
L4	1869		
L5	1734		
L6	1599		
L7	1464		
L8	1329		

Main-Sequence Stars (Luminosity Class V)

Sp. Type	T_{e} (K)	L / L_{\odot}	R / R_{\odot}	M / M_{\odot}	$M_{\text {bol }}$	$B C$	M_{V}	$U-B$	$B-V$
O5	42000	499000	13.4	60	-9.51	-4.40	-5.1	-1.19	-0.33
O6	39500	324000	12.2	37	-9.04	-3.93	-5.1	-1.17	-0.33
O7	37500	216000	11.0	-	-8.60	-3.68	-4.9	-1.15	-0.32
O8	35800	147000	10.0	23	-8.18	-3.54	-4.6	-1.14	-0.32
B0	30000	32500	6.7	17.5	-6.54	-3.16	-3.4	-1.08	-0.30
B1	25400	9950	5.2	-	-5.26	-2.70	-2.6	-0.95	-0.26
B2	20900	2920	4.1	-	-3.92	-2.35	-1.6	-0.84	-0.24
B3	18800	1580	3.8	7.6	-3.26	-1.94	-1.3	-0.71	-0.20
B5	15200	480	3.2	5.9	-1.96	-1.46	-0.5	-0.58	-0.17
B6	13700	272	2.9	-	-1.35	-1.21	-0.1	-0.50	-0.15
B7	12500	160	2.7	-	-0.77	-1.02	+0.3	-0.43	-0.13
B8	11400	96.7	2.5	3.8	-0.22	-0.80	+0.6	-0.34	-0.11
B9	10500	60.7	2.3	-	+0.28	-0.51	+0.8	-0.20	-0.07
A0	9800	39.4	2.2	2.9	+0.75	-0.30	+1.1	-0.02	-0.02
A1	9400	30.3	2.1	-	+1.04	-0.23	+1.3	+0.02	+0.01
A2	9020	23.6	2.0	-	+1.31	-0.20	+1.5	+0.05	+0.05
A5	8190	12.3	1.8	2.0	+2.02	-0.15	+2.2	+0.10	+0.15
A8	7600	7.13	1.5	-	+2.61	-0.10	+2.7	+0.09	+0.25
F0	7300	5.21	1.4	1.6	+2.95	-0.09	+3.0	+0.03	+0.30
F2	7050	3.89	1.3	-	+3.27	-0.11	+3.4	+0.00	+0.35
F5	6650	2.56	1.2	1.4	+3.72	-0.14	+3.9	-0.02	+0.44
F8	6250	1.68	1.1	-	+4.18	-0.16	+4.3	+0.02	+0.52

Main-Sequence Stars (Luminosity Class V)

Sp. Type	T_{e} (K)	L / L_{\odot}	R / R_{\odot}	M / M_{\odot}	M_{bol}	$B C$	M_{V}	$U-B$	$B-V$
G0	5940	1.25	1.06	1.05	+4.50	-0.18	+4.7	+0.06	+0.58
G2	5790	1.07	1.03	-	+4.66	-0.20	+4.9	+0.12	+0.63
Sun a	5777	1.00	1.00	1.00	+4.74	-0.08	+4.82	+0.195	+0.650
G8	5310	0.656	0.96	-	+5.20	-0.40	+5.6	+0.30	+0.74
K0	5150	0.552	0.93	0.79	+5.39	-0.31	+5.7	+0.45	+0.81
K1	4990	0.461	0.91	-	+5.58	-0.37	+6.0	+0.54	+0.86
K3	4690	0.318	0.86	-	+5.98	-0.50	+6.5	+0.80	+0.96
K4	4540	0.263	0.83	-	+6.19	-0.55	+6.7	-	+1.05
K5	4410	0.216	0.80	0.67	+6.40	-0.72	+7.1	+0.98	+1.15
K7	4150	0.145	0.74	-	+6.84	-1.01	+7.8	+1.21	+1.33
M0	3840	0.077	0.63	0.51	+7.52	-1.38	+8.9	+1.22	+1.40
M1	3660	0.050	0.56	-	+7.99	-1.62	+9.6	+1.21	+1.46
M2	3520	0.032	0.48	0.40	+8.47	-1.89	+10.4	+1.18	+1.49
M3	3400	0.020	0.41	-	+8.97	-2.15	+11.1	+1.16	+1.51
M4	3290	0.013	0.35	-	+9.49	-2.38	+11.9	+1.15	+1.54
M5	3170	0.0076	0.29	0.21	+10.1	-2.73	+12.8	+1.24	+1.64
M6	3030	0.0044	0.24	-	+10.6	-3.21	+13.8	+1.32	+1.73
M7	2860	0.0025	0.20	-	+11.3	-3.46	+14.7	+1.40	+1.80

Carroll \& Ostelie

Giant Stars (Luminosity Class III)

Sp.	T_{e} Type	(K)	L / L_{\odot}	R / R_{\odot}	M / M_{\odot}	$M_{\text {bol }}$	$B C$	M_{V}	$U-B$
O5	39400	741000	18.5	-	-9.94	-4.05	-5.9	-1.18	-0.32
O6	37800	519000	16.8	-	-9.55	-3.80	-5.7	-1.17	-0.32
O7	36500	375000	15.4	-	-9.20	-3.58	-5.6	-1.14	-0.32
O8	35000	277000	14.3	-	-8.87	-3.39	-5.5	-1.13	-0.31
B0	29200	84700	11.4	20	-7.58	-2.88	-4.7	-1.08	-0.29
B1	24500	32200	10.0	-	-6.53	-2.43	-4.1	-0.97	-0.26
B2	20200	11100	8.6	-	-5.38	-2.02	-3.4	-0.91	-0.24
B3	18300	6400	8.0	-	-4.78	-1.60	-3.2	-0.74	-0.20
B5	15100	2080	6.7	7	-3.56	-1.30	-2.3	-0.58	-0.17
B6	13800	1200	6.1	-	-2.96	-1.13	-1.8	-0.51	-0.15
B7	12700	710	5.5	-	-2.38	-0.97	-1.4	-0.44	-0.13
B8	11700	425	5.0	-	-1.83	-0.82	-1.0	-0.37	-0.11
B9	10900	263	4.5	-	-1.31	-0.71	-0.6	-0.20	-0.07
A0	10200	169	4.1	4	-0.83	-0.42	-0.4	-0.07	-0.03
A1	9820	129	3.9	-	-0.53	-0.29	-0.2	+0.07	+0.01
A2	9460	100	3.7	-	-0.26	-0.20	-0.1	+0.06	+0.05
A5	8550	52	3.3	-	+0.44	-0.14	+0.6	+0.11	+0.15
A8	7830	33	3.1	-	+0.95	-0.10	+1.0	+0.10	+0.25

| F0 | 7400 | 27 | 3.2 | - | +1.17 | -0.11 | +1.3 | +0.08 | +0.30 |
| :--- | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| F2 | 7000 | 24 | 3.3 | - | +1.31 | -0.11 | +1.4 | +0.08 | +0.35 |
| F5 | 6410 | 22 | 3.8 | - | +1.37 | -0.14 | +1.5 | +0.09 | +0.43 |
| | | | | | | | | | |
| G0 | 5470 | 29 | 6.0 | 1.0 | +1.10 | -0.20 | +1.3 | +0.21 | +0.65 |
| G2 | 5300 | 31 | 6.7 | - | +1.00 | -0.27 | +1.3 | +0.39 | +0.77 |
| G8 | 4800 | 44 | 9.6 | - | +0.63 | -0.42 | +1.0 | +0.70 | +0.94 |
| | | | | | | | | | |
| K0 | 4660 | 50 | 10.9 | 1.1 | +0.48 | -0.50 | +1.0 | +0.84 | +1.00 |
| K1 | 4510 | 58 | 12.5 | - | +0.32 | -0.55 | +0.9 | +1.01 | +1.07 |
| K3 | 4260 | 79 | 16.4 | - | -0.01 | -0.76 | +0.8 | +1.39 | +1.27 |
| K4 | 4150 | 93 | 18.7 | - | -0.18 | -0.94 | +0.8 | - | +1.38 |
| K5 | 4050 | 110 | 21.4 | 1.2 | -0.36 | -1.02 | +0.7 | +1.81 | +1.50 |
| K7 | 3870 | 154 | 27.6 | - | -0.73 | -1.17 | +0.4 | +1.83 | +1.53 |
| | | | | | | | | | |
| M0 | 3690 | 256 | 39.3 | 1.2 | -1.28 | -1.25 | +0.0 | +1.87 | +1.56 |
| M1 | 3600 | 355 | 48.6 | - | -1.64 | -1.44 | -0.2 | +1.88 | +1.58 |
| M2 | 3540 | 483 | 58.5 | 1.3 | -1.97 | -1.62 | -0.4 | +1.89 | +1.60 |
| M3 | 3480 | 643 | 69.7 | - | -2.28 | -1.87 | -0.4 | +1.88 | +1.61 |
| M4 | 3440 | 841 | 82.0 | - | -2.57 | -2.22 | -0.4 | +1.73 | +1.62 |
| M5 | 3380 | 1100 | 96.7 | - | -2.86 | -2.48 | -0.4 | +1.58 | +1.63 |
| M6 | 3330 | 1470 | 116 | - | -3.18 | -2.73 | -0.4 | +1.16 | +1.52 |

Carroll \& Ostelie

Supergiant Stars (Luminosity Class Approximately Iab)

Sp.	T_{e}								
Type	(K)	L / L_{\odot}	R / R_{\odot}	M / M_{\odot}	$M_{\text {bol }}$	$B C$	M_{V}	$U-B$	$B-V$
O5	40900	1140000	21.2	70	-10.40	-3.87	-6.5	-1.17	-0.31
O6	38500	998000	22.4	40	-10.26	-3.74	-6.5	-1.16	-0.31
O7	36200	877000	23.8	-	-10.12	-3.48	-6.6	-1.14	-0.31
O8	34000	769000	25.3	28	-9.98	-3.35	-6.6	-1.13	-0.29
B0	26200	429000	31.7	25	-9.34	-2.49	-6.9	-1.06	-0.23
B1	21400	261000	37.3	-	-8.80	-1.87	-6.9	-1.00	-0.19
B2	17600	157000	42.8	-	-8.25	-1.58	-6.7	-0.94	-0.17
B3	16000	123000	45.8	-	-7.99	-1.26	-6.7	-0.83	-0.13
B5	13600	79100	51.1	20	-7.51	-0.95	-6.6	-0.72	-0.10
B6	12600	65200	53.8	-	-7.30	-0.88	-6.4	-0.69	-0.08
B7	11800	54800	56.4	-	-7.11	-0.78	-6.3	-0.64	-0.05
B8	11100	47200	58.9	-	-6.95	-0.66	-6.3	-0.56	-0.03
B9	10500	41600	61.8	-	-6.81	-0.52	-6.3	-0.50	-0.02
A0	9980	37500	64.9	16	-6.70	-0.41	-6.3	-0.38	-0.01
A1	9660	35400	67.3	-	-6.63	-0.32	-6.3	-0.29	+0.02
A2	9380	33700	69.7	-	-6.58	-0.28	-6.3	-0.25	+0.03
A5	8610	30500	78.6	13	-6.47	-0.13	-6.3	-0.07	+0.09
A8	7910	29100	91.1	-	-6.42	-0.03	-6.4	+0.11	+0.14

F0	7460	28800	102	12	-6.41	-0.01	-6.4	+0.15	+0.17
F2	7030	28700	114	-	-6.41	0.00	-6.4	+0.18	+0.23
F5	6370	29100	140	10	-6.42	-0.03	-6.4	+0.27	+0.32
F8	5750	29700	174	-	-6.44	-0.09	-6.4	+0.41	+0.56
G0	5370	30300	202	10	-6.47	-0.15	-6.3	+0.52	+0.76
G2	5190	30800	218	-	-6.48	-0.21	-6.3	+0.63	+0.87
G8	4700	32400	272	-	-6.54	-0.42	-6.1	+1.07	+1.15
K0	4550	33100	293	13	-6.56	-0.50	-6.1	+1.17	+1.24
K1	4430	34000	314	-	-6.59	-0.56	-6.0	+1.28	+1.30
K3	4190	36100	362	-	-6.66	-0.75	-5.9	+1.60	+1.46
K4	4090	37500	386	-	-6.70	-0.90	-5.8	-	+1.53
K5	3990	39200	415	13	-6.74	-1.01	-5.7	+1.80	+1.60
K7	3830	43200	473	-	-6.85	-1.20	-5.6	+1.84	+1.63
M0	3620	51900	579	13	-7.05	-1.29	-5.8	+1.90	+1.67
M1	3490	60300	672	-	-7.21	-1.38	-5.8	+1.90	+1.69
M2	3370	72100	791	19	-7.41	-1.62	-5.8	+1.95	+1.71
M3	3210	89500	967	-	-7.64	-2.13	-5.5	+1.95	+1.69
M4	3060	117000	1220	-	-7.93	-2.75	-5.2	+2.00	+1.76
M5	2880	165000	1640	24	-8.31	-3.47	-4.8	+1.60	+1.80
M6	2710	264000	2340	-	-8.82	-3.90	-4.9	-	-

Carroll \& Ostelie

SIMBAD Astronomical Database

To measure the stellar mass

- Stellar mass difficult to measure; direct measurements, except the Sun, only by binary systems (but uncertain even for these) Binary mass function $f=\frac{M_{2}^{3} \sin ^{3} i}{\left(M_{1}+M_{2}\right)^{2}}$ c.f., $\underline{\text { initial mass function }}$
- Then one gets the mass-luminosity relation $L \propto M^{\alpha}$ where the slope $\alpha=3$ to 5 , depending on the mass range
- The main-sequence (MS) is a sequence of stellar mass; under the condition of hydrostatic equilibrium
- Why are lower mass stars cooler on the surface and fainter in luminosity?

$$
\begin{aligned}
& M_{\max } \sim 120 M_{\odot} \\
& M_{\min } \sim 0.08 M_{\odot} \\
& L_{\max } \sim 10^{+6} L_{\odot} \\
& L_{\min } \sim 10^{-4} L_{\odot}
\end{aligned}
$$

Luminosity versus mass for a selection of stars in binaries

Luminosity class and surface gravity

$$
\log g=\log G M / R^{2}
$$

- Betelgeuse ... (M2 I) $\log g \approx-0.6$ [cgs]
- Jupiter $. . . \log g=+3.4$
- Sun (G2 V) ... $\log g=+4.44$
- Ge 229B ... (T6.5) $\log g \approx+5$
- Sirius B... (WD) $\log g \approx+8$

What is the surface gravity of the Earth?

Composite Hertzsprung-Russell Diagram. Stars of different absolute luminosity, L - right axis, or bolometric absolute magnitude, $\mathrm{M}_{\mathrm{bol}}$ - left axis, are plotted as a function of surface temperature, T_{s} bottom axis, or spectral type - top axis. (Adapted from L. Goldberg and E.R. Dyer, Science in
Space, eds. L.V. Berkner and H. Odishaw (1961).)

Lang "Data"

To measure the stellar abundance

- By spectroscopy
- Stellar composition $(X, Y, Z)=$ mass fraction of H , of He , and of all the rest elements ("metals") Z : metallicity $\quad X+Y+Z=1$
Solar abundance: $X_{\odot}=0.747 ; Y_{\odot}=0.236 ; Z_{\odot}=0.017$
- One often compares the iron abundance of a star to that of the sun. Iron is not the most abundant (only 0.001), but easy to measure in spectra. Why?

$$
\log \left(\frac{N_{\mathrm{Fe}}}{N_{\mathrm{H}}}\right)_{\odot}=-4.33
$$

$$
[\mathrm{Fe} / \mathrm{H}]=\log _{10}\left(\frac{N_{\mathrm{Fe}}}{N_{\mathrm{H}}}\right)_{\mathrm{star}}-\log _{10}\left(\frac{N_{\mathrm{Fe}}}{N_{\mathrm{H}}}\right)_{\odot}
$$

i.e., 1 iron atom per $20,000 \mathrm{H}$ atoms

$$
[M / H] \approx \log \left(Z / Z_{\odot}\right)
$$

"Metals": by astronomers to mean "complex" elements, i.e., any element other than H or He (primodial).
For $\mathrm{H}(Z=1)$ it requires $\sim 10 \mathrm{eV}$ to from the ground level to the first excited state; needs $>13.6 \mathrm{eV}$ to free (ionize) the electron. For $\mathrm{He}(Z=2)$, it is even more difficult; ionization potential of 24.6 eV (once) or 54.4 eV (twice).
Metals have many electrons. It is easier to excite or ionize the outer layer of electrons (a few eV), e.g., $E_{\text {ion }}^{\mathrm{CaI}}=6.1 \mathrm{eV}$; $E_{\text {ion }}^{\mathrm{Fe} \mathrm{I}}=7.9 \mathrm{eV}$
"Metals" are hence efficient coolants, affecting ISM and stellar structure.
"Metallicity": the amount of metals (e.g., $\mathrm{Fe}, \mathrm{Mg}, \mathrm{Ca}$) relative to H .

Effects of Metallicity

'Metals'. i.e., elements other than H and He , are efficient coolants.

Collisional excitation
\rightarrow dominates cooling process in H I and H II ISM

Metals $=$ low-lying levels

Given the same mass, a metal poorer star is bluer and brighter.

Fig. 1.-Paths in the theoretical Hertzsprung-Russell diagram for $M=M \odot$. Luminosity in units of $L \odot=3.86 \times 10^{33} \mathrm{erg} / \mathrm{sec}$ and surface temperature T_{e} in units of ${ }^{\circ} \mathrm{K}$. Solid curve constructed using a mass fraction of metals with $7.5-\mathrm{eV}$ ionization potential, $X_{M}=5.4 \times 10^{-5}$. Dashed curve constructed with $X_{M}=5.4 \times 10^{-6}$.

A metal poorer cluster has an overall bluer sequence.

A younger cluster retains a longer upper MS, and even contains some PMS stars.

Younger stars tend to be metal-richer. Stars older than 10 Gyr almost all have $[\mathrm{Fe} / \mathrm{H}] \lesssim-0.5$; stars younger than 5 Gyr have $[\mathrm{Fe} / \mathrm{H}] \gtrsim-0.5$.

The two Gaussian curves have means and standard deviations of $(-1.6,0.30)$ and $(-0.6,0.23)$ and define the metal-poor (MPC) and metal-rich (MRC) components.

https://ned.ipac.caltech.edu/level5/Harris2/Harris1.htm|

Fig. 1.-In the upper diagram, $|\mathrm{Z}|$ is plotted against $[\mathrm{Fe} / \mathrm{H}]$ for the 112 globular clusters of known distance. Notice that there are no clusters in the zone $20 \leqq|Z| \lesssim 37 \mathrm{kpc}$ and that the $|Z|$ distribution changes suddenly at $[\mathrm{Fe} / \mathrm{H}] \approx-1$. The lower diagram is a histogram of the values of $[\mathrm{Fe} / \mathrm{H}]$ for all 121 clusters in Table 1. Notice that the valley in the distribution over $[\mathrm{Fe} / \mathrm{H}]$ occurs at the same value as the sudden change in the $|\mathrm{Z}|$ distribution.

To measure the stellar age

- Very tricky for single stars. Often one relies on measurements of M_{V}, $T_{\text {eff }},[\mathrm{Fe} / \mathrm{H}]$, and then uses some kind of theoretically computed isochrones to interpolate the age (and mass)
- Crude diagnostics include
\checkmark Lithium absorption line, e.g., 6707A
\checkmark Chromospheric activities, e.g., X-ray or Ca II emission
\checkmark Evolving off the main sequence
... hence subject to large uncertainties

References:
Edvardsson et al., 1993, A\&A, 275, 101
Nordström et al., 2004, A\&A, 418, 989

Stellar evolutionary

 models (tracks)1-2 main sequence
2-3 overall contraction
3-4 H thick shell burning
$5-6 \mathrm{H}$ thin shell burning
6-7 red giant
7-10 core He burning
8-9 envelope contraction

To Determine the Age of a Star Cluster

As a cluster (its member stars) ages, massive stars leave the MS first and evolve to the post-main sequence phase, then progressively followed by lowermass members. Only lower-mass stars still remain on the MS.

The MS is "peeled off" from the top (upper MS) down.

Theoretical isochrones

Age of the cluster
$=$ the main sequence lifetime of stars at the MSTO

An MS star of the same spectral type

A PMS (young) star

 shows Li absorption.Figure 16.9 Lithium absorption in a pre-main-sequence star. Shown is a portion of the optical spectrum of BP Tau, a T Tauri star of spectral type K7, corresponding to an effective temperature of 4000 K . Also shown, for comparison, is a main-sequence star of the same spectral type, 61 Cyg B. Only in the first star do we see the Li I absorption line at $6708 \AA$. Both objects also have a strong line due to neutral calcium.

Fig. 1. Kurucz's (1991a) new model for Vega compared with a series of independent UV-optical measurements, specifically those by Hayes \& Latham (1985) and by Tug et al. (1977).

Check out Aumann +84 for the discovery of debris materials of Vega by IRAS.

MW galaxy

 Stars, ISM, CRs, B, dark matter, etc.

YSOs, gas/dust 100 pc
\checkmark Old thin disk 300 pc
\checkmark Thick disk 2000 pc

Typical properties of Stellar Populations in the Milky Way

	Population I			Population II	
	very young	young		old	very old
Scale height $[\mathrm{kpc}]$	60	100		500	2000
$\Sigma_{\mathrm{w}}\left[\mathrm{km} \mathrm{s}^{-1}\right]$	8	10		25	75
Z	>0.02	0.01		0.005	<0.002
Age (rel. to the Universe)	<0.05	0.25		0.75	1

