Stellar Atmosphere and Structure "Stars"

Wen Ping Chen **陳文屏** NCU/Astronomy 中央大學 天文研究所

http://www.astro.ncu.edu.tw/~wchen/Courses/StellarStr/Default.htm

Stellar Atmosphere and Structure ---

Instructor: Professor Wen-Ping Chen Class Time: Thursday 2 to 5 pm Classroom: Room 914; online

<u>Office</u>: S4, Room 906 Office Hours: Please check my schedule posted on my door

This course covers the interior structures and atmospheres of stars. We will discuss the important physical processes governing the stability of a star ("stellar structure") and how emerging photons interact with the stellar atmosphere that we observe to derive the stellar parameters. We will deal with the "static" stellar properties, but not the formation processes or how these properties evolve with time, i.e., stellar evolution, which will be the subjects of the subsequent course in the next semester.

Textbook: "*An Introduction to the Theory of Stellar Structure and Evolution*", by Dina Prialnik, Cambridge, 2nd Ed. 2009

In addition to the midterm (30% grade) and final (30%) exams, there will be homework assignments, plus in-class exercises and perhaps projects (40%).

For numerical modeling of atmospheres or interiors --- at least for some of the homework problems --- simple computer coding is required.

- . Stellar Observational Properties; Gas Properties
- . Radiative Transfer Blackbody Radiation Emission, Absorption, and Source Function Equation of Transfer and its Solutions/Approximations
- . Stellar Atmospheres Opacities (Kramers, Rosseland) Equations of State Absorption and Spectral Lines Line Formation

. Stellar Interiors Hydrostatic Equilibrium Mass Distribution Lane-Emden Equation Radiative, Thermal, and Convective Equilibrium Energy Generation; Thermonuclear Reactions (Degenerate Matter)

References

- ✓ *The Internal Constitution of the Stars,* Arthur S. Eddington, 1926, 1988 reprint, Cambridge U Press
- ✓ An Introduction to the Study of Stellar Structure, S. Chandrasekhar, 1939, 1967, Dover
- ✓ *Principles of Stellar Evolution and Nucleosynthesis,* Donald Clayton, 1968, 1983, U. Chicago Press
- ✓ Introduction to Stellar Atmospheres and Interiors, Eva Novotny, 1973, Oxford U Press, an old but very comprehensive book on the subject
- ✓ Stellar Atmospheres, Dimitri Mihalas, 1978, W. H. Freeman & Company
- ✓ The Fundamentals of Stellar Astrophysics, George W. Collins, 1989, Freeman
- ✓ Stellar Structure and Evolution, R. Kippenhahn & W. Weigert, 1990, Springer-Verlag
- ✓ Stellar Structure and Evolution, Huang, R. Q. 黃潤乾, Guoshin, 1990, originally published in Chinese (恆星物理).
- ✓ Introduction to Stellar Astrophysics, Vol 3 --- Stellar Structure and Evolution, Erika Bohm-Vitense, 1992, Cambridge
- ✓ *The Observation and Analysis of Stellar Photospheres,* David Gray, 1992, Cambridge U Press
- ✓ *The Stars,* Evry Scharzman and Françoise Praderie, 1993, Springer-Verlag, translated by A. R. King
- ✓ Compendium of Practical Astronomy, Vol 2, Stars and Stellar Systems, G. D. Roth (ed), 1993, Springer-Verlag

- ✓ 恆星大氣物理,汪珍如、區欽岳,1993,高等教育出版社
- ✓ *The Physics of Stars*, A. C. Phillips, 1994, John Wiley & Sons
- ✓ *The Stars: Their Structure and Evolution*, R. J. Tayler, 1994, Cambridge
- ✓ *Supernovae and Nucleosynthesis,* David Arnett, 1996, Princeton
- ✓ *Advanced Stellar Astrophysics,* William K. Rose, 1998, Cambridge
- ✓ *Theoretical Astrophysics, Vol II*: Stars and Stellar Systems, Padmanabhan, T., a hefty, mathematical 3 volume set; a comprehensive coverage of basic astrophysical processes in vol. 1, stars in vol. 2, and galaxies and cosmology in vol. 3, 2001, Cambridge
- ✓ *Stars and Stellar Evolution,* K. S. De Boer & W. Seggewiss, Ed., 2008, EDP Science
- ✓ Stellar Physics, 2: Stellar Evolution and Stability, Bisnovatyi-Kogan, 2nd Ed., 2010, Springer (translated from Russian)
- ✓ *Theory of stellar Atmospheres*, Ivan Hubeny & Demitri Mihalas, 2015, Princeton U Press
- ✓ *The Structure and Evolution of Stars,* J. J. Eldridge & Chrostopher A. Tout, 2019, World Scientific
- ✓ *Stars and Stellar Processes,* Mike Guidry, 2019, Cambridge

Second Edition

Prialnik

Theory

of Stellar Structure

Evolution

CAMBRIDG

Reviews of the First Edition

"The processes are always

terms, while maintaining full

mathematical rigor ... requires

only basic undergraduate physics

explained in the simplest

Using fundamental physics, the theory of stellar structure and evolution can predict how stars are born, how their complex internal structure changes, what nuclear fuel they burn, and their ultimate fate. This textbook is a stimulating introduction for students of astronomy, physics, and applied mathematics, taking a course on the physics of stars. It uniquely emphasizes the basic physical principles governing stellar structure and evolution.

This second edition contains two new chapters on mass loss from stars and interacting binary stars, and new exercises. Clear and methodical, it explains the processes in simple terms, while maintaining mathematical rigour. Starting from general principles, this textbook leads students step-by-step to a global, comprehensive understanding of the subject. Fifty exercises and full solutions allow students to test their understanding. No prior knowledge of astronomy is required, and only a basic background in undergraduate physics and mathematics is necessary.

Dina Prialnik is Professor of Planetary Physics at Tel Aviv University. Her research interests lie in stellar evolution; the structure and evolution of cataclysmic variables; cornet nuclei and other small solar system bodies; and the evolution of planets. and mathematics and no prior knowledge of astronomy ..." Orion, Société Astronomique de Suisse "... a first-class textbook ... The host of student exercises ... ensure that any dedicated physics or

mathematics undergraduate can, with some effort, understand what is going on." David Hughes, New Scientist

"... a book that I can strongly recommend as a suitable textbook to anyone teaching a course in stellar structure, at advanced undergraduate or beginning graduate level ... An excellent book, which certainly deserves to become a classic." Robert Connon Smith, The Observatoru Second Edition

An Introduction to the

Theory of Stellar Structure

Evolution

Dina Prialnik

CAMBRIDGE

Cover designed by Phil Trebie

Cover illustration: light echn around V878 Monocefoth Courtesy of NASA, ESA, and H. Bond (STSch). CAMBRIDGE UNIVERSITY PRESS www.cambridge.org

521 866040

Dina Phan

Digital copy is available from NCU library.

Contents

	Preface to the second edition	<i>page</i> xi
	Preface to the first edition	xiii
L	Observational background and basic assumptions	1
	1.1 What is a star?	1
	1.2 What can we learn from observations?	2
	1.3 Basic assumptions	6
	1.4 The H-R diagram: a tool for testing stellar evolution	9
2	The equations of stellar evolution	15
	2.1 Local thermodynamic equilibrium	16
	2.2 The energy equation	17
	2.3 The equation of motion	19
	2.4 The virial theorem	21
	2.5 The total energy of a star	23
	2.6 The equations governing composition changes	25
	2.7 The set of evolution equations	28
	2.8 The characteristic timescales of stellar evolution	29
3	Elementary physics of gas and radiation in stellar interiors	34
	3.1 The equation of state	35
	3.2 The ion pressure	37
	3.3 The electron pressure	38
	3.4 The radiation pressure	42
	3.5 The internal energy of gas and radiation	43

	3.6 The adiabatic exponent	44
	3.7 Radiative transfer	46
4	Nuclear processes that take place in stars	51
	4.1 The binding energy of the atomic nucleus	51
	4.2 Nuclear reaction rates	53
	4.3 Hydrogen burning I: the $p - p$ chain	57
	4.4 Hydrogen burning II: the CNO bi-cycle	59
	4.5 Helium burning: the triple- α reaction	61
	4.6 Carbon and oxygen burning	63
	4.7 Silicon burning: nuclear statistical equilibrium	65
	4.8 Creation of heavy elements: the <i>s</i> - and <i>r</i> -processes	66
	4.9 Pair production	67
	4.10 Iron photodisintegration	68
5	Equilibrium stellar configurations – simple models	70
	5.1 The stellar structure equations	70
	5.2 What is a simple stellar model?	71
	5.3 Polytropic models	72
	5.4 The Chandrasekhar mass	77
	5.5 The Eddington luminosity	78
	5.6 The standard model	80
	5.7 The point-source model	83
6	The stability of stars	87
	6.1 Secular thermal stability	88
	6.2 Cases of thermal instability	89
	6.3 Dynamical stability	92
	6.4 Cases of dynamical instability	94
	6.5 Convection	96
	6.6 Cases of convective instability	98
	6.7 Conclusion	103
7	The evolution of stars – a schematic picture	104
	7.1 Characterization of the $(\log T, \log \rho)$ plane	105
	7.2 The evolutionary path of the central point of a star in t	
	$(\log T, \log \rho)$ plane	110
	7.3 The evolution of a star, as viewed from its centre	113

7

	7.4 The theory of the main sequence	116
	7.5 Outline of the structure of stars in late evolutionary stages	122
	7.6 Shortcomings of the simple stellar evolution picture	126
8	Mass loss from stars	130
	8.1 Observational evidence of mass loss	130
	8.2 The mass loss equations	131
	8.3 Solutions to the wind equations – the isothermal case	136
	8.4 Mass loss estimates	139
	8.5 Empirical solutions	142
9	The evolution of stars – a detailed picture	144
	9.1 The Hayashi zone and the pre-main-sequence phase	145
	9.2 The main-sequence phase	151
	9.3 Solar neutrinos	155
	9.4 The red giant phase	160
	9.5 Helium burning in the core	165
	9.6 Thermal pulses and the asymptotic giant branch	168
	9.7 The superwind and the planetary nebula phase	173
	9.8 White dwarfs: the final state of nonmassive stars	177
	9.9 The evolution of massive stars	182
	9.10 The H-R diagram – Epilogue	186
10	Exotic stars: supernovae, pulsars and black holes	189
	10.1 What is a supernova?	189
	10.2 Iron-disintegration supernovae: Type II - the fate of	
	massive stars	193
	10.3 Nucleosynthesis during Type II supernova explosions	197
	10.4 Supernova progenies: neutron stars – pulsars	200
	10.5 Carbon-detonation supernovae: Type Ia	204
	10.6 Pair-production supernovae and black holes – the fate of very massive stars	205
	Interacting binary stars	208
	11.1 What is a binary star?	208
	11.2 The general effects of stellar binarity	211
	11.3 The mechanics of mass transfer between stars	216
	11.4 Conservative mass transfer	219

	11.5 Accretion discs	220
	11.6 Cataclysmic phenomena: Nova outbursts	223
12	The stellar life cycle	231
	12.1 The interstellar medium	231
	12.2 Star formation	232
	12.3 Stars, brown dwarfs and planets	236
	12.4 The initial mass function	239
	12.5 The global stellar evolution cycle	243
	Appendix A – The equation of radiative transfer	251
	Appendix B – The equation of state for degenerate electrons	259
	Appendix C – Solutions to all the exercises	270
	Appendix D – Physical and astronomical constants and conversion	
	factors	300
	Bibliography	303
	Index	308

"Stars" Class Schedule 2024 Fall

#	Date		#	Date	
01	09/12		09	11/14	
02	09/19		10	11/21	U. Sports Days
03	09/26		11	11/28	
04	10/03		12	12/05	
	10/10	Holiday	13	12/12	
05	10/17		14	12/19	
06	10/24		15	12/26	Final Exam
07	10/31	Midterm Exam	16	01/04	Exam review
08	11/07		17	01/11	Supple. materials

Stellar structure: stability; balance of forces

Stellar evolution: temporal changes of

structure

(con)sequence of
 thermonuclear reactions
 in different parts of a star,
 and at different epochs as
 the star ages

Frequently used fundamental constants Physical

- *a* radiation density constant
- *c* velocity of light
- *G* gravitational constant
- *h* Planck's constant
- *k* Boltzmann's constant
- m_e mass of electron
- m_H mass of hydrogen atom
- *N_A* Avogardo's number
- σ Stefan Boltzmann constant
- *R* gas constant (k/m_H)
- *e* charge of electron

 $7.55 \times 10^{-16} [J m^{-3} K^{-4}]$ $3.00 \times 10^8 \text{ [m s}^{-1}\text{]}$ 6.67×10^{-11} [N m² kg⁻²] 6.62×10^{-34} [J s] 1.38×10^{-23} [J K⁻¹] 9.11×10^{-31} [kg] 1.67×10^{-27} [kg] 6.02×10^{23} [mol⁻¹] $5.67 \times 10^{-8} [W m^{-2} K^{-4}] (= ac/4)$ 8.26×10^3 [J K⁻¹kg⁻¹] 1.60×10^{-19} [C] $1 \text{ eV} = 1.60 \times 10^{-19}$ J

Check out <u>http://pdg.lbl.gov/2006/reviews/astrorpp.pdf</u>

Astronomical

L_{\odot}	Solar luminosity	$3.86 imes 10^{26} \mathrm{W}$
M_{\odot}	Solar mass	$1.99 \times 10^{30} \text{ kg}$
$T_{eff, \odot}$	Solar effective temperature	5780 K (observed)
$T_{ m c, \odot}$	Solar Central temperature	1.6×10^7 K (theoretical)
R_{\odot}	Solar radius	$6.96 \times 10^8 \mathrm{m}$
m₀	apparent mag of Sun	-26.7 mag (V)
M_{\odot}	absolute mag of Sun	+4.8 mag (V)
θ	apparent size of Sun	32'
$<\!\rho\!>$	mean density of Sun	1.4 g cm^{-3}
$(B-V)_{\odot}$	color of the Sun	0.6 mag
Parsec	unit of distance	$3.09 \times 10^{16} \mathrm{m}$

Properties of Stars

Brightness

- Luminosity [erg s⁻¹] L = bolometric luminosity = power
- Spectral luminosity [erg s⁻¹ μ m⁻¹] L_{λ}
- Flux [erg s⁻¹ cm⁻²] f
- Flux density [erg s⁻¹ cm⁻² µm⁻¹] f_{λ} or $f_{\nu} = \left(\frac{\lambda^2}{c}\right) f_{\lambda}$

1 Jansky (Jy) = 10^{-23} [erg s⁻¹ cm⁻² Hz⁻¹] = 10^{-26} [W m⁻² Hz⁻¹] = 10^{-7} [photons m⁻² s⁻¹ ($\lambda/d\lambda$)]

- Brightness/intensity [erg s⁻¹ cm⁻² sr⁻¹] *B*
- Specific intensity [erg s⁻¹ cm⁻²sr⁻¹ Hz⁻¹] I_{ν}
- Energy density [erg cm⁻³] $u = (4 \pi/c) J$
- Mean intensity $J = (1/4\pi) \int I \, d\Omega$ Pay attention to the subscript and unit.

Solar radio astronomers use the solar flux unit $1 \text{ s.f.u.} = 10^4 \text{ Jy}$

 $d\lambda = -\left(\frac{c}{v^2}\right)dv$

 $f(m_V = 0) = 3640$ Jy

怎麼表達亮度?

<u>「燭光」</u>、「流明」、「勒克斯」、「100瓦燈泡」?

一般LED燈泡大約500 lm;教室投影機 3000 lm 晴朗白天 10000 lux;房間 500 lux;滿月夜 0.1 lux;無月晴夜 0.001 lux

天體「看起來有多亮」(亮度),跟本身「發光強度」 (光度)有關

另外還要考量距離,以及是否有東西遮檔

那個光點是螢火蟲,還是遠方的路燈?還是被霧遮住了?

星星有明、有暗。某顆暗星是本身光度弱,還是其實光 度強,但距離遠? 天文學家使用「**星等**」描述星星「**看起來**」的亮度,稱為 「視星等」。歷史上最亮的一種星稱為「一等星」,眼睛 能看到最暗的那些則為「六等」

至今沿用星等為單位,星等數目越大表示越暗

不再只有整數,也可以小於一等,甚至負數 每相<u>差5</u>等,相當於亮度差100倍(相差一等,亮度比約為2.51倍)

天狼星 -1.5等;織女星 0 等
北極星2.0等(變星)藍光 2.6等、紅光1.5等
太陽-26.7等;月球-2.5等到-12.9 等(平均)
金星 -4.9 等到 - 3.0等;火星 -2.9 等到 +1.9等
木星 -2.9 等到 -1.7等;天王星 5.4 等到 6.0等

Subaru (八米望遠鏡) 27.7 mag; Hubble Space Telescope (2.4米) 31 mag

除了眼睛感應的波段,星等也適用於藍光、綠光、紅光 等等,包括用在紫外與紅外波段

還看在哪個波段觀測 透過紅玻璃看紅燈亮得很,看綠燈就暗得多 天文觀測使用不同種類的濾光片 紅外波段夜空最亮的星是參宿四

(無線)電波觀測常直接使用功率的物理量,以顏斯基 (Jansky) 表達亮度。1 Jy = 10⁻²⁶ W m⁻² Hz⁻¹

× 射線(光)強度可以每秒接收到多少光子數,或多少 能量來表示,以W(瓦數)表示光度;W/m²表示亮度 延展的天體(例如星系、夜空)可以用[星等/平方角秒] **Magnitude** $m_1 - m_2 = 2.5 \log (I_2/I_1)$

100 times the intensity \rightarrow 5 mag difference The <u>brighter</u> the intensity, the <u>smaller</u> the magnitude value

Apparent Magnitude $m = -2.5 \log (Flux) +$ **ZeroPoint**

- The Vega system: 0.0 mag (latest \sim 0.3 mag) at every Johnson band

 $m_{\rm V}^{\odot} = -26.74$ mag

- Gunn system: no Vega; use F subdwarfs as standards (metal poor so with smooth spectra), e.g., BD + 17 4708

- The AB system: $m_{AB} = -2.5 \log_{10} \left(\frac{f_{\nu}}{_{3631 \text{ Jy}}} \right) = -2.5 \log_{10} (f_{\nu}/\text{Jy}) + 8.90$ or $= -2.5 \log_{10} (f_{\nu} \text{ [erg s}^{-1} \text{ cm}^{-2} \text{ Hz}^{-1}]) - 48.60$

- STMAG system: used for HST photometry $STMAG_{\lambda} = -2.5 \log_{10} f_{\lambda} - 21.1$

Band	lambda_c	dlambda/lambda	Flux at m=0
	μ		Jy
U	0.36	0.15	1810
В	0.44	0.22	4260
V	0.55	0.16	3640
R	0.64	0.23	3080
Ι	0.79	0.19	2550
J	1.26	0.16	1600
Η	1.60	0.23	1080
Κ	2.22	0.23	670
g	0.52	0.14	3730
r	0.67	0.14	4490
i	0.79	0.16	4760
Z	0.91	0.13	4810

Bessell, MS. 2005 Annu. Rev. Astron. Astrophys. 43: 293-336

https://lweb.cfa.harvard.edu/~dfabricant/huchra/ay145/mags.html²⁰

Conversions among magnitude systems:

Conversion from AB magnitudes to Johnson magnitudes:

The following formulae convert between the AB magnitude systems and those based on Alpha Lyra:

V	=	V(AB)	+ 0.044	(+/-	0.004)
В	=	B(AB)	+ 0.163	(+/-	0.004)
Bj	=	Bj(AB)	+ 0.139	(+/-	INDEF)
R	=	R(AB)	+-0.055	(+/-	INDEF)
I	=	I(AB)	+-0.309	(+/-	INDEF)
g	=	g(AB)	+ 0.013	(+/-	0.002)
r	=	r(AB)	+ 0.226	(+/-	0.003)
i	=	i(AB)	+ 0.296	(+/-	0.005)
Rc	=	Rc(AB)	+-0.117	(+/-	0.006)
Ic	=	<pre>Ic(AB)</pre>	+-0.342	(+/-	0.008)

Source: Frei & Gunn 1995

https://lweb.cfa.harvard.edu/~dfabricant/huchra/ay145/mags.html

Specific Intensity I_{ν} or simply "intensity", or "brightness", is the amount of radiation energy per unit frequency interval at v per unit time interval per unit area per unit solid angle passing into the specified direction at a position P.

$$I_{\upsilon}(\theta) = \lim_{\substack{\Delta \upsilon \to 0 \\ \Delta t \to 0 \\ \Delta \sigma \to 0 \\ \Delta \omega \to 0}} \frac{\Delta E_{\upsilon}}{\Delta \upsilon \Delta t \Delta \sigma \Delta \omega \cos \theta}$$

In cgs unit, I_v [ergs s⁻¹ Hz⁻¹ cm⁻² sr⁻¹]

Because $\Delta \omega \rightarrow 0$, the energy does not diverge. The intensity is independent of the distance from the source (i.e., light <u>ray</u>).

Motion

Velocity components: <u>radial</u> velocity V_R , and <u>tangential</u> V_T

Proper motion (apparent angular motion in the sky), μ_{α} and μ_{δ} , e.g., mas per year along RA and Decl.

 $V_{\rm T}$ is a function of distance given ($\mu_{\alpha}, \mu_{\delta}$)

 V_R is distance independent (to the first order, a long distance reduces the signal hence the accuracy).

Our Sun ---- the best studied star

granulation

1999/03/06 08:08:10

Physical properties of stars

Basic parameters to compare between theories and observations

- ◆ Mass (*M*)
- Luminosity (L)
- Radius/size (R)
- Effective temperature (T_e) $L = 4\pi R^2 \sigma T_e^4$
- Distance measured flux $F = L/4\pi d^2$
 - M, R, L and T_e not independent
 - *L* and T_{eff} \rightarrow Hertzsprung-Russell (HR) diagram or color-magnitude diagram (CMD)
 - *L* and $M \rightarrow$ mass-luminosity relation

Hot stars --- peaked at short wavelengths (UV); mainly He lines, some H lines

Warm stars --- peaked in the visible wavelengths; H lines prominent **Cool stars** --- peaked at long wavelengths (IR); molecular lines/bands

Stars: M > 0.08 \mathcal{M}_{\odot}

Brown Dwarfs: $0.08 \mathcal{M}_{\odot} > M > 13 \mathcal{M}_{j}$

 $\mathcal{M}_{\rm Jupiter} \approx 0.001 \, \mathcal{M}_{\odot}$

Planet-mass Objects: $\mathrm{M} < 13 \ \mathcal{M}_{\mathrm{J}}$

To measure the stellar distance

Directly by trigonometric **parallax**

•Nearest stars $d > 1 \text{ pc} \rightarrow p < 1$ "

For a star at d = 100 pc, p = 0.01"

Ground-based observations limited to angular resolution ~1"; HST has 0.05", JWST?

http://astronomy.swin.edu.au/cosmos/T/Trigonometric+Parallax

Gaia is a space telescope to measure accurate astrometry (i.e., position), 20 microarcsecond (μas) at 15 mag and 200 μas at 20 mag, of 10⁹ stars (1% of the Milky Way galaxy).

- With multi-epoch (~70) data, this affords parallax (distance), and space motion information of a star.
- Accurate photometry is also provided.

Otherwise, the distance is <u>estimated</u>

- Spectroscopic parallax: Stars with the same spectra are assumed to have identical set of physical parameters. For example, a G2V star should have the same absolute magnitude as the Sun.
- By comparison of the apparent brightness of an object with <u>known</u> brightness of that particular kind of objects

 $m_{\lambda} - M_{\lambda} = 5 \log d_{\rm pc} - 5 + A_{\lambda}(d)$

 A_{λ} is usually unknown; it depends on the intervening dust grains that scatter and absorb the star light, so also depends on the distance to the object.

- Main-sequence fitting; moving-cluster method; pulsating variables
- Other methods for Galactic molecular clouds, galaxies, etc.

• The <u>apparent magnitude</u> is a measure of the relative observed flux density of a celestial object with a filter

$$m_{\lambda} = -2.5 \log\left(\frac{f_{\lambda}}{f_{\lambda,0}}\right)$$

A larger mag value \rightarrow fainter Flux ratio of 100 \rightarrow magnitude difference of 5 For the same object, flux drops with distance squared

$$m_{d1} - m_{d2} = 5 \log\left(\frac{d2}{d1}\right)$$

The <u>absolute magnitude</u> is a measure of the intrinsic (absolute) brightness of a celestial object. It is defined numerically as the apparent magnitude of an object that would have if it were viewed from a distance of 10 parsecs.

$$m_{\lambda} - M_{\lambda} = 5 \log d_{\rm pc} - 5$$

To measure the stellar size

- ◆ Angular diameter of sun seen at 10 pc = 2 R_☉/10 pc = 5 × 10⁻⁹ radians = 10^{-3} arcsec
- The HST (0.05") barely capable of measuring directly the sizes of stars, except for the nearest supergiants
- Radii of ~600 stars measured with techniques such as interferometry, (lunar) occultation or for eclipsing binaries

FIG. 1.—A comparison of the (crosses) observed points and the (line) theoretical pattern for the Aldebaran $\lambda = 7460$ Å record with $\theta = 0$ ".020.

To measure the stellar temperature

- What is T_{eff} ? What is the "surface" of a star?
- What is Tanyway? Temperature is ill-defined, often defined by other physical quantities through an equation, i.e., a physical law, e.g., by radiation (blackbody, brightness, color), by particles (excitation, ionization, kinetic, electron), by conductive ...
- Only <u>in thermal equilibrium</u> are all these temperatures the same.
- Photometry (spectral energy distribution) gives a <u>rough</u> estimate of *T*, e.g., fluxes/magnitudes measured at different wavelengths, such as the "standard" Johnson system *UBVRI*
- There are many photometric systems, using broad bands, intermediate bands, special bands, at optical or infrared wavelengths, etc.

Band	U	В	V	R	I
λ/nm	365	445	551	658	806
Δλ/nm	66	94	88	138	149

http://coolwiki.ipac.caltech.edu/index.php/SED_plots_introduction

Wavelength (µm)

Running (slope) between *B* and *V* bands, i.e., the (B - V)color (index) \rightarrow photospheric temperature

The larger the value of (B - V), the redder (cooler) the star.

An unreddened O-type star (B - V) = -0.3A late M-type star has (B - V) = +1.65

For the Sun, $(B - V)_{\odot} = +0.656 \pm 0.005$

Hertzsprung-Russell (HR) Diagram (theory)

Brightness (Luminosity or Absolute Magnitude)

Spectral Type or surface Temperature

Color-Magnitude Diagram (CMD) (observation, a proxy of the HRD)

"Color" $(m_1 - m_2)$

- $\label{eq:eff} \bullet \ Calibration \ for \ B-V \ \leftrightarrow T_{\rm eff} \ \ T_{\rm eff} \approx \ \frac{9630 \ {\rm K}}{1+1.05 \ (B-V)} \ {\rm for} \ -0.1 < \ B-V < 1.4$
- The observed (B V) must be corrected for interstellar extinction in order to derive the intrinsic stellar $(B V)_0$
- More accurate determination of T by spectroscopy and atmosphere models, e.g., with the Kurucz's model

Color Excess

$$E_{B-V} = (B - V)_{\text{observed}} - (B - V)_{\text{intrinsic}}$$
$$= (B - V) - (B - V)_0$$

Robert Kurucz @CfA

The Kurucz (Kurucz & Castelli) grids of model atmospheres

http://kurucz.harvard.edu/grids.html http://www.ser.oats.inaf.it/castelli/

Figure 1.8 Theoretical monochromatic flux emerging form an A type star with $T_{\text{eff}} = 8000$ K. The first four Balmer absorption lines, as well as the Balmer jump, are identified in this figure. Thousands of other absorption atomic lines can also be seen. This theoretical flux was obtained with the Phoenix stellar atmosphere code (Hauschildt, P.H., Allard, F. and Baron, E., *The Astrophysical Journal*, 512, 377 (1999)) while using the elemental abundances found in the Sun. The flux at the surface of a blackbody with T = 8000 K (dotted curve) is also shown.

Different temperature, elements (at different excitation and ionization states) \rightarrow different set of spectral lines

Figure 11-5 Discovering the Universe, Seventh Edition © 2006 W. H. Freeman and Company

Line ratios \rightarrow Temperature

I --- neutral atoms; II --- ionized once; III --- ionized twice; ...

e.g., $H I = H^0 \dots H II = H^+ \dots He III = He^{+2} \dots Fe XXVI = Fe^{+25}$

Brown dwarfs and Planetary Objects

http://www.exoclimes.com/paper-outlines/exoplanets-and-brown-dwarfs-ii/

Using imaging photometry (time saving) to trace spectral features

One of the SDSS color-color diagrams

http://spiff.rit.edu/classes/phys440/lectures/color/sdss_color_color_b.gif

To measure the stellar luminosity

◆ Absolute Magnitude *M* defined as apparent magnitude of a star if it were placed at a distance of 10 pc $M_V^{\odot} = +4.83 \text{ mag} \ m_V^{\odot} = -26.74 \text{ mag}$ $m_\lambda - M_\lambda = 5 \log(d_{\rm pc}) - 5$

But there is extinction ... $m_{\lambda} - M_{\lambda} = 5 \log(d_{\rm pc}) - 5 + A_{\lambda}$ $d_{\rm pc} = 1/p^{"}$

Bolometric magnitude – the absolute magnitude integrated over all wavelengths. We define the bolometric correction

Bolometric Correction

$$BC = M_{\rm bol} - M_{\rm v}$$

 $M_{
m bol}^{\odot} = +4.74
m mag$

is a function of the spectral type (*min for F type stars, why?*) and luminosity of a star.

That is, one can apply a BC (always negative, why?) to a star to estimate its luminosity (from the photosphere).

Total energy flux of the Sun received immediately outside the Earth atmosphere (d = 1 au)

$$f_{\odot} = 1.3608(5) \times 10^{6} [\text{erg s}^{-1} \text{ cm}^{-2}]$$

= 1.3608 [kW/m²] (solar "constant")

- ✓ Including radiation at all frequency
- ✓ Varied < 0.2% in the past 400 years; varying duing 11-year sunspot cycles</p>
- ✓ Much lower billions of years ago (*why?*)

Two-Color Diagrams

$$(U - B)$$
 versus $(U - B)$

Figure 8. (U - B) vs. (B - V) TCD of the stars with polarimetric data. The symbols are the same as in Figure 7. The ZAMS from Schmidt-Kaler (1982) is shifted along a normal reddening vector with a slope of E(U - B)/E(B - V) = 0.72. The TCD shows a variable reddening in the cluster region with $E(B - V)_{min} \sim 0.5$ mag and $E(B - V)_{max} \sim 0.9$ mag.

Pandey+13

Spitzer/IRAC and 2MASS color-color diagram for the sources (black dots) in IC 1805. Class I sources are shown with red squares and Class II with blue diamonds. Magenta triangles mark the transition disk candidates.

Filter name	λ_{iso}^{b} (µm)	Δλ ^c (μm)	F_{λ} (W m ⁻² μ m ⁻¹)	<i>F</i> _ν (Jy)	(photons s ⁻¹ m ⁻² μ m ⁻¹)
V	0.5556 ^d		3.44×10^{-8}	3 540	9.60×10^{10}
J	1.215	0.26	3.31×10^{-9}	1 630	2.02×10^{10}
H	1.654	0.29	1.15×10^{-9}	1 0 5 0	9.56×10^9
Ks	2.157	0.32	4.30×10^{-10}	667	4.66×10^{9}
K	2.179	0.41	4.14×10^{-10}	655	4.53×10^{9}
L	3.547	0.57	6.59×10^{-11}	276	1.17×10^{9}
L'	3.761	0.65	5.26×10^{-11}	248	9.94×10^{8}
М	4.769	0.45	2.11×10^{-11}	160	5.06×10^{8}
8.7	8.756	1.2	1.96×10^{-12}	50.0	8.62×10^{7}
N	10.472	5.19	9.63×10^{-13}	35.2	5.07×10^{7}
11.7	11.653	1.2	6.31×10^{-13}	28.6	3.69×10^{7}
Q	20.130	7.8	7.18×10^{-14}	9.70	7.26×10^{6}

 Table 7.5. Filter wavelengths, bandwidths, and flux densities for Vega.^a

1 Jansky = 10^{-23} erg s⁻¹ cm⁻² Hz⁻¹ = 1.51×10^7 photons s⁻¹ m⁻² ($\Delta\lambda/\lambda$)⁻¹

Allen's *Astrophysical Quantities* (4th edition₅),

Band	λ_0	$d\lambda/\lambda$	$f_{v} (m=0)$	Reference
	μm		Jy	
U	0.36	0.15	1810	Bessel (1979)
В	0.44	0.22	4260	Bessel (1979)
V	0.55	0.16	3640	Bessel (1979)
R	0.64	0.23	3080	Bessel (1979)
Ι	0.79	0.19	2550	Bessel (1979)
J	1.26	0.16	1600	Campins, Reike, & Lebovsky (1985)
Н	1.60	0.23	1080	Campins, Reike, & Lebovsky (1985)
К	2.22	0.23	670	Campins, Reike, & Lebovsky (1985)
g	0.52	0.14	3730	Schneider, Gunn, & Hoessel (1983)
r	0.67	0.14	4490	Schneider, Gunn, & Hoessel (1983)
i	0.79	0.16	4760	Schneider, Gunn, & Hoessel (1983)
Z	0.91	0.13	4810	Schneider, Gunn, & Hoessel (1983)

https://www.astro.umd.edu/~ssm/ASTR620/mags.html

Notes

^aCohen et al. [1] recommend the use of Sirius rather than Vega as the photometric standard for $\lambda > 20 \ \mu m$ because of the infrared excess of Vega at these wavelengths. The magnitude of Vega depends on the photometric system used, and it is either assumed to be 0.0 mag or assumed to be 0.02 or 0.03 mag for consistency with the visual magnitude.

^bThe infrared isophotal wavelengths and flux densities (except for K_s) are taken from Table 1 of [1], and they are based on the UKIRT filter set and the atmospheric absorption at Mauna Kea. See Table 2 of [1] for the case of the atmospheric absorption at Kitt Peak. The isophotal wavelength is defined by $F(\lambda_{iso}) = \int F(\lambda)S(\lambda) d\lambda / \int S(\lambda) d\lambda$, where $F(\lambda)$ is the flux density of Vega and $S(\lambda)$ is the (detector quantum efficiency) × (filter transmission) × (optical efficiency) × (atmospheric transmission) [2]. λ_{iso} depends on the spectral shape of the source and a correction must be applied for broadband photometry of sources that deviate from the spectral shape of the standard star [3]. The flux density and λ_{iso} for K_s were calculated here. For another filter, K', at 2.11 µm, see [4].

^cThe filter full width at half maximum.

^d The wavelength at V is a monochromatic wavelength; see [5].

References

- 1. Cohen, M. et al. 1992, AJ, 104, 1650
- 2. Golay, M. 1974, Introduction to Astronomical Photometry (Reidel, Dordrecht), p. 40
- 3. Hanner, M.S., et al. 1984, AJ, 89, 162
- 4. Wainscoat, R.J., & Cowie, L.L. 1992, AJ, 103, 332
- 5. Hayes, D.S. 1985, in *Calibration of Fundamental Stellar Quantities*, edited by D.S. Hayes, et al., Proc. IAU Symp. No. 111 (Reidel, Dordrecht), p. 225

	1	Table 15.7.	. Calibratio	on of MK s	pectral typ	pes.	
Sp	M(V)	B - V	U - B	V - R	R - I	T _{eff}	BC
MAI	N SEQUEN	NCE, V					
05	-5.7	-0.33	-1.19	-0.15	-0.32	42 000	-4.40
09	-4.5	-0.31	-1.12	-0.15	-0.32	34 000	-3.33
B 0	-4.0	-0.30	-1.08	-0.13	-0.29	30 000	-3.16
B2	-2.45	-0.24	-0.84	-0.10	-0.22	20900	-2.35
B5	-1.2	-0.17	-0.58	-0.06	-0.16	15 200	-1.46
B8	-0.25	-0.11	-0.34	-0.02	-0.10	11 400	-0.80
A0	+0.65	-0.02	-0.02	0.02	-0.02	9 7 90	-0.30
A2	+1.3	+0.05	+0.05	0.08	0.01	9 0 00	-0.20
A5	+1.95	+0.15	+0.10	0.16	0.06	8 180	-0.15
F0	+2.7	+0.30	+0.03	0.30	0.17	7 300	-0.09
F2	+3.6	+0.35	0.00	0.35	0.20	7 000	-0.11
F5	+3.5	+0.44	-0.02	0.40	0.24	6650	-0.14
F8	+4.0	+0.52	+0.02	0.47	0.29	6250	-0.16
G0,	+4.4	+0.58	+0.06	0.50	0.31	5940	-0.18
G2	+4.7	+0.63	+0.12	0.53	0.33	5 790	-0.20
G5	+5.1	+0.68	+0.20	0.54	0.35	5 560	-0.21
G8	+5.5	+0.74	+0.30	0.58	0.38	5310	-0.40
K 0	+5.9	+0.81	+0.45	0.64	0.42	5 1 5 0	-0.31
K2	+6.4	+0.91	+0.64	0.74	0.48	4830	-0.42
K5	+7.35	+1.15	+1.08	0.99	0.63	4410	-0.72
MO	+8.8	+1.40	+1.22	1.28	0.91	3840	-1.38
M2	+9.9	+1.49	+1.18	1.50	1.19	3 5 2 0	-1.89
M5	+12.3	+1.64	+1.24	1.80	1.67	3 170	-2.73
GIA	NTS, III						
G5	+0.9	+0.86	+0.56	0.69	0.48	5 0 5 0	-0.34
G8	+0.8	+0.94	+0.70	0.70	0.48	4 800	-0.42
KO	+0.7	+1.00	+0.84	0.77	0.53	4 660	-0.50
K2	+0.5	+1.16	+1.16	0.84	0.58	4 3 9 0	-0.61
K5	-0.2	+1.50	+1.81	1.20	0.90	4 0 5 0	-1.02
M 0	-0.4	+1.56	+1.87	1.23	0.94	3 690	-1.25
M2	-0.6	+1.60	+1.89	1.34	1.10	3 5 4 0	-1.62
M5	-0.3	+1.63	+1.58	2.18	1.96	3 380	-2.48

		Т	able 15.7.	(Continue	Table 15.7. (Continued.)									
Sp	M(V)	B - V	U - B	V - R	R-I	T _{eff}	BC							
SUP	ERGIANT	S, I												
09	-6.5	-0.27	-1.13	-0.15	-0.32	32 000	-3.18							
B 2	-6.4	-0.17	-0.93	-0.05	-0.15	17 600	-1.58							
B5	-6.2	-0.10	-0.72	0.02	-0.07	13 600	-0.95							
B8	-6.2	-0.03	-0.55	0.02	0.00	11 100	-0.66							
A0	-6.3	-0.01	-0.38	0.03	0.05	9980	-0.41							
A2	-6.5	+0.03	-0.25	0.07	0.07	9380	-0.28							
A5	-6.6	+0.09	-0.08	0.12	0.13	8610	-0.13							
F0	-6.6	+0.17	+0.15	0.21	0.20	7460	-0.01							
F2	-6.6	+0.23	+0.18	0.26	0.21	7030	-0.00							
F5	-6.6	+0.32	+0.27	0.35	0.23	6370	-0.03							
F8	-6.5	+0.56	+0.41	0.45	0.27	5750	-0.09							
G0	-6.4	+0.76~	+0.52	0.51	0.33	5370	-0.15							
G2	-6.3	+0.87	+0.63	0.58	0.40	5 190	-0.21							
G5	-6.2	+1.02	+0.83	0.67	0.44	4930	-0.33							
G8	-6.1	+1.14	+1.07	0.69	0.46	4 700	-0.42							
K 0	-6.0	+1.25	+1.17	0.76	0.48	4 5 50	-0.50							
K2	-5.9	+1.36	+1.32	0.85	0.55	4310	-0.61							
K5	-5.8	+1.60	+1.80	1.20	0.90	3 9 9 0	-1.01							
M 0	-5.6	+1.67	+1.90	1.23	0.94	3 6 2 0	-1.29							
M2	-5.6	+1.71	+1.95	1.34	1.10	3 3 7 0	-1.62							
M5	-5.6	+1.80	+1.60:	2.18	1.96	2880	-3.47							

	Table	e 15.8. Ca	libration of M	K spectral type	s. ^a			Tab	le 15.8. (Cont	inued.)	
Sp	${\cal M}/{\cal M}_{\odot}$	R/R_{\odot}	$\log(g/g_{\odot})$	$\log(\bar{\rho}/\bar{\rho}_{\odot})$	$v_{\rm rot} \ ({\rm kms^{-1}})$	Sp	${\cal M}/{\cal M}_{\odot}$	R/R_{\odot}	$\log(g/g_{\odot})$	$\log(\bar{\rho}/\bar{\rho}_{\odot})$	$v_{\rm rot}~({\rm kms^{-1}})$
MA	N SEQUENC	E.V				GIA	NTS, III				<i>3</i> ¹
03	120	15	-0.3	-1.5		B 0	20	15	-1.1	-2.2	120
05	60	12	-0.4	-1.5		B5	7	8	-0.95	-1.8	130
06	37	10	-0.45	-1.45		A0	4	5		-1.5	100
08	23	8.5	-0.5	-1.4	200	G0	1.0	6	-1.5	-2.4	30
BO	17.5	7.4	-0.5	-1.4	170	G5	1.1	10	-1.9	-3.0	< 20
B3	7.6	4.8	-0.5	-1.4 -1.15	190	K 0	1.1	15	-2.3	-3.5	< 20
						K5	1.2	25	-2.7	-4.1	< 20
B5	5.9	3.9	-0.4	-1.00	240	M 0	1.2	40	-3.1	-4.7	
B8	3.8	3.0	-0.4	-0.85	220	SUD	ERGIANTS,	т			
A0	2.9	2.4	-0.3	-0.7	180	05	70	30:	11	26	
A5	2.0	1.7	-0.15	-0.4	170	06	40	25:	-1.1 -1.2	-2.6 -2.6	
F0	1.6	1.5	-0.1	-0.3	100	08	28	20	-1.2	-2.5	105
F5	1.4	1.3	-0.1	-0.2	30	BO	25	30	-1.2 -1.6	-2.5 -3.0	125
G0	1.05	1.1	-0.05	-0.1	10	B5	20	50	-2.0	-3.8	102 40
G5	0.92	0.92	+0.05	-0.1	< 10	AO	16	60	-2.3	-3.8 -4.1	40
K0	0.79	0.85	+0.05	+0.1	< 10	A5	13	60	-2.4	-4.2	38
K5	0.67	0.72	+0.1	+0.25	< 10	FO	12	80	-2.7	-4.6	30
M0	0.51	0.60	+0.15	+0.35		F5	10	100	-3.0	-5.0	< 25
M2	0.40	0.50	+0.2	+0.8		GO	10	120	-3.0	-5.2	< 25
M5	0.21	0.27	+0.5	+1.0		G5	12	150	-3.3	-5.2 -5.3	< 25 < 25
M8	0.06	0.10	+0.5	+1.2		KO	13	200	-3.5	-5.8	< 25 < 25
1410	0.00		, 0.0			K5	13	400	-4.1	-5.8 -6.7	< 25
						MO	13	500	-4.3	-7.0	- 25

Note

M2 19

^aA colon indicates an uncertain value.

800

-4.5

-7.4

	LUDI	C 10.7. 2010-1	uge main sequence	с.	
$(B-V)_0$	$(U-B)_0$	M_v	$(B-V)_0$	$(U-B)_0$	M_v
-0 ^m 33	-1 ^m 20	-5 ^m 2	+0.40	-0.01	+ 3.4
-0.305	-1.10	-3.6	+0.50	0.00	+ 4.1
-0.30	-1.08	-3.25	+0.60	+0.08	+ 4.7
-0.28	-1.00	-2.6	+0.70	+0.23	+ 5.2
-0.25	-0.90	-2.1	+0.80	+0.42	+ 5.8
-0.22	-0.80	-1.5	+0.90	+0.63	+ 6.3
-0.20	-0.69	-1.1	+1.00	+0.86	+ 6.7
-0.15	-0.50	-0.2	+1.10	+1.03	+ 7.1
-0.10	-0.30	+0.6	+1.20	+1.13	+ 7.5
-0.05	-0.10	+1.1	+1.30	+1.20	+ 8.0
0.00	+0.01	+1.5	+1.40	+1.22	+ 8.8
+0.05	+0.05	+1.7	+1.50	+1.17	+10.3
+0.10	+0.08	+1.9	+1.60	+1.20	+12.0
$(B-V)_0$	$(U-B)_0$	Μυ	$(B-V)_0$	$(U-B)_0$	Mυ
+0.15	+0.09	+2.1	+1.70	+1.32	+13.2
+0.20	+0.10	+2.4	+1.80	+1.43	+14.2
+0.25	+0.07	+2.55	+1.90	+1.53	+15.5
+0.30	+0.03	+2.8	+2.00	+1.64	+16.7
+0.35	0.00	+3.1			

Table 15.9. Zero-age main sequence.

9.7 Stellar Temperature and Luminosity

Effective Temperature, Bolometric Correction and Absolute Luminosity

	Main	Seq	uence	Stars	LC	=	V
--	------	-----	-------	-------	----	---	---

Effective temperature, T_e, color index, $(CI)_o = (U - B)_o$, $(B - V)_o$ or $(R - I)_o$, absolute visual magnitude, M_V, bolometric correction, BC, absolute luminosity, L, in units of the solar value, L_{\odot}, for main sequence stars, or luminosity class LC = V. Schmidt-Kaler (1982).

Sp	log T _{eff}	T _{eff} (°K)	(CI) _o (mag)	M _V (mag)		M _{bol} (mag)	L (L _☉)
		U In F	$(U-B)_o$				
O 3	4.720	52500	- 1.22	- 6.0	- 4.75	- 10.7	1.4×10^{6}
4	4.680	48000	- 1.20	- 5.9	- 4.45	- 10.3	9.9×10^{5}
5	4.648	44500	- 1.19	- 5.7	- 4.40	- 10.1	7.9×10^{5}
6	4.613	41000	- 1.17	- 5.5	- 3.93	- 9.4	4.2×10^{5}
7	4.580	38000	- 1.15	- 5.2	- 3.68	- 8.9	2.6×10^{5}
8	4.555	35800	- 1.14	- 4.9	- 3.54	- 8.4	1.7×10^{5}
9	4.518	33000	- 1.12	- 4.5	- 3.33	- 7.8	9.7 ×10 ⁴
B0	4.486	30000	- 1.08	- 4.0	- 3.16	- 7.1	5.2×10^{4}
1	4.405	25400	- 0.95	- 3.2	- 2.70	- 5.9	1.6×10^{4}
2	4.342	22000	- 0.84	- 2.4	- 2.35	- 4.7	5.7×10^{3}
3	4.271	18700	- 0.71	- 1.6	- 1.94	- 3.5	1.9×10^{3}
5	4.188	15400	- 0.58	- 1.2	- 1.46	- 2.7	8.3×10^{2}
6	4.146	14000	- 0.50	- 0.9	- 1.21	- 2.1	500
7	4.115	13000	- 0.43	- 0.6	- 1.02	- 1.6	320
8	4.077	11900	- 0.34	- 0.2	- 0.80	- 1.0	180
9	4.022	10500	- 0.20	+0.2	- 0.51	- 0.3	95
			$(B-V)_o$				
AO	3.978	9520	0.02	+0.6	- 0.30	+0.3	54
1	3.965	9230	+0.01	+1.0	- 0.23	+0.8	35
2	3.953	8970	+0.05	+1.3	- 0.20	+1.1	26
3	3.940	8720	+0.08	+1.5	- 0.17	+1.3	21

Effective Temperature, Bolometric Correction and Absolute Luminosity

Main Sequence Stars LC = V

Sp	log T _{eff}	Teff	$(CI)_o$	Mv	BC	M _{bol}	L
•	$\log T_{eff}$	(°K)	(mag)	(mag)	(mag)	(mag)	(L _☉)

 $(B-V)_o$

8

138

			$(B-V)_o$				
A5	3.914	8200	+0.15	+1.9	- 0.15	+1.7	14
7	3.895	7850	+0.20	+2.2	- 0.12	+2.1	10.5
8	3.880	7580	+0.25	+2.4	- 0.10	+2.3	8.6
FO	3.857	7200	+0.30	+2.7.	- 0.09	+2.6	6.5
2	3.838	6890	+0.35	+3.6	- 0.11	+3.5	2.9
5	3.809	6440	+0.44	+3.5	- 0.14	+3.4	3.2
8	3.792	6200	+0.52	+4.0	- 0.16	+3.8	2.1
G0	3.780	6030	+0.58	+4.4	- 0.18	+4.2	1.5
2	3.768	5860	+0.63	+4.7	- 0.20	+4.5	1.1
5	3.760	5770	+0.68	+5.1	- 0.21	+4.9	0.79
8	3.746	5570	+0.74	+5.5	- 0.40	+5.1	0.66
KO	3.720	5250	+0.81	+5.9	- 0.31	+5.6	0.42
1	3.706	5080	+0.86	+6.1	- 0.37	+5.7	0.37
2	3.690	4900	+0.91	+6.4	- 0.42	+6.0	0.29
3	3.675	4730	+0.96	+6.6	- 0.50	+6.1	0.26
4	3.662	4590	+1.05	+7.0	- 0.55	+6.4	0.19
5	3.638	4350	+1.15	+7.4	- 0.72	+6.7	0.15
7	3.609	4060	+1.33	+8.1	- 1.01	+7.1	0.10
			$(R-I)_o$				
M0	3.585	3850	+0.92	+8.8	- 1.38	+7.4	7.7×10^{-2}
1	3.570	3720	+1.03	+9.3	- 1.62	+7.7	6.1×10^{-2}
2	3.554	3580	+1.17	+9.9	- 1.89	+8.0	4.5×10^{-2}
3	3.540	3470	+1.30	+10.4	- 2.15	+8.2	3.6×10^{-2}
4	3.528	3370	+1.43	+11.3	- 2.38	+8.9	1.9×10^{-2}
5	3.510	3240	+1.61	+12.3	- 2.73	+9.6	1.1×10^{-2}
6	3.485	3050	+1.93	+13.5	- 3.21	+10.3	5.3×10^{-3}
7	3.468	2940	+2.1	+14.3	- 3.46	+10.8	3.4×10^{-3}
8	3.422	2640	+2.4	+16.0	- 4.1	+11.9	1.2×10^{-3}

Lang "Astrophysical Data: Planets and Stars" (1992)¹

1 140

Effective Temperature, Bolometric Correction and Absolute Luminosity

Giant Stars LC = III

Effective temperature, T_{eff} , color index, $(CI)_o = (U - B)_o$, $(B - V)_o$ or $(R - I)_o$, absolute visual magnitude, M_V , bolometric correction, BC, absolute luminosity, L, in units of the solar value, L_{\odot} , for giant stars, or luminosity class LC = III. Schmidt-Kaler (1982).

Sp	log T _{eff}	T _{eff} (°K)	(<i>CI</i>) _o (mag)	M _V (mag)	BC (mag)	M _{bol} (mag)	L (L _☉)
			$(U-B)_o$				
O 3	4.698	50000	- 1.22	- 6.6	- 4.58	- 11.2	2.1×10^{6}
4	4.658	45500	- 1.20	- 6.5	- 4.28	- 10.8	1.5×10^{6}
5	4.628	42500	- 1.18	- 6.3	- 4.05	- 10.3	9.9×10^{5}
6	4.596	39500	- 1.17	- 6.1	- 3.80	- 9.9	6.5×10^{5}
7	4.568	37000	- 1.14	- 5.9	- 3.58	- 9.5	4.4×10^{5}
8	4.541	34700	- 1.13	- 5.8	- 3.39	- 9.2	3.4×10^{5}
9	4.505	32000	- 1.12	- 5.6	- 3.13	- 8.7	2.2×10^{5}
B0	4.463	29000	- 1.08	- 5.1	- 2.88	- 8.0	1.1×10^{5}
1	4.381	24000	- 0.97	- 4.4	- 2.43	- 6.8	3.9×10^{4}
2	4.308	20300	- 0.91	- 3.9	- 2.02	- 5.9	1.7×10^{4}
3	4.234	17100	- 0.74	- 3.0	- 1.60	- 4.6	5.0×10^{3}
5	4.177	15000	- 0.58	- 2.2	- 1.30	- 3.5	1.8×10^{3}
6	4.150	14100	- 0.51	- 1.8	- 1.13	- 2.9	1.1×10^{3}
7	4.120	13200	- 0.44	- 1.5	- 0.97	- 2.5	700
8	4.095	12400	- 0.37	- 1.2	- 0.82	- 2.0	460
9	4.042	11000	- 0.20	- 0.6	- 0.71	- 1.3	240
			$(B-V)_o$				
A 0	4.005	10100	- 0.03	+0.0	- 0.42	- 0.4	106
1	3.977	9480	+0.01	+0.2	- 0.29	- 0.1	78
2	3.954	9000	+0.05	+0.3	- 0.20	+0.1	65
3	3.935	8600	+0.08	+0.5	- 0.17	+0.3	53

Effective Temperature, Bolometric Correction and Absolute Luminosity

Giant Stars LC = III

8

Sp	log T _{eff}	T _{eff} (°K)	(<i>CI</i>) _o (mag)	M _V (mag)	BC (mag)	M _{bol} (mag)	L (L⊙)
			$(B-V)_o$				
A5	3.908	8100	+0.15	+0.7	- 0.14	+0.6	43
7	3.884	7650	+0.22	+1.1	- 0.10	+1.0	29
8	3.873	7450	+0.25	+1.2	- 0.10	+1.1	26
FO	3.854	7150	+0.30	+1.5	- 0.11	+1.4	20
2	3.837	6870	+0.35	+1.7.	- 0.11	+1.6	17
5	3.811	6470	+0.43	+1.6	- 0.14	+1.6	17
8	3.789	6150	+0.54		- 0.16		
G0	3.767	5850	+0.65	+1.0	- 0.20	+0.8	34
2	3.737	5450	+0.77	+0.9	- 0.27	+0.6	40
5	3.712	5150	+0.86	+0.9	- 0.34	+0.6	43
8	3.690	4900	+0.94	+0.8	- 0.42	+0.4	5
K0	3.676	4750	+1.00	+0.7	- 0.50	+0.2	60
1	3.663	4600	+1.07	+0.6	- 0.55	+0.1	69
2	3.646	4420	+1.16	+0.5	- 0.61	- 0.1	79
3	3.623	4200	+1.27	+0.3	- 0.76	- 0.5	11
4	3.602	4000	+1.38	+0.0	- 0.94	- 0.9	17
5	3.596	3950	+1.50	- 0.2	- 1.02	- 1.2	22
7	3.586	3850	+1.53	- 0.3	- 1.17	- 1.5	28
			$(R-I)_o$				
M 0	3.580	3800	+0.90	- 0.4	- 1.25	- 1.6	33
1	3.570	3720	+0.96	- 0.5	- 1.44	- 1.9	43
2	3.559	3620	+1.08	- 0.6	- 1.62	- 2.2	55
3	3.548	3530	+1.30	- 0.6	- 1.87	- 2.5	70
4	3.535	3430	+1.60	- 0.5	- 2.22	- 2.7	88
5	3.522	3330	+1.91	- 0.3	- 2.48	- 2.8	93
6	3.510	3240	+2.20	- 0.2	- 2.73	- 2.9	107

Lang "Astrophysical Data: Planets and Stars" (1992⁶)²

Effective Temperature, Bolometric Correction and Absolute Luminosity

Supergiant Stars LC = I

Effective temperature, T_{eff} , color index, $(CI)_o = (U - B)_o$, $(B - V)_o$ or $(R - I)_o$, absolute visual magnitude, M_V , bolometric correction, BC, absolute luminosity, L, in units of the solar value, L_{\odot} , for supergiant stars, or luminosity class approximately LC \approx Iab. Schmidt-Kaler (1982).

Sp	log T _{eff}	T _{eff} (°K)	(<i>CI</i>) _o (mag)	M _V (mag)	BC (mag)	M _{bol} (mag)	L (L _☉)
	E ^E R	1	$(U-B)_o$	-			1
O3	4.675	47300	- 1.21	- 6.8:	- 4.41	- 11.2:	2.2×10^{6}
4	4.644	44100	- 1.19	- 6.7:	- 4.17	- 10.9:	1.6×10^{6}
5	4.605	40300	- 1.17	- 6.6	- 3.87	- 10.5	1.1×10^{6}
6	4.591	39000	- 1.16	- 6.5	- 3.74	- 10.2	9.0×10^{5}
7	4.553	35700	- 1.14	- 6.5	- 3.48	- 10.0	7.1×10^{5}
8	4.535	34200	- 1.13	- 6.5	- 3.35	- 9.8	6.2×10^{5}
9	4.513	32600	- 1.13	- 6.5	- 3.18	- 9.7	5.3×10^5
B0	4.415	26000	- 1.06	- 6.4	- 2.49	- 8.9	2.6×10^{5}
1	4.318	20800	- 1.00	- 6.4	- 1.87	- 8.3	1.5×10^{5}
2	4.267	18500	- 0.94	- 6.4	- 1.58	- 8.0	1.1×10^{5}
3	4.209	16200	- 0.83	- 6.3	- 1.26	- 7.6	7.6×10^{4}
5	4.133	13600	- 0.72	- 6.2	- 0.95	- 7.2	5.2×10^{4}
6	4.114	13000	- 0.69	- 6.2	- 0.88	- 7.1	4.9×10^{4}
7	4.085	12200	- 0.64	- 6.2	- 0.78	- 7.0	4.4×10^{4}
8	4.048	11200	- 0.56	- 6.2	- 0.66	- 6.9	4.0×10^{4}
9	4.012	10300	- 0.50	- 6.2	- 0.52	- 6.7	3.5×10^{4}
	0.000	0700	$(U-B)_o$	- 6.3	- 0.41	- 6.7	3.5×10^{4}
A0	3.988	9730	- 0.38	(5,5,5)	-0.41 -0.32	- 6.7	3.5×10^4
1	3.965	9230	- 0.29	- 6.4		- 6.7	3.5×10^4 3.6×10^4
2	3.958	9080	- 0.25	- 6.5	- 0.28	- 6.7	3.5×10^4
3	3.943	8770	- 0.14	- 6.5	- 0.21	- 0.7	3.3 X 10-

Effective Temperature, Bolometric Correction and Absolute Luminosity

Supergiant Stars LC = I

Sp	log T _{eff}	T _{eff} (°K)	(CI) _o (mag)	MV (mag)	BC (mag)	M _{bol} (mag)	L (L _☉)
			$(U-B)_o$				
A5	3.930	8510	- 0.07	- 6.6	- 0.13	- 6.7	3.5 ×10
7	3.911	8150	+0.00	- 6.6	- 0.06	- 6.7	3.3×10^{6}
8	3.900	7950	+0.11	- 6.6	- 0.03	- 6.6	3.2 ×10
			$(B-V)_o$				
FO	3.886	7700	+0.17	- 6.6	- 0.01	- 6.6	$3.2 \times 10^{\circ}$
2	3.866	7350	+0.23	- 6.6	- 0.00	- 6.6	3.1 ×10
5	3.839	6900	+0.32	- 6.6	- 0.03	- 6.6	3.2×10
8	3.785	6100	+0.56	- 6.5	- 0.09	- 6.6	3.1 ×10
G0	3.744	5550	+0.76	- 6.4	- 0.15	- 6.6	3.0 ×10
2	3.716	5200	+0.87	- 6.3	- 0.21	- 6.5	2.9 ×10
5	3.686	4850	+1.02	- 6.2	- 0.33	- 6.5	2.9×10
8	3.663	4600	+1.15	- 6.1	- 0.42	- 6.5	2.9 ×10
K0	3.645	4420	+1.24	- 6.0	- 0.50	- 6.5	2.9 ×10
1	3.636	4330	+1.30	- 6.0	- 0.56	- 6.6	3.0 ×10
2	3.628	4250	+1.35	- 5.9	- 0.61	- 6.5	2.9×10
3	3.611	4080	+1.46	- 5.9	- 0.75	- 6.6	3.3 ×10
4	3.597	3950	+1.53	- 5.8	- 0.90	- 6.7	3.4×10
5	3.585	3850	+1.60	- 5.8	- 1.01	- 6.8	3.8×10
7	3.568	3700	+1.63	- 5.7	- 1.20	- 6.9	4.1 ×10
			$(R-I)_o$				
M0	3.562	3650	+0.96	- 5.6	- 1.29	- 6.9	4.1 ×10
1	3.550	3550	+1.04	- 5.6	- 1.38	- 7.0	4.4 ×10
2	3.538	3450	+1.15	- 5.6	- 1.62	- 7.2	5.5 ×10
3	3.505	3200	+1.37	- 5.6	- 2.13	- 7.7	5.6 ×10
4	3.474	2980	+1.59	- 5.6	- 2.75	- 8.3	1.6×10
5	3.446	2800	+1.80	- 5.6	- 3.47	- 9.1	3.0×10
6	3.415:	2600:	+2.02:	- 5.6	- 3.90	- 9.5	4.5×10

Lang "Astrophysical Data: Planets and Stars" (1992)

Table B.1 Averaged Absolute Visual Magnitude Calibration for the Early-type Stars

Table B.1 Continued

SpT	v	IV	III	II	Ib	Iab	Ia	
02-3	-5.6		-6.0				-6.8	20
04	-5.5		-6.4:	•••			-7.0	
05	-5.5		-6.4			•••	-7.0	
06	-5.3		-5.6		-6.3:		-7.0	
06.5	-5.3		-5.6		-6.3:		-7.0	
07	-4.8		-5.6	-5.9	-6.3:		-7.0	
07.5	-4.8		-5.6	-5.9	-6.3:		-7.0	
08	-4.4		-5.6	-5.9	-6.2:	-6.5	-7.0	
08.5	-4.4		-5.6	-5.9	-6.2:	-6.5	-7.0	
09	-4.3	-5.0	-5.6	-5.9	-6.2	-6.5	-7.0	
09.5	-4.1	-4.7	-5.3	-5.9	-6.2	-6.5	-7.0	
09.7		•••		-5.9	-6.2	-6.5	-7.0	
B0	-4.1	-4.6	-5.0	-5.6	-5.8		-7.0	
B 1	-3.5	-3.9	-4.4	-5.1	-5.7		-7.0	
B2	-2.5	-3.0	-3.6	-4.4	-5.7		-7.0	
B3	-1.7	-2.3	-2.9	-3.9	-5:7		-7.0	
B4	-1.4	-2.0	-2.6	-3.9	-5:7		-7.0	
B5	-1.1	-1.6	" -2.2	-3.7	-5.7		-7.0	
B6	-0.9	-1.3	-1.9	-3.7	-5.7		-7.1	
B 7	-0.4	-1.3	-1.6	-3.6	-5.6		-7.1	
B 8	0.0	-1.0	-1.4	-3.4	-5.6	•	-7.1	
B9	0.7	-0.5	-0.8	-3.1	-5.5	`	-7.1	
A0	1.4	0.3	-0.8	-2.8	-5.2	• •	-7.1	• • •
Al	1.6	0.3	-0.4	-2.6	-5.1		-7.3	
A2	1.9	0.5	-0.2	-2.4	-5.0	×	-7.5	3
A3	2.0	0.7	0.0	-2.3	-4.8		-7.6	*)
A5	2.1	1.2	0.3	-2.1	-4.8		-7.7	
A7	2.3	1.5	0.5	-2.0	-4.8		-8.0	
A9	2.5	1.6	0.6	-2.0	-4.8		-8.3	
F0	2.6	1.7	0.6	-2.0	-4.7		-8.5	
F 1	2.8	1.8	0.6	-2.0	-4.7		-8.5	

SpT	V	IV	III	II	Ib	Iab	Ia
F2	3.0	1.9	0.6	-2.0	-4.6		-8.4
F3	3.1	1.9	0.6	-2.0	-4.6		-8.3
F4	3.3	2.0	0.7	-2.0	-4.6		-8.3
F5	3.4	2.1	0.7	-2.0	-4.4		-8.2
F6	3.7	2.2	0.7	-2.0	-4.4		-8.1
F7	3.8	2.3	0.6	-2.0	-4.4		-8.1
F8	4.0	2.4	0.6	-2.0	-4.3		-8.0
F9	4.2	2.6	0.6	-2.0	-4.2		-8.0

Table B.2 Averaged Absolute Visual Magnitude Calibration for the Late-type Sta	urs
2 (1994-01) 200 (1994-01)	

SpT	V.	IV	IIIb	IIIab	IIIa	II	Ib	Ia
G0	4.4	2.8		0.6		-2.0	-4.1	-8.0
G1	4.5	2.9		0.5		-2.0	-4.1	-8.0
G2	- 4.7	3.0		0.4		-2.0	-4.0	-8.0
G3	4.9	3.0		0.4		-1.9	-4.0	-8.0
G4	5.0	3.1		0.4		-1.9	-3.9	-8.0
G5	5.2	3.2		0.4		-1.9	-3.9	-8.0
G6	5.3	3.2		0.4		-1.9	-3.8	-8.0
G7 ·	5.5	3.2		0.3		-1.9	-3.8	-8.0
G8	5.6	3.2	0.8	0.3	-0.4	-1.9	-3.7	-8.0
G9	5.7	3.2	0.8	0.25	-0.4	-2.0	-3.7	-8.0
,								
K0	5.9	3.2	0.7	0.2	-0.5	-2.0	-3.6	-8.0
K1	6.1	*	0.6	0.1	-0.6	-2.1	-3.6	-8.0
Ķ2	6.3		0.6	0.1	-0.7	-2.1	-3.6	-8.0
K3	6.9		0.4	-0.1	-0.8	-2.2	-3.6	-8.0
K4	7.4		0.3	-0.2	-1.0	-2.3	-3.7	-8.0
K5	8.0		0.1	-0.4	-1.1	-2.5	-3.8	-8.0
K7	8.5		0.0	-0.5	-1.2	-2.5	-3.8	-7.7
M0	9.2		-0.2	-0.7	-1.3	-2.6	-3.9	-7.3
M1	9.7		-0.3	-0.8	-1.5	-2.7	-4.1	-7.3
M2	10.6		-0.6	-1.1	-1.7	-2.9	-4.2	-7.0
M3	11.6		-0.8	-1.3	-1.9			
M4	12.9		-1.1	-1.6	-2.2			
M5	14.5							
M6	16.1							

Gray

Table B.3 Effective Temperature (K) Calibration for the Early-type Stars

SpT	Dwarfs	Giants	Supergiants			
03	44852	42942	42233		Table P	B.3 Contin
O4	42857	41486	40422		Tuble L	le contin
05	40862	39507	38612	~ ~		a
05.5	39865	38003	37706	SpT	Dwarfs	Giants
06	38867	36673	36801	F0	7250	7350
06.5	37870	35644	35895	F1	7120	7200
O7	36872	34638	34990			
07.5	35874	33487	34084	F2	7000	7050
08	34877	32573	33179	F3	6750	6840
O8.5	33879	31689	32274	F5	6550	6630
09	32882	30737	31368	F7	6250	6330
09.5	31884	30231	304,63	F8	6170	6220
B 0	29000	29000		_F9	6010	6020
B1	24500	24500				
B2	19500	21050	18000			
B 3	16500	16850	,			
B5	15000	14800	13600 •		14	
B 7	13000	13700		•		
B 8	11500	13150	11100 *		• • •	
B9	10700	11731				
A0	9800	10000	9900			
A1	9500	9500			~	
A2	8900	9000	9000			
A3	8520	8500	8400			
A5	8150	8000	8100			
A7	7830	7750	7800			
A9	7380	7450				
			and the second se			

	· ·				
	-	SpT	Dwarfs	Giants	Supergiants
		G0	5900	5800	5590
		G1	5800	5700	5490
•		G2	5750	5500	5250
		G5	5580	5200	~5000
		G8	5430	4950	4700
		G9 '	5350		
	· ·	K 0	5280	4810	4500
		K 1	5110	4585	4200
		K2	4940	4390	4100
		K3	4700	4225	
		K5	4400	3955	
		_K7	4130		3840
		÷			
		M 0	3759	3845	3790
		M 1	3624	3750	3745
		M2	3489	3655	3660
		M3	3354	3560	3605
		M4	3219	3460	
		M5	3084	3355	3450
		M6	2949	3240	
		M7	2814	3100	
		M 8	2679	2940	
		M9	2544	2755	
		.L0	2409		
		L0 L1	2409 2274		
			2274		
		L2 L3	2139		
		L3 L4	2004 1869		
		L4 L5	1734		
		L5 L6			
		L6 L7	1599		
			1464		
		L8	1329		

 Table B.4 Effective Temperature (K) Calibration for the Late-type Stars

.

.

J

.

Continued

Supergiants

7200

7050

6960

6770

6570

6280

6180

5980

	Main-Sequence Stars (Luminosity Class V)										
Sp.	T_e										
Туре	(<i>K</i>)	L/L_{\odot}	R/R_{\odot}	M/M_{\odot}	$M_{\rm bol}$	BC	M_V	U - B	B - V		
05	42000	499000	13.4	60	-9.51	-4.40	-5.1	-1.19	-0.33		
O6	39500	324000	12.2	37	-9.04	-3.93	-5.1	-1.17	-0.33		
07	37500	216000	11.0		-8.60	-3.68	-4.9	-1.15	-0.32		
08	35800	147000	10.0	23	-8.18	-3.54	-4.6	-1.14	-0.32		
B0	30000	32500	6.7	17.5	-6.54	-3.16	-3.4	-1.08	-0.30		
B 1	25400	9950	5.2	1.00	-5.26	-2.70	-2.6	-0.95	-0.26		
B 2	20900	2920	4.1	2.000	-3.92	-2.35	-1.6	-0.84	-0.24		
B 3	18800	1580	3.8	7.6	-3.26	-1.94	-1.3	-0.71	-0.20		
B5	15200	480	3.2	5.9	-1.96	-1.46	-0.5	-0.58	-0.17		
B6	13700	272	2.9	19 <u></u>	-1.35	-1.21	-0.1	-0.50	-0.15		
B7	12500	160	2.7		-0.77	-1.02	+0.3	-0.43	-0.13		
B 8	11400	96.7	2.5	3.8	-0.22	-0.80	+0.6	-0.34	-0.11		
B 9	10500	60.7	2.3	3 	+0.28	-0.51	+0.8	-0.20	-0.07		
A0	9800	39.4	2.2	2.9	+0.75	-0.30	+1.1	-0.02	-0.02		
Al	9400	30.3	2.1	<u>- 11-11</u>	+1.04	-0.23	+1.3	+0.02	+0.01		
A2	9020	23.6	2.0	(a r 13)	+1.31	-0.20	+1.5	+0.05	+0.05		
A5	8190	12.3	1.8	2.0	+2.02	-0.15	+2.2	+0.10	+0.15		
A8	7600	7.13	1.5		+2.61	-0.10	+2.7	+0.09	+0.25		
F0	7300	5.21	1.4	1.6	+2.95	-0.09	+3.0	+0.03	+0.30		
F2	7050	3.89	1.3	(d . 20)	+3.27	-0.11	+3.4	+0.00	+0.35		
F5	6650	2.56	1.2	1.4	+3.72	-0.14	+3.9	-0.02	+0.44		
F8	6250	1.68	1.1		+4.18	-0.16	+4.3	+0.02	+0.52		

- 100r - 9,621		Mair	n-Sequen	ce Stars (I	Luminosit	ty Class V	7)		
Sp. Туре	T_e (K)	L/L_{\odot}	R/R_{\odot}	M/M_{\odot}	<i>M</i> _{bol}	BC	M_V	U - B	B - V
G0	5940	1.25	1.06	1.05	+4.50	-0.18	+4.7	+0.06	+0.58
G2	5790	1.07	1.03		+4.66	-0.20	+4.9	+0.12	+0.63
Sun ^a	5777	1.00	1.00	1.00	+4.74	-0.08	+4.82	+0.195	+0.650
G8	5310	0.656	0.96		+5.20	-0.40	+5.6	+0.30	+0.74
K0	5150	0.552	0.93	0.79	+5.39	-0.31	+5.7	+0.45	+0.81
K1	4990	0.461	0.91		+5.58	-0.37	+6.0	+0.54	+0.86
K3	4690	0.318	0.86		+5.98	-0.50	+6.5	+0.80	+0.96
K4	4540	0.263	0.83		+6.19	-0.55	+6.7	:	+1.05
K5	4410	0.216	0.80	0.67	+6.40	-0.72	+7.1	+0.98	+1.15
K7	4150	0.145	0.74		+6.84	-1.01	+7.8	+1.21	+1.33
M0	3840	0.077	0.63	0.51	+7.52	-1.38	+8.9	+1.22	+1.40
M1	3660	0.050	0.56		+7.99	-1.62	+9.6	+1.21	+1.46
M2	3520	0.032	0.48	0.40	+8.47	-1.89	+10.4	+1.18	+1.49
M3	3400	0.020	0.41		+8.97	-2.15	+11.1	+1.16	+1.51
M4	3290	0.013	0.35	1	+9.49	-2.38	+11.9	+1.15	+1.54
M5	3170	0.0076	0.29	0.21	+10.1	-2.73	+12.8	+1.24	+1.64
M6	3030	0.0044	0.24	1. <u></u>	+10.6	-3.21	+13.8	+1.32	+1.73
M7	2860	0.0025	0.20) - (111-12)	+11.3	-3.46	+14.7	+1.40	+1.80

10 <u>-17</u> -000	Giant Stars (Luminosity Class III)												
Sp. Туре	T_e (K)	L/L_{\odot}	R/R_{\odot}	M/M_{\odot}	M _{bol}	BC	M_V	U - B	B - V				
05	39400	741000	18.5	1 <u></u> .	-9.94	-4.05	-5.9	-1.18	-0.32				
06	37800	519000	16.8	(-9.55	-3.80	-5.7	-1.17	-0.32				
07	36500	375000	15.4		-9.20	-3.58	-5.6	-1.14	-0.32				
08	35000	277000	14.3	<u></u>	-8.87	-3.39	-5.5	-1.13	-0.31				
B0	29200	84700	11.4	20	-7.58	-2.88	-4.7	-1.08	-0.29				
B1	24500	32200	10.0	Construction in a	-6.53	-2.43	-4.1	0.97	-0.26				
B2	20200	11100	8.6	at the	-5.38	-2.02	-3.4	-0.91	-0.24				
B3	18300	6400	8.0		-4.78	-1.60	-3.2	-0.74	-0.20				
B5	15100	2080	6.7	7	-3.56	-1.30	-2.3	-0.58	-0.17				
B 6	13800	1200	6.1		-2.96	-1.13	-1.8	-0.51	-0.15				
B7	12700	710	5.5		-2.38	-0.97	-1.4	-0.44	-0.13				
B8	11700	425	5.0	2.	-1.83	-0.82	-1.0	-0.37	-0.11				
B9	10900	263	4.5		-1.31	-0.71	-0.6	-0.20	-0.07				
A0	10200	169	4.1	4	-0.83	-0.42	-0.4	-0.07	-0.03				
A1	9820	129	3.9		-0.53	-0.29	-0.2	+0.07	+0.01				
A2	9460	100	3.7		-0.26	-0.20	-0.1	+0.06	+0.05				
A5	8550	52	3.3		+0.44	-0.14	+0.6	+0.11	+0.15				
A8	7830	33	3.1		+0.95	-0.10	+1.0	+0.10	+0.25				

F0	7400	27	3.2		+1.17	-0.11	+1.3	+0.08	+0.30
F2	7000	24	3.3		+1.31	-0.11	+1.4	+0.08	+0.35
F5	6410	22	3.8		+1.37	-0.14	+1.5	+0.09	+0.43
GO	5470	29	6.0	1.0	+1.10	-0.20	+1.3	+0.21	+0.65
G2	5300	31	6.7		+1.00	-0.27	+1.3	+0.39	+0.77
G8	4800	44	9.6	0	+0.63	-0.42	+1.0	+0.70	+0.94
K 0	4660	50	10.9	1.1	+0.48	-0.50	+1.0	+0.84	+1.00
K 1	4510	58	12.5		+0.32	-0.55	+0.9	+1.01	+1.07
K3	4260	79	16.4	× <u> </u>	-0.01	-0.76	+0.8	+1.39	+1.27
K4	4150	93	18.7		-0.18	-0.94	+0.8		+1.38
K5	4050	110	21.4	1.2	-0.36	-1.02	+0.7	+1.81	+1.50
K7	3870	154	27.6		-0.73	-1.17	+0.4	+1.83	+1.53
M0	3690	256	39.3	1.2	-1.28	-1.25	+0.0	+1.87	+1.56
M1	3600	355	48.6		-1.64	-1.44	-0.2	+1.88	+1.58
M2	3540	483	58.5	1.3	-1.97	-1.62	-0.4	+1.89	+1.60
M3	3480	643	69.7		-2.28	-1.87	-0.4	+1.88	+1.61
M4	3440	841	82.0		-2.57	-2.22	-0.4	+1.73	+1.62
M5	3380	1100	96.7	<u></u>	-2.86	-2.48	-0.4	+1.58	+1.63
M6	3330	1470	116		-3.18	-2.73	-0.4	+1.16	+1.52
						19 19 19 19 19 19 19 19 19 19 19 19 19 1			

SuperBrane States (Islandstop States - FF- States)								
T_e (K)	L/L_{\odot}	R/R_{\odot}	M/M_{\odot}	$M_{ m bol}$	BC	M_V	U - B	B - V
40900	1140000	21.2	70	-10.40	-3.87	-6.5	-1,17	-0.31
38500	998000	22.4	40	-10.26	-3.74	-6.5	-1.16	-0.31
36200	877000	23.8		-10.12	-3.48	-6.6	-1.14	-0.31
34000	769000	25.3	28	-9.98	-3.35	-6.6	-1.13	-0.29
26200	429000	31.7	25	-9.34	-2.49	-6.9	-1.06	-0.23
21400	261000	37.3		-8.80	-1.87	-6.9	-1.00	-0.19
17600	157000	42.8		-8.25	-1.58	-6.7	-0.94	-0.17
16000	123000	45.8	(<u>******</u>)	-7.99	-1.26	-6.7	-0.83	-0.13
13600	79100	51.1	20	-7.51	-0.95	-6.6	-0.72	-0.10
12600	65200	53.8	1 1 1	-7.30	-0.88	-6.4	0.69	-0.08
11800	54800	56.4	(- Anos)	-7.11	-0.78	-6.3	-0.64	-0.05
11100	47200	58.9		-6.95	-0.66	-6.3	-0.56	-0.03
10500	41600	61.8		-6.81	-0.52	-6.3	-0.50	-0.02
9980	37500	64.9	16	-6.70	-0.41	-6.3	-0.38	-0.01
9660	35400	67.3		-6.63	-0.32	-6.3	-0.29	+0.02
9380	33700	69.7		-6.58	-0.28	-6.3	-0.25	+0.03
8610	30500	78.6	13	-6.47	-0.13	-6.3	-0.07	+0.09
7910	29100	91.1	3 <u>000000</u>	-6.42	-0.03	-6.4	+0.11	+0.14
	 (K) 40900 38500 36200 34000 26200 21400 17600 16000 13600 12600 11800 11100 10500 9980 9660 9380 8610 	(K) L/L_{\odot} 4090011400003850099800036200877000340007690002620042900021400261000176001570001600012300013600791001260065200118005480011100472001050041600998037500966035400938033700861030500	(K) L/L_{\odot} R/R_{\odot} 40900114000021.23850099800022.43620087700023.83400076900025.32620042900031.72140026100037.31760015700042.81600012300045.8136007910051.1126006520053.8136007910051.1126006520053.8118005480056.4111004720058.9105004160061.899803750064.996603540067.393803370069.786103050078.6	(K) L/L_{\odot} R/R_{\odot} M/M_{\odot} 40900114000021.2703850099800022.4403620087700023.83400076900025.3282620042900031.7252140026100037.31760015700042.81600012300045.8136007910051.120126006520053.8118005480056.4111004720058.9105004160061.899803750064.91696603540067.393803370069.786103050078.613	T_e K L/L_{\odot} R/R_{\odot} M/M_{\odot} M_{bol} 40900114000021.270-10.403850099800022.440-10.263620087700023.810.123400076900025.328-9.982620042900031.725-9.342140026100037.38.801760015700042.88.251600012300045.87.99136007910051.120-7.51126006520053.87.30118005480056.47.11111004720058.96.95105004160061.86.8199803750064.916-6.7096603540067.36.6393803370069.76.5886103050078.613-6.47	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Supergiant Stars (Luminosity Class Approximately Iab)

F0	7460	28800	102	12	-6.41	-0.01	-6.4	+0.15	+0.17	
F2	7030	28700	114	12-20	-6.41	0.00	-6.4	+0.18	+0.23	
F5	6370	29100	140	10	-6.42	-0.03	-6.4	+0.27	+0.32	
F8	5750	29700	174	3 	-6.44	-0.09	-6.4	+0.41	+0.56	
G	5370	30300	202	10	-6.47	-0.15	-6.3	+0.52	+0.76	
G2	2 5190	30800	218	1. 	-6.48	-0.21	-6.3	+0.63	+0.87	
G8		32400	272		-6.54	-0.42	-6.1	+1.07	+1.15	
K() 4550	33100	293	13	-6.56	-0.50	-6.1	+1.17	+1.24	
KI		34000	314	i contin	-6.59	-0.56	-6.0	+1.28	+1.30	
K3		36100	362	02	-6.66	-0.75	-5.9	+1.60	+1.46	
K4		37500	386		-6.70	-0.90	-5.8	- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	+1.53	
K		39200	415	13	-6.74	-1.01	-5.7	+1.80	+1.60	
K7		43200	473	((1111))	-6.85	-1.20	-5.6	+1.84	+1.63	
M	0 3620	51900	579	13	-7.05	-1.29	-5.8	+1.90	+1.67	
Μ		60300	672		-7.21	-1.38	-5.8	+1.90	+1.69	
M		72100	791	19	-7.41	-1.62	-5.8	+1.95	+1.71	
M		89500	967		-7.64	-2.13	-5.5	+1.95	+1.69	
M		117000	1220		-7.93	-2.75	-5.2	+2.00	+1.76	
M		165000	1640	24	-8.31	-3.47	-4.8	+1.60	+1.80	С
M		264000	2340		-8.82	-3.90	-4.9	(<u>1</u>)		L
							0.099.62			

SIMBAD Astronomical Database

015/4/21								sirius			
لاھ	Portal	Simbad Vi	zieR Ala	din X-Match	n Other	Help					
							S	irius			
other query modes :	<u>Identifier</u> <u>query</u>	<u>r Coordina</u> <u>query</u>	<u>te</u> <u>Criteria</u> <u>query</u>	a <u>Reference</u> <u>query</u>	<u>Basic</u> query	<u>Script</u> submission	<u>Output</u> options	Help			
Query : siri	us										
Available dat	a : Basic d	lata • Identi	fiers • Plo	ot & images_•	Bibliogra	aphy_• Measur	ements •	External archives • Notes • An			
		100110			Dionogr						
Basic data											
	-	1.1	1	1 /							
* alf CN		ouble or	multip	le star							
Other object	types:			GC,HD,HIC,HI) , V* (NSV)			RI ,IRAS,I	RC,2MASS,RAFGL) ,** (** ,WDS)			
ICRS coord	ICRS coord. (<i>ep=J2000</i>) :			06 45 08.91728 -16 42 58.0171 (Optical) [11.70 10.90 90] A <u>2007A&A474653V</u>							
FK5 coord.	(ep=J2000	eq=2000) :	06 45 08.	917 -16 42 5	8.02 [11	70 10.90 90]					
FK4 coord.	(ep=B1950) eq=1950) .	06 42 56.	72 -16 38 45	.4 [67.3	9 63.09 0]					
Gal coord. (ep=J2000) :			227.2303 -08.8903 [11.70 10.90 90]								
Proper motions mas/yr :			-546.01 -1223.07 [1.33 1.24 0] A 2007A&A474653V								
Radial velocity / Redshift / cz :			V(km/s) -5.50 [0.4] / z(~) -0.000018 [0.000001] / cz -5.50 [0.40] (~) A 2006AstL327596								
Parallaxes mas: 379.21 [1.58				.58] A <u>2007A</u>	&A474.	.653V					
Spectral type	Spectral type: A1V+DA C <u>2013yCat1.2023S</u>										
Fluxes (8) :			U -1.51 [~] C <u>2002yCat.22370D</u>								
				~] C <u>2002yCa</u>							
			V -1.46	[~] C <u>2002yCa</u>	at.2237	0D					
			R -1.46	[~] C <u>2002yCa</u>	at.2237	0D					
				[~] C <u>2002yCa</u>							
				~] C <u>2002yCa</u>							
mha	4/			~] C <u>2002yCa</u>							
	11/		к -1.35	[~] C <u>2002yCa</u>	at.2237	00					

http://simbad.u-strasbg.fr/simbad/

To measure the stellar mass

 Stellar mass difficult to measure; direct measurements, except the Sun, only by binary systems *(but uncertain even for these)*

Binary mass function $f = \frac{M_2^3 \sin^3 i}{(M_1 + M_2)^2}$ c.f., <u>initial mass function</u>

- Then one gets the mass-luminosity relation $L \propto M^{\alpha}$ where the slope $\alpha = 3$ to 5, <u>depending on the mass range</u>
- The main-sequence (MS) is a sequence of stellar mass; under the condition of hydrostatic equilibrium
- Why are lower mass stars cooler on the surface and fainter in luminosity?

Luminosity versus mass for a selection of stars in binaries

Iben (2013)

Luminosity class and surface gravity

 $\log g = \log GM/R^2$

- Betelgeuse ... (M2 I) $\log g \approx -0.6$ [cgs]
- Jupiter ... $\log g = +3.4$
- Sun (G2 V) ... $\log g = +4.44$
- $G\ell 229B \dots (T6.5) \log g \approx +5$
- Sirius B... (WD) $\log g \approx +8$

Composite Hertzsprung-Russell Diagram. Stars of different absolute luminosity, L - right axis, or bolometric absolute magnitude, M_{bol} - left axis, are plotted as a function of surface temperature, T_s - bottom axis, or spectral type - top axis. (Adapted from L. Goldberg and E.R. Dyer, Science in Space, eds. L.V. Berkner and H. Odishaw (1961).)

To measure the stellar abundance

- ♦ By spectroscopy
- ◆ Stellar composition (X, Y, Z) = mass fraction of H, of He, and of all the rest elements ("metals") Z: *metallicity* X + Y + Z = 1
- Solar abundance: $X_{\odot} = 0.747$; $Y_{\odot} = 0.236$; $Z_{\odot} = 0.017$
- One often compares the iron abundance of a star to that of the sun. Iron is not the most abundant (only 0.001), but easy to measure in spectra. *Why?*

 $[Fe/H] = \log_{10} \left(\frac{N_{Fe}}{N_{H}}\right)_{star} - \log_{10} \left(\frac{N_{Fe}}{N_{H}}\right)_{\odot}$

$$\log\left(\frac{N_{\rm Fe}}{N_{\rm H}}\right)_{\odot} = -4.33$$

i.e., 1 iron atom per 20,000 H atoms

$$[M/H] \approx \log(Z/Z_{\odot})$$

Data from: Katharina Lodders (2003) ApJ, 591, 1220

"Metals": by astronomers to mean "complex" elements, i.e., any element other than H or He (primodial).

For H (Z = 1) it requires ~10 eV to from the ground level to the first excited state; needs > 13.6 eV to free (ionize) the electron.

For He (Z = 2), it is even more difficult; ionization potential of 24.6 eV (once) or 54.4 eV (twice).

Metals have many electrons. It is easier to excite or ionize the outer layer of electrons (a few eV), e.g., $E_{\text{ion}}^{\text{Ca I}} = 6.1 \text{ eV}$; $E_{\text{ion}}^{\text{Fe I}} = 7.9 \text{ eV}$

"Metals" are hence efficient coolants, affecting ISM and stellar structure.

"Metallicity": the amount of metals (e.g., Fe, Mg, Ca) relative to H.

Effects of Metallicity

'Metals'. i.e., elements other than H and He, are efficient coolants.

Collisional excitation → dominates cooling process in H I and H II ISM

Metals = low-lying levels

ResearchGate

Energy (eV)

Given the same mass, a metal poorer star is bluer and brighter.

A metal poorer cluster has an overall bluer sequence.

FIG. 1.—Paths in the theoretical Hertzsprung-Russell diagram for $M = M_{\odot}$. Luminosity in units of $L_{\odot} = 3.86 \times 10^{33}$ erg/sec and surface temperature T_e in units of °K. Solid curve constructed using a mass fraction of metals with 7.5-eV ionization potential, $X_M = 5.4 \times 10^{-6}$. Dashed curve constructed with $X_M = 5.4 \times 10^{-6}$.

Iben (1965)

A younger cluster retains a longer upper MS, and even contains some PMS stars. ${}_{85}$

Younger stars tend to be metal-richer. Stars older than 10 Gyr almost all have [Fe/H] ≤ -0.5 ; stars younger than 5 Gyr have [Fe/H] ≥ -0.5 .

Edvardsson et al. (1993)

FIG. 1.—In the upper diagram, |Z| is plotted against [Fe/H] for the 112 globular clusters of known distance. Notice that there are no clusters in the zone $20 \leq |Z| \leq 37$ kpc and that the |Z| distribution changes suddenly at [Fe/H] ≈ -1 . The lower diagram is a histogram of the values of [Fe/H] for all 121 clusters in Table 1. Notice that the valley in the distribution over [Fe/H] occurs at the same value as the sudden change in the |Z| distribution.

To measure the stellar age

- Very tricky for single stars. Often one relies on measurements of M_V, T_{eff}, [Fe/H], and then uses some kind of theoretically computed isochrones to interpolate the age (and mass)
- Crude diagnostics include
 - ✓ Lithium absorption line, e.g., 6707A
 - ✓ Chromospheric activities, e.g., X-ray or Ca II emission
 - ✓ Evolving off the main sequence
 - ... hence subject to large uncertainties

References:

Edvardsson et al., 1993, A&A, 275, 101 Nordström et al., 2004, A&A, 418, 989

To Determine the Age of a Star Cluster

As a cluster (its member stars) ages, massive stars leave the MS first and evolve to the post-main sequence phase, then progressively followed by lowermass members. Only lower-mass stars still remain on the MS.

The MS is "peeled off" from the top (upper MS) down.

M67

Theoretical isochrones

An MS star of the same spectral type A PMS (young) star shows Li absorption.

Figure 16.9 Lithium absorption in a pre-main-sequence star. Shown is a portion of the optical spectrum of BP Tau, a T Tauri star of spectral type K7, corresponding to an effective temperature of 4000 K. Also shown, for comparison, is a main-sequence star of the same spectral type, 61 Cyg B. Only in the first star do we see the Li I absorption line at 6708 Å. Both objects also have a strong line due to neutral calcium.

Check out Aumann+84 for the discovery of debris materials of Vega by IRAS.

FIG. 1. Kurucz's (1991a) new model for Vega compared with a series of independent UV-optical measurements, specifically those by Hayes & Latham (1985) and by Tug *et al.* (1977). Cohen+92

✓ YSOs, gas/dust 100 pc
✓ Old thin disk 300 pc
✓ Thick disk 2000 pc

Typical properties of Stellar Populations in the Milky Way

	Population I			Population II	
	very young	young	-	old	very old
Scale height [kpc]	60	100		500	2000
$\Sigma_{ m w} [m km \ s^{-1}]$	8	10		25	75
Ζ	> 0.02	0.01		0.005	< 0.002
Age (rel. to the Universe)	< 0.05	0.25		0.75	1
Distribution	generally in aggregates			spherical	