
Stellar Atmosphere



Collision

# of collisions = # of (other) particles in the volume = 𝑁 = 𝑛 (𝜎𝑣𝑡)

# of collisions per unit time = Τ𝑁 𝑡 = 𝑛 𝜎 𝓋

Time between 2 consecutive collisions (𝑁=1) (mean-free time), 

𝑡col = 1 Τ (𝑛 𝜎 𝓋)

Distance between 2 consecutive collisions (𝑁=1) (mean-free path), 

ℓcol = 𝓋𝑡col = 1 Τ (𝑛 𝜎 )

Volume 𝑉= (Area) ∙ (length)

= cross section 𝜎 ⋅ ℓ = 𝜎 𝓋𝑡
Relative speed 𝓋
Total number of particles 𝑁
Number density 𝑛 = Τ𝑁 𝑉

In general “encounters” between particles, or between a particle 

and a photon.  The “cross section” is the key.
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Gas (mostly H atoms), the root-mean-squared speed 

1

2
𝑚𝐻 𝑣2 =

3

2
𝑘𝐵 𝑇

In H I regions, 𝑇~100 K, 𝑣 H I~ 1 km s−1, 𝑣 𝑒−~ 50 km s−1

For neutrals, hard spheres (physical cross section) OK,   
𝜎HI,HI ← 𝑎 ~ 5.6 × 10−9 cm

This is to be compared with the Bohr radius of the first orbit of 
𝑎0 = 5.3 × 10−9 cm

𝜎 = 𝜋 𝑎1 + 𝑎2
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In an HI cloud, 𝑛𝐻𝐼~10 cm−3; 𝑣𝐻𝐼~1 km s−1; 𝜎𝐻𝐼,𝐻𝐼~10−16 cm2

𝑡𝐻𝐼,𝐻𝐼~1010 s ~ 300 years; ℓ ~1015 cm ~100 au

∴ Collisions are indeed very rare.  

𝜎𝐻𝐼, 𝑒−~10−15 cm2 (polarization) 

𝑡𝐻𝐼, 𝑒−~ 10 × 10−15 × 105 −1~ 1010 s ~ 30 years  

𝜎𝑒−, 𝑒−~10−12 cm2; 𝑛𝑒~0.2 cm−3

𝑡𝐻𝐼, 𝑒−~1010 s ~ 10 days  



For free 𝑒− and 𝑝+, 𝜎 ≫ 𝜎physical, because of the Coulomb force

⟹ Need QM, 𝑎~ ൗ2.5 × 10−2 𝑣km/s
2 [cm]

If 𝑣𝑒−~ 50 km s−1, 𝑎~10−5 cm for 𝑒−-𝑒− encounters 

If 𝑇 = 3 × 104 K, 𝑣 ~103 km s−1 ⟶ 𝑎~ 2.5 × 10−8 [cm]

c.f., the classical electron radius 𝑟𝑒 =
𝑒2

𝑚𝑒 𝑐2 = 2.82 × 10−13 [cm]

Conventional unit: 1 barn =10−24 [cm2]
𝜎𝐻𝐼,𝐻𝐼~10−16 cm2~ 108 barns



Opacity 𝜅 cm−1 = 𝜅′𝜌 cm2 g−1 ⋅ g cm−3 = ෍

𝑖

𝑛𝑖 𝜎𝑖 = ൗ1
ℓ

Recall that 𝜏 = ׬ 𝜅 𝑑𝑠 is the optical depth.

If 𝜅𝜈 is frequency independent  𝜅, e.g., gray atmosphere

Usually an average opacity is used.

Planck opacity  average of frequency  
dependent opacity weighted by Planck function

𝜅P =
׬ 𝜅𝜈 𝐵𝜈 𝑑𝜈

׬ 𝐵𝜈 𝑑𝜈

Rosseland opacity Svein Rosselandweighted 
by the 𝑇 derivative, averaging Τ1 𝜅𝜈

Τ1 𝜅R =
׬ 𝜅𝜈

−1 𝑢𝜈 𝑑𝜈

׬ 𝑢𝜈 𝑑𝜈
𝑢 𝜈, 𝑇 = Τ𝜕𝐵𝜈 𝑇 𝜕𝑇 8
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Arithmetic average, 
𝑎+𝑏+𝑐

3
, e.g., Τ1 + 4 + 4 3 = 3

Geometric average, 
3

𝑎 ∙ 𝑏 ∙ 𝑐, e.g., 
3

1 × 4 × 4 ≈ 2.52

Harmonic average, one of the Pythagorean means, 
Τ1 𝑎 + Τ1 𝑏 Τ+ 1 𝑐

3

−1
,  e.g., 

Τ1 1 + Τ1 4 Τ+ 1 4

3

−1
= 2
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Bound-bound absorption Excitation of an electron of an atom 
to a higher energy state by the absorption of a photon.  The 
excited atom then will be de-excited spontaneously, emitting 
a photon, or by collision with another particle.        

Bound-free absorption Photoionization of an electron from 
an atom (ion) by the absorption of a photon.  The inverse 
process is radiative recombination.
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• Free-free absorption Transition of a free electron to a 
higher energy state, via interaction of a nucleus or ion, by 
the absorption of a photon.  The inverse process is 
bremsstrahlung.

• Electron scattering Scattering of a photon by a free electron, 
also known as Thomson (common in stellar interior) or 

Compton (if relativistic) scattering. 𝜎𝑇 =
8𝜋

3

𝑒2

𝑚𝑒𝑐2

2

• H− absorption Important when < 104 K, i.e., dominant in 
the outer layer of low-mass stars (such as the Sun)

Hydrogen anion (or protide)
Opposite is H cation (or hydron or just proton) 12



• Bound-bound, bound-free, and free-free opacities are 
collectively called Kramers opacity, named after the Dutch 
physicist Hendrik A. “Hans” Kramers (1894-1952)

• All have similar dependence ҧ𝜅 ∝ 𝜌 𝑇−3.5; commonly 
used to model radiative transfer in stellar atmospheres

• Kramers opacity is the main source of opacity in gases of 
temperature 104~106 K, i.e., in the interior of stars up to ~ 1 M⊙.

• In a star much more massive, the electron scattering process 
dominates the opacity, and the Kramers opacity is important 
only in the surface layer.  

Kramers opacity 

𝜅𝐾𝑟 ≈ 4 × 1025 1 + 𝑋 𝑍 + 0.001 𝜌 𝑇−3.5 [cm2g−1]



𝑋 = 0.70
𝑍 = 0.02

Data from Iglesias & Rogers (1996)

Rosseland mean opacity
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For Thomson scattering, 

𝜅𝜈 =
8𝜋

3

𝑟𝑒
2

𝜇𝑒𝑚e
= 0.20 1 + 𝑋 [cm2g−1]

is frequency independent, so is the Rosseland mean.

𝜅𝑒𝑠 = 0.20 1 + 𝑋 [cm2g−1]

Here 𝑟𝑒 is the electron classical (charge; Lorentz) radius, 
𝑋 is the H mass fraction, and 𝜇𝑒 = Τ2 (1 + 𝑋)

Classical electron (Thomson) cross section, 
𝜎T = 6.65 × 10−25 [cm2] = 0.665 barns

𝑟𝑒 =
𝑒2

𝑚𝑐2 = 2.82 × 10−15 [m]; experimentally 𝑟𝑒 < 10−18 [m]

𝑟e = 2.82 fm
𝑟proton = 1.11 fm 

1 femtometer (fm) = 10−15m
1 barn = 10−28 m2
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 For 𝑇 ≳ 104 K, H− is ionized  Kramers opacity

 For 𝑇 ≲ 3500 K, few free electrons molecular opacity

 For H− opacity, 𝐸ion = 0.754 eV; photons 𝜆 < 16400 Å can 
ionize the H− ion.  Important for 4 × 103 ≲ 𝑇 ≲ 8 × 103 K

is temperature and metallicity 
(providing electrons) dependent.

Solar photosphere!
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https://www.ucolick.org/~woosley/ay112-14/useful/opacityshu.pdf

https://www.ucolick.org/~woosley/ay112-14/useful/opacityshu.pdf


Clayton Fig. Fig 3.15
Bowers & Deeming Fig 6.13
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The 𝜌 − 𝑇 diagram



Absorption and Emission by Gas

Hydrogen as an example … 
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Lowest state of H, 𝑝2 𝑟2 ≈ ∆𝑝2 ∆𝑟2 ≈ ℏ2

Virial theorem, 2ℰ𝐾 + ℰ𝑝 = 0

Lowest (ground state) energy 

ℰ1 = −
1

2
𝐸𝑝 = −

1

2

𝑍𝑒2

𝑟
= −

1

2

𝑝2

𝜇
≈ −

1

2𝜇

ℏ2

𝑟2

𝑍𝑒2

𝑟
=

ℏ2

𝜇𝑟2
⇒ 𝑟 =

ℏ2

𝜇𝑍𝑒2
(𝐁𝐨𝐡𝐫’𝐬 𝐫𝐚𝐝𝐢𝐮𝐬)

ℰ1 = −
1

2

𝑍𝑒2𝜇𝑍𝑒2

ℏ2
= −

1

2

𝑍2𝜇𝑒4

ℏ2

For H, 𝑍 = 1, ℰ1 = −13.6 eV, 𝑟 ≈ 5.3 × 10−9 [cm] = 0.53 Å

𝝁: reduced mass; 
effective mass of a system; 
2-body problem  1-body

24

𝜇 =
1

1
𝑚1

+
1

𝑚2

=
𝑚1𝑚2

𝑚1 + 𝑚2



de Broglie matter wavelength, 𝜆 =
ℎ

𝑝
=

ℎ

𝑚𝑣

Virial theorem (classical uniform circular motion), 𝑚𝑣2 =
𝑍𝑒2

𝑟

Standing waves, 2𝜋 𝑟 = 𝑛𝜆

For the ground state, 𝑛 = 1, 𝑟 =
ℏ2

𝑚𝑍𝑒2
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Virial theorem

Equation of motion (in the Lagrangian form)

𝜚
𝑑2 Ԧ𝑟

𝑑𝑡2 = Ԧ𝑓 − 𝛻𝑃 ……  (1)

In hydrostatic equilibrium, 
𝑑2 Ԧ𝑟

𝑑𝑡2 = 0, so Ԧ𝑓 = 𝛻P, and assuming 

spherical symmetry with the force being self-gravitation           

𝑑𝑃

𝑑𝑟
= −

𝐺 𝑚 𝑟 𝜚 𝑟

𝑟2 (Hydrostatic equilibrium)

and 𝑚 𝑟 = 0׬

𝑟
4𝜋𝑟2 𝜚 𝑑𝑟 (mass continuity/distribution)             

relation between (the time average of) the total kinetic energy 
and the total potential energy of a system in equilibrium
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Take the vector dot of Ԧ𝑟 of (1), divide by 𝜚, define 𝑭 = Τ𝒇 𝜚 (force 
per unit mass, and then integrate, using the boldface for vectors

׬ 𝑑𝑚 𝒓 ⋅
𝒅𝟐𝒓

𝒅𝒕𝟐 = ׬ 𝒓 ⋅ 𝑭 𝑑𝑚 − ׬ 𝒓 ⋅ 𝛻𝑃
𝑑𝑚

𝜚
…… (2)

Given 
𝑑

𝑑𝑡
𝒓 ⋅

𝑑𝒓

𝑑𝑡
= 𝒓 ⋅

𝑑2𝒓

𝑑𝑡2 +
𝑑𝒓

𝑑𝑡

2
=

1

2

𝑑2

𝑑𝑡2 𝒓2

So, ׬ 𝑑𝑚 𝒓 ⋅
𝒅𝟐𝒓

𝒅𝒕𝟐 =
1

2

𝑑2

𝑑𝑡2 ׬ 𝒓2 𝑑𝑚 − ׬
𝑑𝒓

𝑑𝑡

2
𝑑𝑚

=
1

2

𝑑2𝐼

𝑑𝑡2 − 2ℰkin

𝜚
𝑑2 Ԧ𝑟

𝑑𝑡2 = Ԧ𝑓 − 𝛻𝑃

𝐼: moment of inertia
ℰkin: kinetic energy
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Because 𝑑𝑚 = 𝜚 𝑑𝑉, the last term in (2), 

׬ 𝒓 ⋅ 𝛻𝑃
𝑑𝑚

𝜚
= ׬ 𝒓 ⋅ 𝛻𝑃 𝑑𝑉 = ׬ 𝛻 ∙ 𝒓 ∙ 𝑷 𝑑𝑉 − 3 ׬ 𝑃 𝑑𝑉

= 𝒓 ∙ 𝑷 ∙ 𝑑𝑺 − 3 ׬ 𝑃 𝑑𝑉

Assuming spherical symmetry, 
= 4𝜋𝑅3𝑃𝑠 − 3 ׬ 𝑃 𝑑𝑉

Note

න 𝛻 𝒓𝑃 = 𝛻 ⋅ 𝒓 𝑃 + 𝒓 ⋅ 𝛻𝑃

𝛻 ⋅ 𝒓 = 3
Gauss’s theorem  volume 
integral of the divergence to 
surface integral
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Putting together, we have

1

2

𝑑2𝐼

𝑑𝑡2
= 2ℰkin + 3 න 𝑃 𝑑𝑉 + න 𝒓 ⋅ 𝑭 𝑑𝑚 − ර 𝑃𝒓 ⋅ 𝑑𝑺

where 𝒓 ⋅ 𝑭 (work) is virial; 

or

1

2

𝑑2𝐼

𝑑𝑡2
= 2 ℰkinetic + 3 න 𝑃 𝑑𝑉 + ℰpotential − 4𝜋𝑅3𝑃external

For stars, under hydrostatic equilibrium and if 𝑃ext = 0, 
2 ℰk + ℰp = 0

29



LHS = 0  stable

LHS < 0  collapsing

LHS > 0  expanding

𝓔𝐤: a variety of kinetic energies

 Kinetic energy of molecules

 Bulk motion of clouds

 Rotation 

 …

𝓔𝐩: a variety of potential energies

 Gravitation 

 Magnetic field

 Electrical field 

 …

Note ℰtotal = ℰ𝑘 + ℰ𝑝, governs if the system is bound (ℰtotal < 0)

For stars, mostly ℰ𝑝 = Ω (gravitational energy; negative)
30

1

2

𝑑2𝐼

𝑑𝑡2
= 2 ℰk + ℰp



For higher energy states, 𝑝𝑛 𝑟𝑛 = 𝑛ℏ

ℰ𝑛 = −
𝑝𝑛

2

2𝜇
≈ −

𝑛2ℏ2

2𝜇𝑟𝑛
2 = −

𝑍2𝜇 𝑒4

2𝑛2ℏ2

For the 𝑛-th radial state, the phase space volume is

4𝜋𝑝𝑛
2 Δ𝑝𝑛 4𝜋𝑟𝑛

2 Δ𝑟𝑛 , # of possible states with principle quantum number 𝑛

=
Total phase space volume

volume of unit cell
=

16𝜋2𝑛2ℏ3

ℏ3 ∝ 𝑛2

The electron spin is either parallel or anti-parallel to that of the 

nucleus, so the n-th state has 2𝑛2 different substates (degeneracy), 

all having the same energy.
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ℰ𝑛 = −
𝑍2𝜇 𝑒4

2𝑛2ℏ2Note that ℰ𝑛 ∝ 𝜇

For normal H, 𝜇𝐻 =
𝑚𝑒𝑚𝑝

𝑚𝑒+𝑚𝑝
=

𝑚𝑒

1+ Τ𝑚𝑒 𝑚𝑝
≈ 𝑚𝑒 1 − Τ𝑚𝑒 𝑚𝑝

For deuteron, 𝜇𝐷 =
𝑚𝑒𝑚𝐷

𝑚𝑒+𝑚𝐷
=

2𝑚𝑒𝑚𝑝

𝑚𝑒+2𝑚𝑝
≈ 𝑚𝑒 1 − Τ𝑚𝑒 2𝑚𝑝 > 𝜇𝐻

Note also that ℰ𝑛 ∝ 𝑍2, so for He II 
(𝑍 = 2, with 1 e−) , 𝑍2 is 4 times 
larger, and with a different 𝜇.

So the D lines are 1.5 Å
shorter in wavelengths

https://archive.stsci.edu/fuse/scisumm/sci_d2h.html33

https://archive.stsci.edu/fuse/scisumm/sci_d2h.html


Gray & Corbally
Lang

Grotrian diagram

𝑛
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• For the ground state, the orbital angular momentum is ℓ = 0.
The total spin angular momentum is 

𝐹 = 0 (spin opposite)  or    𝐹 = 1 (spin parallel)

• For 𝑛 = 2, ℓ =1, and with spin, a total angular momentum of 
ℓ ℓ + 1 ℏ2 =2ℏ2

3 substates, ℏ, 0, −ℏ, 𝑚 = 1, 0, −1 (magnetic quantum number)

Fine structure, ∆ℰ very small, ~10−5 Ev

But if there is an external B field  Zeeman splitting

Hyperfine splitting
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𝐇−

𝐻 + 𝑒− ⟶ 𝐻− + ℎ𝜈
Stars: ample supplies of free 𝑒− from Na, 
Ca, Mg, … with low-ionization potentials

 He atom similar, with the second 𝑒− weakly bound, shielded by the first 𝑒−

 ℰbinding H− = 0.75 eV, only 1 bound state; transitions  continuum

 Absorption by H− immediately followed by reemission

The sunlight we see mostly is due to continuum transitions by 𝐻−

𝐇+

Free-free or free-bound to any level
Cascading down  emission of 

photons of different energies

Free-free

37

Proton-electron is polarized.



𝐇𝟐

• Main constituent of cold clouds, not important in stars, except 
in the coolest substellar objects (brown dwarfs or planetary-
mass objects)

• Lacking a permanent electric dipole moment, so very difficult 
to detect.  A rotationally excited molecule would radiate 
through a relatively slow electric quadrupole transition.  

• Only detected in a hot medium, where stellar radiation or 
stellar wind excites vibrational and electronic states which 
then decay relatively quickly.

Zero electric 

dipole moment
38



Electric dipole moment Ԧ𝑝 = 𝑞 Ԧ𝑑

𝑑

Ԧ𝑝

−q +q

 With more than one dipole, 
the net dipole moment is 
the vector sum of all 
individual moments.

ො𝑛

𝐴
Magnetic dipole moment Ԧ𝜇 = 𝐼𝐴 ො𝑛

𝐼

+q −q

−q +q

Electric quadrupole moment

Ԧ𝑞 =

𝑞𝑥𝑥 𝑞𝑥𝑦 𝑞𝑥𝑧

𝑞𝑥𝑦 𝑞𝑦𝑦 𝑞𝑦𝑧

𝑞𝑥𝑧 𝑞𝑦𝑧 𝑞𝑧𝑧
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 H atom

Ԧ𝑝 = 𝑞 Ԧ𝑑 = 0 in the ground state (1 s orbital) ∵ 𝑞 = 0

𝜇 = 𝐼𝐴 =
𝑒𝑉

2𝜋𝑟
𝜋𝑟2 =

𝑒ℎ

4𝜋 𝑚
(𝑛 = 1)

 H molecule 𝜇 = 𝐼𝐴 =
𝑒𝑉

2𝜋𝑟
𝜋𝑟2 =

𝑒ℎ

4𝜋 𝑚
(𝑛 = 1)



Stahler & Palla
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CO molecules

• Simple and abundant, in gaseous or solid form  

• Strong ℰbinding =11.1 eV  self-shielding against UV field

• with a permanent electric dipole moment; radiating strongly at 
radio frequencies.

• 12C16O easiest to detect; isotopes 13C16O, 12C18O, 12C17O, 13C18O 
also useful 

• Low critical density for excitation  CO used to study the large-
scale distribution of molecules, as a tracer of H2 in dense clouds

• 12C16O almost always optically thick; same line from other rare 
isotopes usually not  estimate of column density (total mass)  
of molecular gas 𝑁𝐻= 106 𝑁13𝐶𝑂

42



Stahler & Palla

2.6 mm = 115 GHz
𝐴10 = 6 × 10−8 [s−1]

Only 5 K above the ground level … can be excited by 
collisions with ambient molecules or CMB photons

43
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Molecules in stars

Stellar matter largely gas or plasma.

Molecules form primarily  below 6000 K, only OB stars do 
not contain molecules.

Absorption band spectra, e.g., due to MgH, CaH, FeH, CrH, 
NaH, OH, SiH, VO, and TiO, etc.

Late-type stars exhibit TiO

NH3 and collision-induced absorption by H2 in brown 
dwarfs or in planet-mass objects

44



Stahler & PallaGaballe & Persson (1987)

CO bandheads in the Becklin-Neugebauer
(BN) object, an IR-emitting, embedded, 
massive (~7 M⊙) protostar

45



Stahler & Palla
46



Gray & Corbally
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Solar Atmosphere
• Photosphere

Lowest layer of the atmosphere; visible “disk”; 
thickness ~300 km (cf. 2 R⊙ ∼ 1.4 million km)

• Chromosphere

Pinkish (hence the name); 
extending ~2500 km above the limb 

• (Transition region)

• Corona

Outermost layer; extending  millions of km; 
hot (1 to 2 million K); brightness 10−6 photosphere; 
visible during a total solar eclipse or with a coronograph

• (Wind) expanding supersonically (400 km s−1; 10−14 M⊙)
49



UV

Visible

• November 15, 1999, 

Mercury transited, i.e., 

passing in front of the Sun

• Observed by the 

TRACE spacecraft

• The Sun appears larger in 

the ultraviolet image than in 

the visible-light image.  

Why?

Every 6-9 min



Athay (1976)51



Recall the radiative transfer equation, 
𝑑𝐼𝜈

𝑑𝜏𝜈
= 𝐼𝜈 − 𝑆𝜈

and the vertical optical depth, 

𝜏𝜈 𝑧 = 𝑧׬

0
𝜅𝜈 𝑑𝑧.

For a ray at an angle 𝜃, 𝑑𝑧 = 𝑑𝑠 cos 𝜃, so 
in general, 

cos 𝜃
𝑑𝐼𝜈 𝜏𝜈,𝜃

𝑑𝜏𝜈
= 𝐼𝜈 𝜏𝜈 , 𝜃 − 𝑆𝜈 𝜏𝜈

Solar photosphere ≈ 300 km thickness ≲ 0.1% R⊙

⟶ plane parallel approximation OK

52



The solution then is

𝐼𝜈 𝜏𝜈 = 𝐼𝜈 0 𝑒−𝜏𝜈 + 0׬

𝜏𝜈 𝑆𝜈 𝑡𝜈 𝑒− 𝜏𝜈−𝑡𝜈 𝑑 𝑡𝜈

In the atmosphere  no incident radiation, with 
infinite optical depth

𝐼𝜈 0, 𝜃 = න
0

∞

𝑆𝜈 𝑡𝜈 𝑒−𝑡𝜈 sec 𝜃 𝑑 𝑡𝜈 ⋅ sec 𝜃
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This gives the intensity from the “disk” 
of the star 

At the edge, 𝜃 → Τ𝜋 2, sec 𝜃 → ∞,

𝐼𝜈 0, Τ𝜋 2 → 0

At the center, 𝜃 = 0, sec 𝜃 = 1, 

𝐼𝜈 0, 0 = න
0

∞

𝑆𝜈 𝑡𝜈 𝑒−𝑡𝜈𝑑 𝑡𝜈

 limb darkening

The limb of a stellar disk is dimmer than to the center 
(on the average, hotter seen to the same optical depth) . 

For the Sun, 𝐼limb ≈ 80% 𝐼disk center @550 nm; 
dimmer in the blue

𝐼𝜈 0, 𝜃 = න
0

∞

𝑆𝜈 𝑡𝜈 𝑒−𝑡𝜈 sec 𝜃𝑑 𝑡𝜈 ⋅ sec 𝜃
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Unsold, p.169

[nm]

[Rsun]
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Approximate the source function by Taylor expansion, 
𝑆𝜈 ≈ 𝑎𝜈 + 𝑏𝜈 𝜏𝜈 ⟶ 𝐼𝜈 0, 𝜃 = 𝑎𝜈 + 𝑏𝜈 cos 𝜃

So 𝐼𝜈 𝜃 = 𝑆𝜈 𝜏𝜈 = cos 𝜃 .      (Eddington-Barbier relation)

The specific intensity on the surface at position 𝜃 is the source 

function at the optical depth 𝜃.

The effect of limb darkening observable in details for the Sun 
measuring 𝐼𝜈 across the solar disk mapping the depth 
dependence of  𝑆𝜈  to probe the structure in the atmosphere

Seen also in some eclipsing binaries, or in large stars by 
interferometry, or in exoplanet transits. de Boer & Seggewiss

𝐼𝜈 0, 𝜃 = න
0

∞

𝑆𝜈 𝑡𝜈 𝑒−𝑡𝜈 sec 𝜃𝑑 𝑡𝜈 ⋅ sec 𝜃
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Recall that flux 𝐹𝜈 = ׬ 𝐼𝜈 cos 𝜃 d𝜈 d𝜔

= 0׬

1
𝑎𝜈 + 𝑏𝜈 cos 𝜃 cos 𝜃 d cos 𝜃 = 𝑎𝜈 +

2

3
𝑏𝜈

F𝜈 = 𝑆𝜈 𝜏𝜈 = Τ2 3

Assuming LTE, so 𝑆𝜈 = 𝐵𝜈, and a gray atmosphere (𝐹 0 = 𝜎𝑇eff
4 ), 

then 𝐹𝜈 0 = 𝜋𝐵𝜈 𝑇 𝜏 = Τ2 3 = 𝜎𝑇eff
4

This means 𝑇eff = 𝑇 𝜏 = Τ2 3

So the effective temperature of the stellar surface is the 

temperature at the optical depth 2/3.
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Thermonuclear fusion ≲ 0.25 𝑅⨀

Radiative core up to ≈ 0.80 𝑅⨀

Convective envelope
Outer radiative layer

Solar Structure

Atmosphere

Interior



Unsold

Model stellar atmospheres by R. L. Kurucz (1979) 
for solar abundance, and for different 𝑇eff and 𝑔 62

𝑇eff = 𝑇 𝜏 = Τ2 3



Kurucz (1970)
SAO Special Report #309
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Kurucz (1979) 65



Kurucz (1979) ApJS, 40, 1−340 66



Kurucz (1979) 68

Balmer 𝛼 Balmer 𝛽 Balmer limit 3646 ÅPaschen limit 8024 Å



Unsold, Fig 6.7
The energy distribution of Vega
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The Kurucz 1993 ATLAS model atmospheres at the STScI, about 7600 stellar atmosphere models of various 
temperature, gravity, and metallicity values.

https://www.stsci.edu/hst/instrumentation/reference-data-for-calibration-and-tools/astronomical-
catalogs/kurucz-1993-models

To download the data
https://archive.stsci.edu/hlsps/reference-atlases/cdbs/grid/k93models/

File name: kszz_tttt,fits’.  K: kurucz, s: sign (minus or plus), zz: metallicity, tttt: temp

https://www.stsci.edu/hst/instrumentation/reference-data-for-calibration-and-tools/astronomical-catalogs/kurucz-1993-models
https://archive.stsci.edu/hlsps/reference-atlases/cdbs/grid/k93models/


72

For example, for the Sun, ‘kp00_5750.fits’
a=READFITS('kp00_5750.fits', h, /exten)

wv=tbget(h, a, 'WAVELENGTH')

flux45=tbget(h, a, 'g45')

Ca II H & K

H𝛽 4861

H𝛼 6563
H𝛾 4340

H𝛿𝛾 4102



Line Broadening
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Natural Broadening

QM Heisenberg energy-time uncertainty principle
∆𝐸 Δ𝑡 ≥ ℎ

That is, the energy of a given state cannot be specified more 
accurately than this  ∆𝜈 ≈ 1/ Δ𝑡.  Typically Δ𝑡 ≈ 10−8 s
(recall Einstein’s 𝐴 coefficients), so the natural width of a line 
≈ 5 × 10−5 nm .  Meta-stable states have even much narrow lines. 
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Thermal Doppler Broadening

Particle motion along the line of sight  Doppler shift 

Τ𝑚𝑣2 2 = 3 𝑘𝑇/2

At a given temperature, a spectral line due to a heavier element 
is narrower.

At 6000 K, H moves at 𝑣 ≈ 12 km s−1, leading to a fractional 
Doppler broadening Τ∆𝜆 𝜆 ≈ Τ𝑣 𝑐 ≈ 4 × 10−5, so the H𝛼 line 
(656.3 nm) is broadened by 0.025 nm.

The broadening is temperature and composition dependent.
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Zeeman Broadening

Energy levels spilt to 3 or more sublevels in a magnetic field 
 Zeeman effect (Pieter Zeeman)

Spectral lines closed spaced (∝ 𝐁 strength), so difficult to resolve 
 line broadened 

Collisional Broadening

Energy levels shifted by nearby particles, especially ions and 
electrons (“Stark Effect” due to E field); also called pressure 
broadening.  Density dependent

Additional broadening mechanisms: rotation, expanding,  
turbulence, …, etc. 76



Line Profile

 The details of a line profile: absorption coefficient 
as a function of frequency within the line

 Superimposed on the Doppler profile (macroscopic 
motion of particles) are the radiative and 
collisional damping effects.  

An atom  a dipole; the electron oscillates when 
interacting with an incident EM wave 

In general, 𝑚 ሷ𝑟 = −𝑚𝑟𝜔0
2 − 𝑚𝛾 ሶ𝑟 − 𝑒𝐸0 𝑒𝑖𝜔𝑡

77Force on the electron Restoring force

Novotny, p.199

Damping force Force by EM wave



Lorentz (damping) profile 

𝜙 Δ𝜈 =
𝛾

2𝜋Δ𝜈 2 + Τ𝛾 2 2

Classical treatment
Atom absorbing a photon  excited  𝑒− oscillates as a dipole

Equation of motion: 𝑚 ሷ𝑟 = −4𝜋2𝑟𝜈0
2

Such a dipole radiates with power ℙ =
2

3

𝑒2

𝑐3 ሷ𝑟 2

Energy is radiated away  damping force to slow down the 𝑒−

The force is ℱ =
2

3

𝑒2

𝑐3 ഺ𝑟 2, and for a small damping 

 a simple harmonic motion (around 𝜈0)…
80
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Scattering by dust or molecules  harmonically bound charge, oscillating 
at a natural frequency 𝜔0.  The incident field 𝑬 = 𝑬0 cos 𝒌 ∙ 𝒓 − 𝜔𝑡 + 𝛼
forces the oscillator to vibrate at a different frequency 𝜔.

The acceleration is 𝑚 ሷ𝒓 = 𝑒𝑬.  

The dipole moment by the displacement of the charge, 𝒅 = 𝑒𝒓, ሷ𝒅 = Τ𝑒2𝑬 𝑚

The equation of motion of the forced oscillation is ሷ𝒓 + 𝜔0
2𝒓 = 𝑒𝑬/𝑚. 

The solution is 𝒓 =
𝑒2

𝑚
𝑬

1

𝜔0
2−𝜔2 , and ሷ𝒅 = ൗ𝑒2𝑬 𝑚

1

1− Τ𝜔0
2 𝜔2

The scattering cross section is 𝜎 =
𝜎𝑒

1− Τ𝜔0
2 𝜔2 2

Electrons are strongly bound so 𝜔0 ≫ 𝜔 in optical wavelengths, so

𝜎 =
𝜎𝑒𝜔4

𝜔0
4

is the Rayleigh scattering cross section (this is why the clear sky is blue).

Harwit p. 234



Classically the damping constant 𝛾 ≈ 𝐴, the transition probability

The effective number of oscillators  oscillator strength, relates 
the spectral line to harmonic electron-oscillators, and is related 
to the Einstein 𝐵 coefficient 

න
line

𝜎𝑖𝑗 𝜈 𝑑𝜈 =
ℎ𝜈

4𝜋
𝐵𝑖𝑗 =

𝜋𝑒2

𝑚𝑒𝑐
𝑓

The oscillator strength 𝑓, the ratio of 
[QM transition rate]/[Classical rate], 

is dimensionless, and related to the 𝐴 coefficient  

𝑔𝑗 𝐴𝑗𝑖 =
8 𝜋2𝑒2𝜈2

𝑚𝑒𝑐3 𝑔𝑖 𝑓

Equivalent to how many 

classical oscillators



Bower & Deeming

For Balmer lines, 𝑓 H𝛼 = 0.641, 𝑓 H𝛽 = 0.119, 𝑓 H𝛾 = 0.044.

Kramers computed the analytic approximation for H, 

𝑓𝑗𝑖 =
−𝑔𝑖

𝑔𝑗
𝑓𝑖𝑗 =

26

3 3 𝜋

1

𝑔𝑖

1

Τ1 𝑖2− Τ1 𝑗2 3

𝑔𝑏𝑏

𝑗3𝑖3

Where 𝑔𝑏𝑏 is the Kramers-Gaunt factor, or Gaunt factor, for the 
bound-bound transition to correct for the QM effect, and is on the 
order of unity.
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Doppler profile  

𝜙 Δ𝜈 =
1

𝜋 Δ𝜈D

exp − ΤΔ𝜈 Δ𝜈D
2

This has a FWHM of 2Δ𝜈D ln 2

Δ𝜈D or Δ𝜆D is defined by the most probable speed. 

Voigt profile  Doppler core + Damping wings (convolution)

𝜙 Δ𝜈 = න
−∞

+∞

ℒ ∆𝜈 − Δ𝜈′ 𝒟 Δ𝜈′ 𝑑Δ𝜈′
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𝜅𝜆 = 𝑟𝑒 𝑓 𝑛𝑖 𝜋
𝜆0

2

Δ𝜆0
exp −

Δ𝜆

Δ𝜆𝐷

2

Decays exponentially

𝜅𝜆 = 𝑟𝑒 𝑓 𝑛𝑖 𝜋
𝜆0

4

4𝜋𝑐

𝛾

Δ𝜆 2

Extends further (wings)

𝑟𝑒 is classical electron radius; 
𝑛𝑖 is density at lower levelUnsold
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Photons of different wavelengths carry different 
energies.  Which line is “stronger” (how much 
energy is missing in a spectral line)?

𝜙𝜈 =
𝐼𝑐 − 𝐼𝜆

𝐼𝑐

is the equivalent width (𝑊), which measures the absorption 
(strength) of  a spectral line, i.e., the area under the line, where 𝐼𝜆
is the line profile, and 𝐼𝑐 is the continuum (at the same 𝜆).  
𝑊 is in unit of Å or mÅ ;  negative for emission lines.

𝑊𝜆

𝜆
=

𝑊𝜈

𝜈
=

𝑊v

𝑐

𝑊𝜆 = න
−∞

∞ 𝐼𝑐 − 𝐼𝜆

𝐼𝑐
𝑑𝜆 = න 1 − 𝑒−𝜏𝜆 𝑑𝜆

Equivalent Width

 Compare with local “continuum”, i.e., where there is no absorption
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Recall, for an absorption line, 
𝐼𝜈 𝜏𝜈 = 𝐼𝜈 0 𝑒−𝜏𝜈

So for an optically thin medium (physically thin or of a low 

density), 𝜏𝜈 ≪ 1
𝐼𝜈 observed

𝐼𝜈 0
≈ 𝜏𝜈

Classical T Tauri stars have strong H𝛼

emission lines, W(H𝛼)≳ −10 Å

W invariant regardless of spectral 
resolution (energy conservation) 

http://spiff.rit.edu/classes/phys440/lectures/curve/curve.html

Gray

http://spiff.rit.edu/classes/phys440/lectures/curve/curve.html


𝜎𝜈 =
𝜋𝑒2

𝑚𝑐
𝑓𝜙𝜈

𝜏𝜈 = 𝜅𝜈𝑑𝑠 = 𝑛 𝜎𝜈 𝑑𝑠 = 𝑁 𝜎𝜈, where 𝑁 is the column density

𝜏𝜆 = 𝑁
𝜋𝑒2

𝑚𝑐2
𝑓 𝜆0

2 𝜙𝜈

𝜎𝜈𝑑𝜈 = 𝜎𝜆𝑑𝜆

(1) For a weak line (𝜏𝜆 ≪ 1)

𝑊𝜆 = න 𝜏𝜆 𝑑𝜆 = 𝑁
𝜋𝑒2

𝑚𝑐2
𝑓𝜆0

2 ∝ 𝑁𝑓

Or 
𝑊𝜆

𝜆 [cm]
= 𝑁

𝜋𝑒2

𝑚𝑐2 𝑓𝜆0 = 8.85 × 10−13 𝑁𝑖 [cm−2] 𝑓12
Spitzer 88

The equivalent width 

measures directly the 

number of absorbers 

along the line of sight.

N is the column density of atoms which are in 

the proper state to absorb the relevant photons.



(2)  For a strong line (𝜏𝜆 ≫ 1), damping wings dominate 

𝑊𝜆 ∝ 𝑁𝑓

(3) For an intermediate case 

𝑊𝜆 ∝ ln 𝑁𝑓

Line strength (equivalent width) 
 derivation of the abundance

Curve of growth
89



linear part

Saturation 
part (flat)

Damping part 
(square-root)
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How a line develops as more atoms absorb photons along the 
line of sight.

(1) Each atom takes away a photon; 
[line strength] ∝ [# of absorbing atoms]; 

Doppler core is opaque.  𝑊 increases linearly.

(2) With more absorbing atoms, the core reaches the limiting  
depth (it is saturated); addition of more absorbers 
increases 𝑊 only slowly.

(3) With a large number of absorbers, the opacity in the line 
wings increases 𝑊.

Hubeny & Mihalas
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Amount of absorbers   line profile changes and equivalent width changes

Gray Fig. 13.12
http://spiff.rit.edu/classes/phys440/lectures/curve/curve.html

http://spiff.rit.edu/classes/phys440/lectures/curve/curve.html
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