
Stellar Interior



 A star has a stable configuration.  

 That is, there is a certain structure (mass distribution) to 
allow for such a force balance.  

Inward = gravity
Outward = gas pressure (gradient)

(ideal gas, degenerate gas)
+ magnetic pressure (𝑃mag = Τ𝐵2 8𝜋)
+ radiation pressure (𝑃rad = Τ4𝜎𝑇4 3𝑐)
+ turbulence pressure (𝑃tur = 𝜌 Τ𝑣2 2)

 How is the pressure sustained?  Energy thermal pressure

 How is the energy generated?  

 How is the energy transported? 2



Hydrostatic equilibrium

Mass continuity (distribution)

Energy conservation

by radiation

Energy transport 

by convection

Equation of state

Opacity

Nuclear reaction rate

Structure Equations 
𝑑𝑚 𝑟

𝑑𝑟
= 4𝜋𝑟2𝜌 𝑟

𝑑𝑃 𝑟

𝑑𝑟
= −

𝑔𝑚 𝑟 𝜌 𝑟

𝑟2

𝑑𝐿 𝑟

𝑑𝑟
= 4𝜋𝑟2𝜌 𝑟 𝑞 𝑟

𝑃 = 𝑃 𝜌, 𝑇, 𝜇

𝜅 = 𝜅 𝜌, 𝑇, 𝜇

𝑞 = 𝑞 𝜌, 𝑇, 𝜇

𝑑𝑇 𝑟

𝑑𝑟
= −

3𝜅𝜌𝐿 𝑟

4𝑎𝑐 4𝜋𝑟2𝑇3

𝑑𝑇 𝑟

𝑑𝑟
=

𝛾 − 1

𝛾

𝑇

𝑃

𝑑𝑃 𝑟

𝑑𝑟

Boundary conditions: 𝑚 𝑟 → 0 and 𝐿 𝑟 → 0 as 𝑟 → 0
𝑇 𝑟 → 0, 𝑃 𝑟 → 0, and 𝜌 𝑟 → 0 as 𝑟 → 𝑅∗3



Variables: 𝑚, 𝑟, 𝜌, 𝑇, 𝑃, 𝜅, 𝐿, 𝜇, 𝑎𝑛𝑑 𝑞

Vogt-Russell “theorem”
Given hydrostatic and thermal equilibrium with energy produced by 
nuclear reactions, the internal structure of a star, and its subsequent 
evolution, is uniquely determined by the mass and chemical 
composition of the star.

In fact, … by any two variables above, cf. the HRD. It is not really a 
“theorem” in the mathematical sense, i.e., not strictly valid.  It is a “rule 
of thumb”.  There are other factors, too, such as magnetic field or 
rotation, though these usually have little effect.
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The Poynting vector of an EM wave, 

𝑺 =
c

4𝜋
𝑬 × 𝑩

Radiation pressure is 1/3 of the EM energy density

𝑃 =
1

3

1

8𝜋
𝜀𝐸2 + 𝜇𝐵2

The carrier wave velocity, the phase velocity 𝑣 =
𝜔

𝑘

The velocity of the modulation, the group velocity 𝑢 =
𝜕𝜔

𝜕𝑘
;

this is the information (or energy) is transported.

Harwit
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Hydrostatic equilibrium

Force = mass ∙ acceleration

−𝑑𝑃 𝑑𝐴 = 𝜌 𝑟 𝑑𝐴 𝑑𝑟 ∙ 𝑔(𝑟)

𝑑𝑃

𝑑𝑟
= −𝜌 𝑟 𝑔 𝑟 = −𝜌 𝑟

𝐺𝑀(𝑟)

𝑟2

In general, the equation of motion is

ሷ𝑟 = −
𝐺𝑚

𝑟2 −
1

𝜌

𝜕𝑃

𝜕𝑟
= −

𝐺𝑚

𝑟2 − 4𝜋𝑟2 𝜕𝑃

𝜕𝑚

The LHS is usually null, unless there is free 
fall or explosion.

6

𝑑𝑟



Hydrostatic equilibrium
𝑑𝑃 𝑟

𝑑𝑟
= −

𝐺 𝑚 𝑟

𝑟2
𝜌 𝑟 = −𝑔 𝑟 𝜌 𝑟 … (1)

Mass continuity
𝑑𝑚 𝑟

𝑑𝑟
= 4𝜋𝑟2𝜌 r … (2)

(1)/(2)

(1) ⟶
𝑑𝑃 𝑟

𝑑𝑚
= −

𝐺𝑚 𝑟

4𝜋𝑟4

(2) ⟶
𝑑𝑟

𝑑𝑚
=

1

4𝜋𝑟2𝜌 𝑟

 𝑚 𝑟 : total mass inside radius 𝑟
 𝑃total = 𝑃gas + 𝑃e + 𝑃rad

Using mass as the independent variable, 

𝑟 = 𝑟 𝑚 , is preferred because mass is 

usually given and fixed (but 𝑟 is not.)

Boundary conditions (1) at 𝑚 = 0, 𝑟 = 0, 
(2) at 𝑚 = 𝑀 or 𝑟 = 𝑅, 𝑃 = 0. 

7



𝑑𝑃 𝑚

𝑑𝑚
= −

𝐺 𝑚

4𝜋𝑟4

𝑑𝑟

𝑑𝑚
=

1

4𝜋𝑟2 𝜌

𝑑𝐿 𝑚

𝑑𝑚
= 𝑞 𝑟

𝑑𝑇 𝑚

𝑑𝑚
= −

3𝜅𝐿 𝑟

4𝑎𝑐 4𝜋𝑟2 2𝑇3

Prianik

𝑃 =
𝜌

𝜇𝑚𝐻
𝑘𝑇 + 𝑃𝑒 +

1

3
𝑎𝑇4

𝜅 = 𝜅0 𝜌𝑎 𝑇𝑏

𝑞 = 𝑞0 𝜌𝑚 𝑇𝑛

The stellar structure equations then become

8



A polytropic (thermodynamic) process obeys

𝑃𝑉𝛼 = const

𝛼 is the polytropic index

 𝛼 = 0, 𝑃 = const isobaric process

For an ideal gas

 𝛼 = 1  isothermal process

 𝛼 = 𝛾 = Τ𝑐𝑝 𝑐𝑣  isentropic (= adiabatic and reversible) process

 𝛼 → ∞ isochoric (= isovolumetric) process

9



Recall that the internal energy 𝑢 =
𝑛

2
𝑘𝑇, 𝑛: degree of freedom

The specific heat capacity 𝑐𝑣 =
𝜕𝑢

𝜕𝑇 𝑣
=

𝑛

2
𝑘, 

𝑐𝑝 − 𝑐𝑣 = 𝑘

𝛾 =
𝑐𝑝

𝑐𝑣
=

𝑛
2

𝑘 + 𝑘

𝑛
2

𝑘
= 1 +

2

𝑛
=

𝑛 + 2

𝑛

For an ideal gas, 𝑛 = 3, so 𝛾 = Τ5 3 ≈ 1.66

For a diatomic gas, 𝑛 = 5, so 𝛾 = Τ7 5 ≈ 1.40

For a photon gas, 𝑛 = 6, so 𝛾 = Τ4 3 ≈ 1.33
10



(1)
𝑑𝑃

𝑑𝑟
= −

𝐺 𝑚 𝑟

𝑟2
𝜌 ⟶ 𝑚 𝑟 = −

𝑟2

𝐺𝜌

𝑑𝑃

𝑑𝑟

Plug into (2)

𝑑

𝑑𝑟
−

𝑟2

𝐺𝜌

𝑑𝑃

𝑑𝑟
= 4𝜋𝑟2𝜌

Rearrange to yield

1

𝑟2

𝑑

𝑑𝑟

𝑟2

𝜌

𝑑𝑃

𝑑𝑟
= −4𝜋𝐺𝜌 … (3)

𝑑𝑚 𝑟

𝑑𝑟
= 4𝜋𝑟2𝜌 r

11

Cf. the general Laplace eq. 

and Poisson eq.
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Poisson equation 

𝛻2𝜑 = 𝑓 (if 𝑓 = 0 Laplace eq.)

or
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
𝜑 𝑥, 𝑦, 𝑧 = 𝑓 𝑥, 𝑦, 𝑧

(1) Gravity 

𝛻 ∙ Ԧ𝑔 = −4𝜋𝐺𝜌, but Ԧ𝑔 = −𝛻φ ⟹ 𝛻2𝜑 = 4𝜋𝐺𝜌

Solution 𝜑 𝑟 = −
𝐺𝑀

𝑟

(2) Electrostatics

Gauss’s law, 𝛻 ∙ 𝐷 = 𝜌free, 𝐷 = 𝜖𝐸, 𝐸 = −𝛻φ,𝛻2𝜑 = − Τ𝜌 𝜖

Solution 𝜑 𝑟 = −
𝑄

4𝜋𝜀𝑟



Assume a polytrope; i. e. , a spherical fluid with 𝑃 and 𝜌 being 
related by 

𝑃 ≡ 𝐾𝜌1+
1

𝑛 = 𝐾 𝜌𝑐𝜃𝑛 1+
1

𝑛

Then (3) becomes

1

𝑟2

𝑑

𝑑𝑟

𝑟2

𝜌𝑐𝜃𝑛
𝐾 𝜌𝑐

1+
1
𝑛 𝑛 + 1 𝜃𝑛

𝑑𝜃

𝑑𝑟
= −4𝜋𝐺 𝜌𝑐𝜃𝑛

And after rearranging

𝑛 + 1

4𝜋𝐺
𝐾 𝜌𝑐

1
𝑛

−1 1

𝑟2

𝑑

𝑑𝑟
𝑟2

𝑑𝜃

𝑑𝑟
= −𝜃𝑛

𝜌 = 𝜌𝑐𝜃𝑛

𝜃 is dimensionless and specifies 
how density varies with mass

1

𝑟2

𝑑

𝑑𝑟

𝑟2

𝜌

𝑑𝑃

𝑑𝑟
= −4𝜋𝐺𝜌

𝛼2 13



Letting 𝑟 = 𝛼𝜉, we get 

1

𝜉2

𝑑

𝑑𝜉
𝜉2

𝑑𝜃

𝑑𝜉
= −𝜃𝑛

This is the Lane-Emden equation of index 
𝑛, after J. H. Lane and R. Emden.

Compared to (3), a given 𝑛
 a solution with different 𝐾, and  𝜌0

 a family of solutions

The structure of a polytrope depends on 𝑛.

𝜉 is dimensionless and specifies 
how radius varies with mass.

𝑛 ↗, Τ𝜌c ത𝜌 ↗
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The Lane-Emden equation has the boundary conditions of  

𝜃 = 1 and
𝑑𝜃

𝑑𝜉
= 0 at 𝜉 = 0, and can be integrated from 𝜉 = 0.  

For 𝑛 = 0, 1, 5, analytic solutions are available; otherwise the 
integration is done numerically.

𝑛 = 0, 𝜃0 = 1 − Τ𝜉2 6

𝑛 = 1, 𝜃1 = sin 𝜉/𝜉

𝑛 = 5, 𝜃5 = 1 + Τ𝜉2 3 − Τ1 2

For 𝑛 = 0 and 𝑛 = 1, solution → 0 at some point (𝜌 → 0); this 
defines the boundary of the star, i.e., 𝜉 at first zero (𝜉1)=radius.  
Solve 𝜃n 𝜉1 = 0.  

For 𝑛 = 0, 𝜌 = 𝜌c𝜃0 =const; for 𝑛 = 5, solution never goes to 0.

𝜃0 = 1 − Τ𝜉2 6 = 0 ⟹ 𝜉1 = 6

𝜃1 = sin 𝜉/𝜉 = 0 ⟹ 𝜉1 = 𝜋

𝜃5 = 1 + Τ𝜉2 3 − Τ1 2 ⟹ 𝜉1 = ∞
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Weisstein, Eric W. "Lane-Emden Differential Equation." From MathWorld--A Wolfram Web 
Resource. http://mathworld.wolfram.com/Lane-EmdenDifferentialEquation.html

𝑛 = 0, a constant
density sphere; 
𝜉1 = 6; 𝑃 = 𝑃𝑐𝜃

𝑛 = 1, solution a 
sync function;
𝜉1 = 𝜋; 𝜌 = 𝜌𝑐𝜃; 𝑃 = 𝑃𝑐𝜃2

𝑛 = 5, finite density, but    
infinite radius; 
𝜉1 → ∞

16

𝑛 = 0

𝑛 = 5

http://mathworld.wolfram.com/about/author.html
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/Lane-EmdenDifferentialEquation.html


The Lane-Emden equation is integrated often numerically to the 
first zero.  The overall stellar properties can then be computed. 

Mass

𝑀 𝜉 = 0׬

𝛼𝜉
4𝜋𝜌𝑟2𝑑𝑟 = 4 𝜋𝛼3𝜌𝑐 −𝜉2 𝑑𝜃

𝑑𝜉
𝜉=𝜉1

Radius
𝑅 = 𝛼𝜉1

Central pressure

𝑃𝑐 =
𝐺𝑀2

𝑅4 4 𝜋 𝑛 + 1
𝑑𝜃

𝑑𝜉 𝜉=𝜉1

2 −1

Mean density

ത𝜌 = 𝜌𝑐 −
3

𝜉

𝑑𝜃

𝑑𝜉
𝜉=𝜉1

Bower & Deeming
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Gravitational binding energy

𝛺 = −
3

5 − 𝑛

𝐺𝑀2

𝑅

For 𝑛 = 5, 𝛺 → −∞.  For any 𝑛 > 5 (i.e., 𝛾 < Τ6 5), 𝛺 > 0, the 
system is not gravitationally bound; no stable configuration

Given a solution 𝜃 𝜉 , i.e., 𝜌 𝑟 , the density and pressure 
profiles can be derived.
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Chandrasekhar p.96

mass

𝑁𝑛 =
4𝜋 Τ1 𝑛

𝑛 + 1
−𝜉1

𝑛+ Τ1 𝑛−1 𝑑𝜃

𝑑𝜉
𝜉=𝜉1

1−𝑛

𝑊𝑛 =
1

4𝜋 𝑛 + 1
𝑑𝜃
𝑑𝜉 𝜉=𝜉1

−2

𝑃𝑐density

19
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For the integration 
constants, 𝑐1 must be zero 
to avoid singularity at 
origin.  

Because 𝜌 = 𝜌c at 𝜃 = 1, 
𝑐2 =1

⟶ 𝜃 𝜉 = 1 −
1

6
𝜉2

𝜉1 = 𝜉 𝜃 = 0 = 6

The case for 𝑛 = 0, 𝜌 = 𝜌c𝜃0 = const.

1

𝜉2

𝑑

𝑑𝜉
𝜉2

𝑑𝜃

𝑑𝜉
= −𝜃𝑛

𝑑

𝑑𝜉
𝜉2

𝑑𝜃

𝑑𝜉
= −𝜉2

𝜉2
𝑑𝜃

𝑑𝜉
= −

1

3
𝜉3 + 𝑐1

𝑑𝜃

𝑑𝜉
= −

1

3
𝜉 +

𝑐1

𝜉2

𝜃 = −
1

6
𝜉2 −

𝑐1

𝜉
+ 𝑐2

21



Recall 𝜌 = 𝜌𝑐𝜃𝑛, and 𝑟 = 𝛼𝜉,

𝑀 = න
0

𝑅

4𝜋𝑟2𝜌 𝑑𝑟 = 4 𝜋𝛼3𝜌𝑐 න
0

𝜉1

𝜉2𝜃𝑛 𝑑𝜉

(from Lane-Emden eq.) 

= 4 𝜋𝛼3𝜌𝑐 න
0

𝜉1

−
𝑑

𝑑𝜉
𝜉2

𝑑𝜃

𝑑𝜉
𝑑𝜉
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If the star is supported by both radiation pressure and gas 
pressure, the total pressure 𝑃 = 𝑃gas + 𝑃rad.  

Define 𝛽 = Τ𝑃gas 𝑃.  

𝑃𝑟𝑎𝑑 =
4𝜎

3𝑐
𝑇4 =

1

3
𝑎𝑇4 = 1 − 𝛽 𝑃

For ideal gas, 𝑃gas =
𝜌

𝜇𝑚𝐻
𝑘𝑇 = 𝛽𝑃

Eliminate 𝑇, 𝑇 = Τ𝜇𝑚𝐻𝛽𝑃 𝜌𝑘, into 𝑇4 = Τ3 1 − 𝛽 𝑃 𝑎

𝑃 = 𝐾𝜌 Τ4 3 ⟶ 𝛾 = Τ4 3 or 𝑛 = 3

This is the Eddington standard model (𝑛 = 3).  
23



A special case --- an isothermal gas sphere 𝑃 ∝ 𝜌

This is a polytrope of 𝛾 = 1, or 𝑛 → ∞

𝑛 >5, so the sphere is infinite in extent.  Need to work out the 
solution from beginning.

Recall Eq. 3,
1

𝑟2

𝑑

𝑑𝑟

𝑟2

𝜌

𝑑𝑃

𝑑𝑟
= −4𝜋𝐺𝜌

Plug in the ideal gas equation of state, 𝑃 = Τ𝜌𝑘𝑇 𝜇𝑚𝐻

1

𝑟2

𝑑

𝑑𝑟

𝑟2

𝜌

𝑘𝑇

𝜇𝑚𝐻

𝑑𝜌

𝑑𝑟
= −4𝜋𝐺𝜌

24



Let 𝜌 = 𝜌𝑐𝑒−𝜓, 𝑟 =
𝑘𝑇

4𝜋𝐺𝜇𝑚𝐻𝜌𝑐

Τ1 2

𝜉 = 𝛼𝜉.  

The equation becomes

1

𝜉2

𝑑

𝑑𝜉
𝜉2

𝑑𝜓

𝑑𝜉
= 𝑒−𝜓

with the BCs, 𝜓 = 0, Τd𝜓 d𝜉 = 0 , and 𝜉 = 0.  

This must be solved numerically, and the solution diverges 
(i.e., density never goes to 0, and mass goes to infinitive.)

Conclusion: A finite star cannot be an isothermal gas sphere.
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Star Formation in a Nutshell

Stars are formed in groups out of 
dense molecular cloud cores.  
Planets are formed in young 
circumstellar disks.  
(Jeans criteria)

 Initial gravitational contraction 
leads to a decrease of luminosity, 
while surface temperature remains 
almost unchanged.  
(Pre-main sequence Hayashi track)

Radiative

Convective

29



1965 ApJ, 141, 993

30

Zero-age main sequence (ZAMS): 
the locus in the HRD of stars of 
different masses first reaching 
the main sequence (i.e., starting 
steady core H fusion)



31

Novotny

The evolution of 
the Sun, from 

𝑋 = 0.730,
𝑌 = 0.245,
𝑍 = 0.025

𝑃, 𝜌 and 𝐿
in [cgs]

𝑇 in [K]



Thermonuclear Reactions
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• Eddington in 1920s hypothesized that fusion reactions between 
light elements were the energy source of stars.  

• Stellar evolution = (con) sequences of nuclear reactions

• 𝐸kinetic ≈ 𝑘𝑇𝑐 ≈ 8.62 × 10−8 𝑇~ keV, 

but 𝐸Coulomb barrier =
𝑍1𝑍2𝑒2

𝑟
=

1.44 𝑍1𝑍2

𝑟[fm]
~ MeV.  

This is 3 orders higher than the kinetic energy of the particles.

• Tunneling effect in QM proposed by Gamow (1928, Z. Physik, 52, 510); 

applied to energy source in stars by Atkinson 
& Houtermans (1929, Z. Physik, 54, 656)
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Quantum mechanics 
tunneling effect
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∝ 𝑒−𝜋𝑍1𝑍2𝑒2/𝜀0ℎ𝜈

∝ 𝑒−𝑚𝑣2/2𝑘𝑇

This ↗ as v ↗ 

This ↘ as v ↗ 

∴ 

35



Clayton
36



Clayton
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Resonance  very sharp peak in the reaction rate 

So there exists a narrow range of 
temperature in which the reaction rate ↑↑ 
 a power law

 an “ignition” (threshold) temperature

For a thermonuclear reaction or a nucleosynthesis (fusion) 
process, the reaction rate is expressed as

𝑞 ∝ 𝜌𝑚 𝑇𝑛

Resonance reactions
Energy of interacting 
particles ≈ Energy level 
of compound nucleus 
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 𝑟12 ∝ 𝑛1𝑛2 𝜎𝑣 ∝ 𝑛1𝑛2 exp −𝐶
𝑧1

2𝑧2
2

𝑇6

1/3

[cm−3s−1]

 As 𝑇↗, 𝑟12 ↗↗

 Major reactions are those with smallest 𝑍1𝑍2 , i.e., lowest 
Coulomb barriers.

 𝑛𝑖 is the particle volume number density, 𝑛𝑖𝑚𝑖 = 𝜌𝑋𝑖 , where 𝑋𝑖

is the mass fraction

 𝑞12 ∝ 𝑄 𝜌 𝑋1 𝑋2/𝑚1𝑚2 [erg g−1s−1]
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Nuclear Fission

(e.g., power plants)

Fusion

(e.g., stars)

40



41

Binding Energy per Nucleon

Z A Symbol B (MeV)/A

0 1 𝑛 0.0

1 1 𝐻 0.0

2 𝐷 1.112260

3 𝑇 2.827307

2 3 𝐻𝑒 2.572693

4 7.074027

3 6 𝐿𝑖 5.332148

7 5.606490 Arnett
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𝑀⊙𝑐2 = 2 × 1054 ergs

1 amu = 931 Mev/c2

44

Deuterium: D or 2
H, with the  

nucleus consisting of 1 p+ and 1 n0

Earth ocean 1.6× 10−4



Τ𝐃 𝐇
• 156 ppm … Terrestrial seawater 1.56 × 10−4

• 22~26 ppm … Jupiter
• 17 ppm … Saturn
• 55 ppm … Uranus
• 200 ppm … Halley’s Comet 
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𝑛 + 𝑝 → 𝐷 + 𝛾 (production of D)

𝐷 + 𝐷 → 4𝐻𝑒 + 𝛾 (destruction)  faster

4𝐻𝑒


4𝐻𝑒 ≈

𝑛/2

(𝑛+𝑝)/4
=

2𝑛

𝑛+𝑝

𝑛/𝑝 ≈ 0.12 4𝐻𝑒 ≈ 2/9

The lower the mass density, 
the more the D abundant 
 D as a sensitive tracer of 
the density of the early 
Universe
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2D burns at 𝑇 ≈ 106 K

7Li burns at 𝑇 ≈ 3 × 106 K

1H burns at 𝑇 ≈ 5 × 106 K

2𝐻 1𝐻, 𝛾 3𝐻𝑒

7𝐿𝑖 1𝐻, 𝛾 4𝐻𝑒

Iben 2013



Hydrostatic equilibrium
𝑑𝑃

𝑑𝑟
= −

𝐺𝑚 𝑟

𝑟2 𝜌, so
𝑃

𝑅
=

𝐺𝑀

𝑅2

𝑀

𝑅3 →

Ideal gas law 𝑃 =
𝜌

𝜇𝑚𝐻
𝑘𝑇; 𝜌 =

𝑀

𝑅3
→

Equating the two pressure terms 

This should be valid at the star’s center, thus 

𝑇∗~
𝜇 𝐺𝑀∗

𝑅∗

𝑃 =
𝑀𝑇

𝑅3𝜇

𝑘

𝑚𝐻

𝑃 =
𝐺𝑀2

𝑅4

𝑇~
𝜇 𝐺𝑀

𝑅

Force/Area
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Li7(p, α)He4

Li6(p, α)He3



51

Stahler & Palla

Low-mass protostars, Tc too low to ignite Li fusion, so inherit the 
full ISM Li supply. 

Higher-mass protostars can burn and destroy Li promptly, but the 
base of the convection zone is below 3 × 106 K, so the surface 
lithium abundance = ISM value.



Stahler & Palla

Presence of Li I λ6707 absorption  stellar youth

Ca I λ6718 prominent in late-type stars 
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Stars Τℳ M⨀ > 0.08, core H fusion
Spectral types O, B, A, F, G, K, M

Brown 
Dwarfs

0.065 > Τℳ M⨀ > 0.013, core D fusion
0.080 > Τℳ M⨀ > 0.065, core Li fusion
Spectral types M6.5–9, L, T, Y

Electron degenerate core

10 g cm−3 < 𝜌𝑐 < 103 g cm−3

𝑇𝑐 < 3 × 106 K

Planets Τℳ M⨀ < 0.013, no fusion ever

53
1 𝑀⊙ ≈ 1000 𝑀𝐽



Star

Brown dwarf

Planet

Burrows
54
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Stahler & Palla, 
Fig 16.8

Development of the radiative core

Onset of core H fusion

ZAMS

Birthline



 The baryon number, lepton number, 
and charges should all be conserved.

 All 3 branches operate 
simultaneously.

 pp I is responsible for > 90% of 
stellar luminosity

pp I important when 

Tc > 5 × 106K

𝑄𝑡𝑜𝑡𝑎𝑙 = 1.44 × 2 + 5.49 × 2
+12.85 = 26.7 MeV 

𝑄𝑛𝑒𝑡 = 26.7 – 0.26 × 2 = 26.2 MeV
 6 × 1018 erg g−1

56

0.420 MeV to the positron and neutrino (0.26 
MeV); position and electron (each 0.511 MeV 
rest energy) annihilate  1.442 MeV released

This neutrino carries away 7.2 MeV

This neutrino carries away 0.26 MeV

(5.493 MeV, 6 s)

(1.586 MeV)

(0.861 MeV)

(17.347 MeV)

(0.135 MeV)

(18.074 MeV)



Among all fusion processes, the p-p 
chain has the lower temperature 
threshold, and the weakest 
temperature dependence.  

𝑄𝑝𝑝 = (𝑀4𝐻 − 𝑀𝐻𝑒) 𝑐2

= 26.731 MeV

(𝑀4𝐻 − 𝑀𝐻𝑒) : mass deficit

But some energy (up to a few MeV, 
depending on the reactions) is 
carried away by neutrinos.
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 𝑝 + 𝑝 → 2𝐻𝑒 (unstable)→ 𝑝 + 𝑝

 Hans Bethe (1939) realized that the weak interaction was 
capable of converting a proton to a neutron (!) first

 Weak interaction  a very small cross section

 The neutron is more massive, so this requires 
energy, i.e., it is an endothermic process, but 
neutron + proton  deuteron 
(releasing binding energy, i.e., is exothermic)

58

… but the nucleus of deuterium, a deuteron, consists of a 
proton and a neutron!



The thermonuclear reaction rate is

𝑟𝑝𝑝 = 3.09 × 10−37 𝑛𝑝
2 𝑇6

Τ−2 3 exp −33.81 𝑇6
Τ−1 3

(1 + 0.0123 𝑇6
Τ1 3 + 0.0109 𝑇6

Τ2 3 + 0.0009 𝑇6) [cm−3s−1], 

where the factor 3.09 × 10−37𝑛𝑝
2 = 11.05 × 1010 𝜌2𝑋𝐻

2

And the energy generation rate is

𝑞𝑝𝑝 = 2.38 × 106 𝜌 𝑋𝐻
2 𝑇6

Τ−2 3 exp −33.81 𝑇6
Τ−1 3

(1 + 0.0123 𝑇6
Τ1 3 + 0.0109 𝑇6

Τ2 3 + 0.0009 𝑇6) [erg g−1s−1]
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• PP I vs PP II

That is, 3He to react with 3He at a lower temperature, 

or to react with 4He at 𝑻 > 𝟏. 𝟒 × 𝟏𝟎𝟕 𝐊

• Relative importance of each chain 
⟶ Branching ratio ⟷ 𝑇, 𝜌, 𝜇

• Above 𝑇 > 3 × 107 K, PP III should dominate, but in reality, at 
this temperature, other (CNO) reactions take over.

• The overall rate of energy generation is determined by the 
slowest reaction, i.e., the first one, with reaction time 1010 yrs

𝑄𝑝𝑝~26.73 MeV (≈ 6.54 MeV per proton)

𝑞𝑝𝑝~ 𝜌1𝑇𝑛, 𝑛 ~ 4 − 6
𝑛 ~ 6 for T ≈ 5 × 106 K
𝑛 ~ 3.8 for T ≈ 15 × 106 K (Sun)
𝑛 ~ 3.5 for T ≈ 20 × 106 K



Recognized by Bethe 
and independently by 
von Weizsäcker

CN cycle + NO cycle

Cycle can start from 
any reaction as long as 
the involved isotope is 
present.

CN cycle more 
significant

NO cycle efficient 
only when 
𝑇 > 20 × 106 K

after that 
carried away by 
the neutrinos 
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 CN cycle takes over the PP chains near T6=18.
 Helium burning starts ~108 K.

Schwarzschild

 At the center of the Sun, 
Τ𝑞𝐶𝑁𝑂 𝑞𝑝𝑝 ≈ 0.1

 CNO dominates in stars 
> 1.2 M☉, i.e., of a spectral 

type F7 or earlier 
 large energy outflux
 a convective core

 This separates the lower 
and upper MS.
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 bottleneck

A succession of 𝛼, 𝛾 processes 


16𝑂, 20𝑁𝑒, 24𝑀𝑔 … (the α-process)

He-burning ignites at Tc ~ 108 K

Nucleosynthesis during helium burning
C12 𝛼, 𝛾 O16,   𝑄 = 7.162 MeV
O12 𝛼, 𝛾 Ne16
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C-burning ignites when Tc ~ (0.3-1.2) × 109 K, 
i.e., for stars 15-30 M☉

O-burning ignites when Tc ~ (1.5-2.6) × 109

K, i.e., for stars > 15-30 M☉

The p and α particles produced are captured 
immediately (because of the low Coulomb 
barriers) by heavy elements 
 isotopes O burning  Si 64



𝑞𝑃𝑃 = 2.4 × 106 𝜌 𝑋2 𝑇6
−2/3 exp −33.8 𝑇6

−1/3 erg g−1 s−1

𝑞𝐶𝑁 = 8 × 1027 𝜌 𝑋 𝑋𝐶𝑁 𝑇6
−2/3 exp −152.3 𝑇6

−1/3 erg g−1 s−1

Clayton

𝑞3𝛼 = 3.9 × 1011 𝜌2𝑋𝛼
3 𝑇8

−3 exp −42.9 𝑇8 erg g−1 s−1

≈ 4.4 × 10−8 𝜌2𝑋𝛼
3 𝑇8

40 erg g−1 s−1 (if 𝑇8 ≈ 1)

𝑞 ∝ 𝜌 𝑋𝐻
2 𝑇4

𝑞 ∝ 𝜌 𝑋𝐻𝑋𝐶𝑁 𝑇16 𝑋𝐶𝑁

𝑋𝐻
= 0.02 ok for Pop I
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Photoionization

Photodisintegration

66



For example, 16O + 𝛼 ↔ 20Ne + 𝛾

If 𝑇 < 109 K →
but if 𝑇 ≥ 1.5 × 109 K in radiation field ←

So 28Si disintegrates at ≈ 3 × 109 K to lighter elements 

(then recaptured …) 
until a nuclear statistical equilibrium is reached 

But the equilibrium is not exact 
 a pileup of the iron group nuclei (Fe, Co, Ni)

which can resist  photodisintegration until 7 × 109 K
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Nuclear Fuel Process Tthreshold

(106 K)
Products Energy per 

nucleon (MeV)

H p-p ~4 He 6.55

H CNO 15 He 6.25

He 3α 100 C, O 0.61

C C + C 600 O, Ne, Na, Mg 0.54

O O + O 1,000 Mg, S, P, Si ~0.3

Si Nuc. Equil. 3,000 Co, Fe, Ni <0.18

From Prialnik Table 4.1
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 Interactions among charged particles ⟶ Coulomb barrier

 If there are enough neutrons around ⟶ neutron capture, not 
limited by Coulomb barrier, so proceed at relatively low 𝑇s
⟶ ever heavier isotopes or 
⟶ radioactive decay 

 a new element +e− (beta decay) + ҧ𝜈 (antineutrino)

 Stable nuclei: neutron captures

 Unstable nuclei: neutron capture or 𝛽− decay

 𝛽− decay has a constant time scales

 𝑛0 capture time scales ⟷ (𝑇, 𝜌), so may proceed slower
(s-process) or more rapidly (r-process) than the competing 
𝛽− decays
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Prialnik Fig. 4.7 
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 Nuclear reactions: mass to energy (light)

 The reverse, energy into mass, is also possible; e.g., a photo 
 an electron + a position, if ℎ𝜈 > 2𝑚𝑒𝑐2, with the presence 
of a nucleus

 𝑘𝑇 ≈ ℎ𝜈 ≈ 2𝑚𝑒𝑐2, 𝑇 ≈ 1.2 × 1010 K

 In reality, at 𝑇 ≳ 109 K, sufficient photons (tail of the Planck 
function) for pair production.  Annihilation immediately 
destroys the positrons.



56𝐹𝑒 + 124 MeV → 13 4𝐻𝑒 + 4 𝑛

If  𝑇 ↑↑↑, even 4𝐻𝑒 → 𝑝+ + 𝑛0

So stellar interior has to be between a few 𝑇6 and 
a few 𝑇9.

Lesson: Nuclear reactions that absorb (rather than 
emit) energy from ambient radiation field (in stellar 
interior) can lead to catastrophic consequences.
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Luminosity

Ohm’s law  in a circuit, 𝐼 = 𝑉 / 𝑅, 

in electromagnetics,  𝐽 current density = 𝜎 conductivity 𝐸 [electric field]

In hydraulics, [flow]  [pressure gradient] / [resistance]

(unit) Pressure = [energy] / [volume]

Blackbody radiation
Energy density 𝑢 = 𝑎𝑇4

Radiation pressure 𝑃rad = Τ1 3 𝑢

𝐿 ∼ 4𝜋𝑅2
𝑑

1
3

𝑎𝑇4 /𝑑𝑟

𝜅𝜌

~ 4𝜋𝑅2
4

3

𝑎𝑇3

𝜅𝜌

𝑑𝑇

𝑑𝑟

~
𝑅2𝑇3

𝜅𝜌

𝑑𝑇

𝑑𝑟
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For a given structure, 

𝑇~𝑇𝑐 ,
𝑑𝑇

𝑑𝑟
~

𝑇𝑐

𝑅
, 𝑇𝑐~

𝜇𝐺𝑀

𝑅

𝐿~
𝑅2 Τ𝑇4 𝑅

𝜅 Τ𝑀 𝑅3
~

𝑅4𝑇4

𝜅𝑀
~

𝑅4

𝜅𝑀

𝜇𝐺𝑀

𝑅

4

𝐿~
𝜇4G4M3

𝜅

𝑑𝑇 𝑟

𝑑𝑟
= −

3𝜅𝜌𝐿 𝑟

4𝑎𝑐 4𝜋𝑟2𝑇3
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𝑇 ~
𝜇 𝐺𝑀

𝑅
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Prianik Fig. 1.6

𝐿

𝐿⨀
=

𝑀

𝑀⨀

𝜈

Mass-luminosity relation for main-sequence stars



𝑇𝑐 ≈
𝜇 𝐺𝑀

𝑅

So for a given 𝑇𝑐 , 𝑀 → 𝑅
MLR  → 𝐿

ቊL (∝ 𝑅2𝑇eff
4 ) and 𝑇eff

Main sequence is a run of 𝐿 and 𝑇eff as a function 
of stellar mass, with Tc nearly constant. 

Why 𝑇𝑐 ≈ constant?  
Because onset of H burning ~107 K
regardless of the stellar mass
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Recall for low-mass stars, 𝐿 ∝ 𝑀5.5 𝑅−0.5, pp chain 𝑞 ∝ 𝜌c 𝑇4

The energy-generation equation, 
𝑑𝐿

𝑑𝑟
= 4𝜋𝑟2𝜌𝑐 𝑞

⟹ 𝐿 ∝ 𝑅3𝜌𝑐
2 𝑇4 = 𝑅3

𝑀

𝑅3

2
𝑀

𝑅

4

=
𝑀6

𝑅7

𝑅~𝑀 Τ1 13 …………….. Stellar radius ↔ very weakly on the mass

𝐿~𝑀7 Τ1 13 ≈ 𝑀5.5… Stellar Luminosity ↔ strongly on the mass



79

Recall for low-mass stars, 𝐿 ∝ 𝑀5.5 𝑅−0.5, pp chain 𝑞 ∝ 𝜌c 𝑇4

The energy-generation equation, 
𝑑𝐿

𝑑𝑟
= 4𝜋𝑟2𝜌𝑐 𝑞

⟹ 𝐿 ∝ 𝑅3𝜌𝑐
2 𝑇4 = 𝑅3

𝑀

𝑅3

2
𝑀

𝑅

4

=
𝑀6

𝑅7

𝑅~𝑀 Τ1 13 ……………  Stellar radius varies weakly with the mass

𝐿~𝑀7 Τ1 13 ≈ 𝑀5.5… Stellar Luminosity varies strongly …

In the HRD, 𝐿 ∝ 𝑅2 𝑇𝑒
4 ⟶ 𝐿 Τ981 1007 ∝ 𝑇𝑒

4

or log 𝐿 ≈ 4 log 𝑇𝑒 + const (i.e., constant radius)
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For high-mass stars, 𝐿 ∝ 𝑀3, 
CNO cycle 𝑞 ∝ 𝜌c 𝑇16

Then, 𝑀15 ∝ 𝑅19, so 𝐿 ∝ 𝑇𝑒
Τ76 9

or log 𝐿 ≈ 8.4 log 𝑇𝑒 + const

That is, a steeper MS slope in the HRD 

log 𝑇𝑒

log 𝐿

⊙
Lower MS

Higher MS
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82https://sci.esa.int/web/gaia/-/60210-gaia-s-hertzsprung-russell-diagram-for-different-populations-of-stars

Young (hot) population

L=30 kpc; H=200 pc H=1 kpc D=30 kpc

Bimodal population?
Metal poorer

https://sci.esa.int/web/gaia/-/60210-gaia-s-hertzsprung-russell-diagram-for-different-populations-of-stars
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𝜏Nuclear ∝
𝑀

𝐿

∝ 𝑀−4.5 (for  low-mass stars) 

or

∝ 𝑀−2 (for  massive  stars) 

Calibrated  with the Sun.



Energy can be transported by conduction or 
convection, or radiation.

Conduction: by microscopic collision of particles 
and movement of electrons.  
Flux density [erg/s/cm2] = −𝜅𝛻T

Convection: by bulk motion of particles in a fluid 
(gas or liquid): advection（平流） (directional flow of 

energy) or diffusion（擴散）(non-directional along a 

concentration gradient).  

Convection does not happen in solids. 

Stars transport energy by either radiation or 
convection.  Conduction is effective only in 
compact objects, e.g., in isothermal cores in WDs.

NASA
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Convective equilibrium (stability vs instability)

𝑃1
′, 𝑇1

′, 𝜌1
′

Convection takes over? When an element moves vertically, 
does it continue to move? Key: Temperature gradients 

Element maintaining pressure equilibrium with 
surrounding, 𝑃2

′ = 𝑃2, ideal gas law → 𝜌2𝑇2 = 𝜌2
′ 𝑇2

′, 

Consider an element floats upwards  
If 𝜌2

′ > 𝜌2 (or 𝑇2
′ < 𝑇2) → sink back; no convection

To have convection, the element (rising adiabatically) 
should cool slower than the surrounding (in 
radiative equilibrium), i.e., 

𝑑𝑇

𝑑𝑟 element
<

𝑑𝑇

𝑑𝑟 surrounding
or 

𝑑𝑇

𝑑𝑟 ad
<

𝑑𝑇

𝑑𝑟 rad

𝑃2
′ , 𝑇2

′, 𝜌2
′

𝑃1, 𝑇1, 𝜌1

𝑃2, 𝑇2, 𝜌2

𝑇2 < 𝑇1



Compared with the 
surrounding temperature 
gradient

Radiation can no longer transport 
the energy efficiently enough 

 Convective instability

The rising height is typified by the mixing length ℓ, or 
parameterized as the scale height H, defined as the pressure (or 
density) varies by a factor of e times.   Usually 0.5 ≲ Τℓ

𝐻 ≲ 2.0
89
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In meteorology, dry and cool air tends to be stable, whereas wet and warm 
air (smaller gamma values) is vulnerable to convection  thunderstorm

𝑑𝑇

𝑑𝑟
ad

<
𝑑𝑇

𝑑𝑟
rad

𝑑 ln 𝑇

𝑑 ln 𝑃
ad

<
𝑑 ln 𝑇

𝑑 ln 𝑃
rad

𝛾 =
𝑁𝑘

𝑐𝑉
+ 1
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How to calculate 𝛻rad?

𝑑𝑇

𝑑𝑟
= −

3

4𝑎𝑐

𝜅𝜌

𝑇3

𝐿 𝑟

4𝜋𝑟2
and

𝑑𝑃

𝑑𝑟
= −𝑔𝜌

So
𝑑𝑇

𝑑𝑃
∝

𝜅

𝑇3

𝐿 𝑟

𝑟2

𝛻rad ≡
𝑑 ln𝑇

𝑑 ln𝑃
rad

=
ൗ𝑑𝑇

𝑇

ൗ𝑑𝑃
𝑃

= ⋯ =
3𝜅

16𝜋ac

𝑃

𝑇4

𝐿 𝑟

𝐺𝑀 𝑟
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Note that for an adiabatic process for an ideal gas

 𝑃 = 𝑛𝑘𝑇 ∝ 𝜌𝑇

So
𝑑𝑃

𝑃
=

𝑑𝜌

𝜌
+

𝑑𝑇

𝑇

And recall again

 𝑛𝑘 = 𝑐𝑝 − 𝑐𝑣

 𝛾 =
𝑐𝑝

𝑐𝑣
=

1+ Τ𝑛 2

Τ𝑛 2
= 1 +

2

𝑛
, where 𝑛 is d.o.f.  

 Note 𝑛 ↗, 𝛾 ↘
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How to calculate 𝛻ad?

𝑑𝑄＝𝑐𝑣𝑑𝑇 + 𝑃𝑑
1

𝜌
= 𝑐𝑣𝑑𝑇 −

P

𝜌2
𝑑𝜌 = 0

𝑐𝑣𝑑𝑇 =
𝑃

𝜌2
𝑑 𝜌 → 𝑐𝑣

𝑑𝑇

𝑇
=

𝑃

𝜌𝑇

𝑑𝜌

𝜌
→ 𝑐𝑣

𝑑𝑇

𝑇
= 𝑐𝑝 − 𝑐𝑣

𝑑𝑃

𝑃
−

𝑑𝑇

𝑇

⟹ 𝑐𝑝

𝑑𝑇

𝑇
= 𝑐𝑝 − 𝑐𝑣

𝑑𝑃

𝑃

𝛻ad ≡
𝑑 ln𝑇

𝑑 ln𝑃 ad
=

ൗ𝑑𝑇
𝑇

ൗ𝑑𝑃
𝑃

= 1 −
𝑐𝑣

𝑐𝑝
= 1 −

1

𝛾
= 0.4 for a monatomic gas 

for which 𝛾 = Τ5 3.

Note 𝛾 ↘, 𝛻ad ↘

So the condition for convective instability 

(convection to take place) is (
𝑑 log 𝑇

𝑑 log 𝑃
) < 0.4.
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Convection occurs when 𝛻rad > 𝛻ad

That is, when 𝛻rad is large, or 
when 𝛻ad is small.

To recap

𝛻rad =
𝑑𝑇

𝑑𝑟
=

𝐿𝑟

𝑟2

𝜅𝜌

𝜎𝑇3

𝛻ad = 1 −
1

𝛾
,  where 𝛾 = ൗ

𝑐𝑝
𝑐𝑣

𝛻ad small  𝑐𝑣 large  H2 dissociation (PMS Hayashi tracks)
H ionization, T~6,000 K
He ionization, T~20,000 K
He II ionization, T~50,000 K                                 

96



Ionization satisfies both conditions because

1. Opacity ↑

2. e- receive energy ⟶ d.o.f. ↗, so g ↘ ⟶ 𝛻ad ↘
⇒ susceptable to convection

Development of hydrogen convective zones inside stars.

Similarly, there are 1st and 2nd helium convective zones.
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For a sun-like star, ionization of H and He, and also 

the large opacity of H─ ions  a convective 

envelope (outer 30% radius). 

For a massive star 𝑀 ≳ 1.2 𝑀⊙ ,  the core produces 

fierce amount of energy (via CNO)  convective core 

 a large fraction of material to take part in the 

thermonuclear reactions 

For a very low-mass star 𝑀 ≲ 0.4 𝑀⊙ , ionization of 

H and He leads to a fully convective star  H 

completely burns off.

..

..

....

..
..

..

..
..

....

..
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A binary system at 5.74 pc.  Gliese 752A (=Wolf 1055) is an M2.5 red dwarf (mass ~0.46 
solar, mV~9.13), whereas Gliese 752B (VB 10) is an M8V (mass ~0.075 solar, mV~17.30).
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T Tauri stars contracting 
down to the ZAMS  an 
enlarged chromosphere
 emission spectra

https://ase.tufts.edu/cosmos/view_picture.asp?id=174

Structure of the solar atmosphere
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https://ase.tufts.edu/cosmos/view_picture.asp?id=174
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Along the ZAMS, 𝑀∗ ∝ 𝑅∗, so the 
central density 

𝜌𝑐 ∝ Τ𝑀∗ 𝑅∗
3 ∝ 𝑀∗

−2

That is, lower-mass MS stars are 
denser at the cores 
 to  provide sufficient pressure

So temperature may never get 
high enough for H fusion

 Degeneracy important

Stahler & Palla, Fig 16.12



Electron Degeneracy
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Fermi-Dirac distribution for non-interacting, 
indistinguishable particles obeying Pauli exclusion principle; 
applicable to half-integer spin in TE.  Examples of fermions 
include the electron, proton, neutrons, and nuclei with odd mass 
numbers, e.g., 3He (2 e−, 2 p+, 1 n0)

Bose-Einstein distribution for particles not limited to single 
occupancy of the same energy state. i.e., that do not obey Pauli 
exclusion principle; with integer values of spin.  Example bosons 
include 4He, the Higgs boson, gauge boson, graviton, meson.
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A Fermi gas is called degenerate if the temperature is low 
in comparison with the Fermi temperature/energy.
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Chemical Potential (μ)

• Temperature governs the flow of energy between 
two systems.

• Chemical potential governs the flow of particles; 
from higher chemical potential to the lower.
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Fermi level 
⟶ Fermi energy; 

Fermi momentum 



Gas Equation of State   𝑃 = 𝑃 𝜌, 𝑇

In general, the pressure integral (momentum transfer) 

𝑃 =
1

3
න

0

∞

𝑣𝑝 𝑛 𝑝 𝑑𝑝

For an deal gas 𝑃 ∝ 𝜌𝑇
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For a degenerate electron gas, 𝑃 independent of 𝑇, 

𝑃 ∝ 𝜌 Τ5 3 (non-relativistic)

𝑃 ∝ 𝜌 Τ4 3 (extremely relativistic)



Particle in a Box

𝛹 = 0 at the walls
De Broglie wavelength

𝜆𝑛 = Τ2𝐿 𝑛 , 𝑛 = 1, 2, 3, …

Since 𝜆𝑛 = Τℎ
𝑝 = Τℎ

𝑚𝑣 → 𝐸𝐾 = Τ1
2 𝑚𝑣2 = ൗ𝑚𝑣 2 2𝑚 =

ℎ2

2𝑚𝜆2

No potential  𝐸𝑛 = ൗ𝑚𝑣 2 2𝑚 =
ℎ2

2𝑚𝜆𝑛
2 =

𝑛2ℎ2

8𝑚𝐿2 =
1

2𝑚

𝑛2𝜋2ℏ2

𝐿2

cf. standing wave in a string

𝐿 = 1
2

𝜆, 2
2

𝜆, 3
2

𝜆, …
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Within the box, the Schrödinger equation,   

𝑑2𝜓

𝑑𝑥2 +
2𝑚

ℏ2 𝐸𝜓 = 0 → 𝜓𝑛 =
2

𝐿
sin

𝑛𝜋𝑥

𝐿

At the center, 𝜓1, 𝜓3 probability max
𝜓2 probability = 0

c.f. classical physics: same probability everywhere in the box
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Fermi energy: the highest energy level filled at temperature zero

𝜀𝐹 =
ℏ2

2𝑚

𝜋 𝑛𝐹

ℓ

2
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Phase of matter Particles 𝑬𝑭 𝑻𝑭 = Τℇ𝑭 𝒌𝑩[ K]

Liquid 3He atoms 4 × 10−4eV 4.9

Metal electrons 2−10 eV 5 × 104

White dwarfs electrons 0.3 MeV 3 × 109

Nuclear matter nucleons 30 MeV 3 × 1011

Neutron stars neutrons 300 MeV 3 × 1012

Fermi energy of degenerate fermion gases

𝜀𝐹 =
ℏ2

2𝑚𝑒
3𝜋2 𝑛𝑒

ൗ2
3



Considering the problem in terms of momentum. 
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Non-relativistic

Pressure and Momentum

𝑷 =
1

3
න

0

∞

𝑣 𝑝 𝑛 𝑝 𝑑𝑝
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In the non-relativistic case

In the extremely relativistic case    𝓋  c in the pressure integral
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Mass-radius relation for a degenerate electron gas

In the NR case, 𝑃 ∝ 𝜌 Τ5 3~
𝑀

𝑅3

Τ5 3

=
𝑀 Τ5 3

𝑅5
⟹ 𝑀𝑅3 = const

So 𝑀 ↗, 𝑅 ↘, 𝜌 ↗ ↗, electrons move ever faster.

log
𝑅

𝑅⨀
= −

1

3
log

𝑀

M⨀
−

5

3
log 𝜇𝑒 − 1.397

In the ER case, 𝑃 ∝ 𝜌 Τ4 3 =
𝑀 Τ4 3

𝑅4 , no solution between 𝑀 and 𝑅.

A mass limit for a degenerate electron body (white dwarf) 
Chandrasekhar limit     𝑀𝑊𝐷 ≲ Τ5.8 𝑀⊙ 𝜇𝑒

2

𝑃~
𝑀2

𝑅4
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Kalirai 2010

GC NGC 6397 
(~12 Gyr) 
by the HST 

WD cooling: 
11.47 ± 0.47 Gyr

Turn-off ~16 mag, 0.8 M⊙

MS complete ~26 mag, 0.092 M⊙

Detection limit 
~30 mag, 0.083 M⊙


