Sellar Interior



B A star has a stable configuration.

v That is, there is a certain structure (mass distribution) to
allow for such a force balance.

Inward = gravity
Outward = gas pressure (gradient)

(ideal gas, degenerate gas)
+ magnetic pressure (Ppag = B*4/8m)
+ radiation pressure (P,,q = 40T*/3¢)
+ turbulence pressure (P = p v%/2)

B How is the pressure sustained? Energy-> thermal pressure

v' How is the energy generated?
v' How is the energy transported?



Structure Equations

dm(r) ,
Iy = 41tr p(T) Mass continuity (distribution) P = P(p, T, ‘u)
dP(r) m(r)p(r) Equation of state
= = 7 P Hydrostatic equilibrium _
dr rz K = K(pl T,l,l)
dL(r) 4r?o(r) a(r) § Opacity
= 4TlTr r T ti
dr P q nergy conservation 0 =q(o,T. 1)
dT (r) 3kpL(r) — Nuclear reaction rate
dr T 4ac 4ntr?T3 by radiation
dT(’r) y — 1T dP (T) — Energy transport
dr - y P dr _ by convection

Boundary conditions: m(r) - 0and L(r) - 0asr — 0
T(r) - 0,P(r) > 0,and p(r) > 0asr - R,




Variables:m,r,p,T,P,k, L, u,and q

Vogt-Russell “theorem”

Given hydrostatic and thermal equilibrium with energy produced by
nuclear reactions, the internal structure of a star, and its subsequent
evolution, is uniquely determined by the mass and chemical
composition of the star.

In fact, ... by any two variables above, cf. the HRD. Itis notreally a
“theorem” in the mathematical sense, i.e., not strictly valid. Itis a “rule
of thumb”. There are other factors, too, such as magnetic field or
rotation, though these usually have little effect.




The Poynting vector of an EM wave,

S = E EXB
Radiation pressure is 1/3 of the EM energy density
1]1 , , '
P = 3 g(eE + uB“)

The carrier wave velocity, the phase velocity v = %

aw

The velocity of the modulation, the group velocity u = —~;

this is the information (or energy) is transported.

Harwit



Hydrostatic equilibrium

In general, the equation of motion is
- Gm 10P _  Gm 42 2P oP
- r2 p oar  r2 om

The LHS is usually null, unless there is free
fall or explosion.

Force = mass - acceleration
—dP dA = p(r)dAdr - g(r)

: d G
| T = —p(r) g() = —p(r)

dr



Hydrostatic equilibrium
dP(r) G m(r)
= = p(r) = =g() p(r) .. (1)

v m(r): total mass inside radius r
V' Piotal = Pgas + P + Praq

Mass continuity

dm(r)
= 4rrep(r) ... (2)
(1)/(2) Using mass as the independent variable,
dP(r) cam(r) r = r(m), is preferred because mass is
(1) — e p— usually given and fixed (but r is not.)
dr 1
(2) Boundary conditions (1) atm = 0,r = 0,

“dm” 4nr “p(r) (2)atm=Morr=R,P =0.



The stellar structure equations then become

dP(m) Gm
dm  4mr?

dr 1

dm  4mr? p

dzgr) =q(r)

dr(m) 3kL(r)
dm 4ac (4nr?)2T3

P =

Hmpy

kT + P, + = aT*

K=1Kop* TP

q9=4do0pP

an

Prianik



A polytropic (thermodynamic) process obeys

PV% = const

a is the polytropic index

v a = 0, P = const = isobaric process

For an ideal gas

v a = 1 - isothermal process

v a =y = c,/c, = isentropic (= adiabatic and reversible) process

v’ a — o0 - isochoric (= isovolumetric) process



Recall that the internal energyu = g kT, n: degree of freedom

The specific heat capacity ¢, = (a_u) = 2 k,
(%

oT
Cp —Cyp =k
n
c, ohk+k 2 n+2
=L = = 14— =
4 C n n n
1Y 71{

For an ideal gas,n = 3,soy =5/3 = 1.66
For a diatomic gas,n = 5,soy =7/5 = 1.40
For a photongas,n =6,soy =4/3 = 1.33



1) dP _ G m(r)p () = r? dP
dr 12 Gp dr
Plug into (2)
d ( r? dP) _ 4mr2
dr\ Gpdr
Rearrange to yield
L (TZ dp) — —47Gp|...(3)
rédr\ p dr

dm(r)

_ 2
= 4mtr<p(r)

Cf. the general Laplace eq.
and Poisson eq.
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Poisson equation
Vg = f (if f = 0 = Laplace eq.)

92 92 092
or (6x2 | 3y azz>¢(x v,z) = f(x,y,2)

(1) Gravity

V.-g=—4nGp,butg = -V = V%@ = 4nGp
Solution @ (r) = M

r

(2) Electrostatics

Gauss’s law, V - D = pfree, D = €E,E = —V@,V20 = —p/e€
Q

41TET

Solution @(r) =



Assume a polytrope; i.e., a spherical fluid with P and p being
related by

14— 14— p = pcb”
P=Kp 'n=K(p,0™) 'n 0 is dimensionless and specifies
2y how density varies with mass
1 r“ dP
Then (3) becomes ﬁ%(ﬁ%) — —4nGp
LAl )5 e on 2] = _ang peom
n —| = —4n
r2dr|p.6™ Pe dr Pe




¢ is dimensionless and specifies

Letting r = a¢, we get how radius varies with mass.
1 d do
§2— | =-9" _
£2d&\° dé n’z,p/p 7
This is the Lane-Emden equation of index i Polyropes |

n, after J. H. Lane and R. Emden.

P ,p (5

Compared to (3), a givenn
—> a solution with different K, and p,
—> a family of solutions

0.4 R

0.2

The structure of a polytrope depends on n. S

Figure 5.1 Normalized polytropes forn = 1.5 and n = 3. 14



The Lane-Emden equation has the boundary conditions of

9 =1and & =0at ¢ = 0, and can be integrated from ¢ = 0.

d¢

Forn = 0,1, 5, analytic solutions are available; otherwise the
integration is done numerically.

n=0, 6,=1-¢&%/6 O, =1—-82/6=0=&, =6
n=1, 6;=sin/¢ 0, =siné/E=0=¢& =m

n=5 05=1+§*/3)7"2 05=(1+¢*/3)"?=¢§ =
Forn = 0 and n = 1, solution = 0 at some point (p — 0); this

defines the boundary of the star; i.e., ¢ at first zero (¢;)=radius.
Solve 8,(&;) = 0.

Forn=0,p = pCHO =const; for n = 5, solution never goes to 0.



n = 0, a constant
density sphere;

$1 =V6; P = F.0

n = 1, solution a
sync function;
§1=m; p=pb; P =P0°

.0

(.5

—[1.5
n = 5, finite density, but
infinite radius;
51 — 00

—1.0

Weisstein, Eric W. "Lane-Emden Differential Equation." From MathWorld--A Wolfram Web
Resource. http: //mathworld.wolfram.com/Lane-EmdenDifferentialEquation.html
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The Lane-Emden equation is integrated often numerically to the
first zero. The overall stellar properties can then be computed.

Mass

do
GO = [ st =ama [ 2
—G1
Radius
R — af’l

Central pressure

GM? ao
PC — Y 4-7T(7’l+ 1) (d_f)

,  1-1

! §=¢1.
Mean density

_ 3 db
P = Pc [_‘_

5 df €=€1 Bower & Deeming



Gravitational binding energy

3 GM?
5—n R

Forn =5, - —oo. Foranyn > 5 (i.e, ¥y < 6/5),2 > 0, the
system is not gravitationally bound; no stable configuration

() =

Given a solution 6(§), i.e., p(r), the density and pressure
profiles can be derived.



mass

TABLE 4
THE CONSTANTS OF THE LANE-EMDEN FUNCTIONS*
- +1 I
5 don 5'—'1' da" - d0
" " #(F)emr] P |t (P th o+ 06(3F) o,
[ PO 2.4494 4.8088 I.0000 0:38%333 2 b voevein sven 0.119366 -0.5§
(o TR A 2.7528 1. 9871 1.8361 0.02156 2.270 0.26227 0.53847
I1.0.......... 3.14159 3.14150 BLIBOST |« sovammse ssomnsmons ssommnas 0.63662 0.392699 0.5
B8 e v 3.65375 2.71400 5.99071 132.3843 0.42422 0.770140 0.53849
D05 e sk 4.35287 2.41105§ I1.40254 10.4950 0.36475 1.63818 0.60180
2o nineen e 5.35528 2.18720 23.40046 3.82662 0.35150 3.90906 0.69956
L P 6.89685 2.01824 54.1825 2.01824 0.36394 11.05066 0.85432
B fre— 8.01894 I1.04980 88 .153 1.54716 0.37808 20.305 0.96769
- ————— 0.53581 1.89056 152.884 I1.2042 0.40104 40.9098 I.12087
T IR T 14.97155 1.79723 622.408 0.729202 0.47720 247.558 1.66606
4.5 ... 31.83646 1.73780 6189.47 0.394356 0.65798 | 4922.125 3.33100
4.9 ... .. 169.47 I.7355 934800 0.14239 1.340 3.693X 106 16.550
8.0 595 % von ® I.73205% ® o @ = @

* The values for # = o.5 and 4.9 are computed from Emden’s integrations of 8a; for # = 3.25 an unpublished integration by Chandrasekhar has been used. # = 5

corresponds to the Schuster-Emden integral. For the other values of # the British Association Tables, Vol. II, has been used.

1-n

_ (4m) 1/n

n+1

—& n+1/n-1 (ﬁ)
! d§ ), Chandrasekhar p.96
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Table 2-5 Constants of the Lane-Emden functions

dd) Pc
—e2 =2
n &1 &1 (d‘é)i-fl

P
0 2.4494 4 8988 1.0000
0.5 2.7528 3.7871 1.8361
1.0 3.14159 3.14159 3.28987
1.5 3.65375 2.71406 5.99071
2.0 4 35287 2.41105 11.40254
2.0 5.35528 2.18720 23 .40646
3.0 6.89685 2.01824 54 .1825
3.25 8.01894 1.94980 88.153
3.5 9.53581 1.89056 152.884
4.0 14 .97155 1.79723 622.408
4.5 31.83646 1.73780 6,189 .47
4.9 169.47 1.7355 934,800
5.0 ) 1.73205 0

t S. Chandrasekhar, ““An Introduction to the Study of Stellar
Structure,” p. 96; reprinted from the Dover Publications edition,
Copyright 1939 by The University of Chicago, as reprinted by
permission of The University of Chicago.
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The case forn = 0, p = p.0° = const.

Ld(,d0\__.
ar\s @) T

d do
d_€<€2d_€> = —¢&?

,do 1

- __Z3
$ dz 35 + Cq
do 1 +C1
dé 35 £2
1 C
9=__€2 ! ICZ

For the integration
constants, c; must be zero
to avoid singularity at
origin.

Because p = p.atf =1,
c, =1

— 0(8) =1-=-¢2
§1=§(Q=0)=\/8



Recall p = p.0™, and r = ¢,
R $1
M = f Arrép dr =4 madp. | &20™ dé
0 0
(from Lane-Emden eq.)

S d do\
— 4 3 - _ 2 d
napjo | d€(€ d€>_ ¢




[f the star is supported by both radiation pressure and gas
pressure, the total pressure P = Py + Praq.

Define f = Fy,5/P.

4 1
P g = B—iT‘* =-aT*=(1-p)P

For ideal gas, Py,5 = L kT = S P

Hmpy

Eliminate T, T = umyBP/pk,intoT* = 3(1 — B)P/a
P=Kp*3 >y =4/30rn=3
This is the Eddington standard model (n = 3).




A special case --- an isothermal gas sphere P < p

This is a polytrope of y = 1,0orn —» o

n >5, so the sphere is infinite in extent. Need to work out the
solution from beginning.

1 d (r®dpP
Recall Eq. 3, —— (p dr) = —4nGp

Plug in the ideal gas equation of state, P = pkT /umy

1 d (r* kT dp\ -
r2dr\ p umydr/] P




— kT 1/2
Letp =p.e™ ", r = [4nGumec] & = aé.
The equation becomes
d
()
5 ds\" d¢

with the BCs, ¥ = 0,dy/dé = 0,and & = 0.

This must be solved numerically, and the solution diverges
(i.e., density never goes to 0, and mass goes to infinitive.)

Conclusion: A finite star cannot be an isothermal gas sphere.
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Star Formation in a Nutshell

@ Stars are formed in groups out of
dense molecular cloud cores.
Planets are formed in young
circumstellar disks.

(Jeans criteria)

@ Initial gravitational contraction
leads to a decrease of luminosity,
while surface temperature remains
almost unchanged.

(Pre-main sequence Hayashi track)

Henyey track | Radiative

bt
L]

Hayashi track

Convective

eeeeeeeeeeeeeeeeeee

Ls L ]
1
Effective temperature, 10°°K

. Fig. 51 Th pth hHRd agram of the c fh
the mal q The interior has b ome fﬁ ly h bill!‘
deuterium afte b ut 10° years_. The actxo n ceases ne h e main
sequen h th e core has become h t gh to replen h the solar
lumin y ith the thermonuclea \{er generate d by t fg§ion of
hyd_g o heliu m [After D E and A. G W. Cameron, The Con-

Ph e of Stellar Evolut R F. Stein and A. G. W. Cameron

(eds.), “Stcllar Evolution,” Plenum Press, New York, 1966.)
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STELLAR EVOLUTION. I. THE APPROACH TO THE MAIN SEQUENCE*

Icko IBEN, JR.
California Institute of Technology, Pasadena, California
Received August 18, 1964; revised November 23, 1964

ABSTRACT

The manner in which nuclear reactions replace gravitational contraction as the major source of stellar
luminosity is investigated for model stars of population I composition in the massrange 0.5 < M/Mgp <
15 0. By following in detail the depletion of C!from high initial values down to values corresponding to
equilibrium with N*¢ in the C-N cycle, the approach to the main sequence in the Hertzsprung-Russell
diagram and the time to reach the main sequence, for stars with M > 1.25 M, are found to differ sig-
nificantly from data reported previously.

LOG (L)

Zero-age main sequence (ZAMS):
the locus in the HRD of stars of

different masses first reaching Y
the main sequence (i.e., starting 5
steady core H fusion) -

1 | | | i | | ] 1 |
45 44 43 42 4| 40 39 38 37 36
LOG (Te)

F1c. 17.—Paths in the Hertzsprung-Russell diagram for models of mass (M /M o) = 0.5, 1.0, 1.25,

1.5, 2.25, 30, 5.0, 9.0, and 15.0. Units of luminosity and surface temperature are the same as those )
Fig. 1



The evolution of
P’ pandL 7 the Sun, from
in [cgs] X = 0.730
. 5| Y = 0.245,
I'in[K] 7 = 0.025

t (units of 10° yr) Novotny
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Thermonuclear Reactions
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* Eddington in 1920s hypothesized that fusion reactions between
light elements were the energy source of stars.

» Stellar evolution = (con) sequences of nuclear reactions
° Ekinetic ~ kTC ~ 8.62 X 10_8 T~ keV,

_ ZyZ,e* 14477,
but ECoulomb barrier — —

T r[fm] ~ MeV.

This is 3 orders higher than the kinetic energy of the particles.

* Tunneling effect in QM proposed by Gamow (1928, Z. Physik, 52, 510);
applied to energy source in stars by Atkinson
& Houtermans (1929, z. Physik, 54, 656)



Quantum mechanics v
tunneling effect < Coulomtt potontia

, Attractive . r—»
nuclear potential

Figure 3.4 [Illustration of the potential seen by particle b when approaching particle A with a
kinetic energy E,, , and the corresponding wavefunction ¥; classically, particle b would reach only
a distance r, from particle A before being repelled by the Coulomb force

34



Cross section for nuclear reactions (penetrating probability)
o e—nzlzzez/eohv
This 7asv 7

Velocity probability distribution (Maxwellian)

—mv?/2kT
x € This N asv /

.. Product of these 2 factors = Gamow peak

35



& N\
D. Clay‘fm Prine: pleo b’{) Stellar Evo Lo
T omd MNucleosynthesis ”

Maxwellian Velocity
Dig4ribution |
o it ="' Penetration

Probability

Product (magnified)

e ———— —— —— —

\\4-—A=’-4—10 kev
\
’ \
Z y A e
RT=1-3 kev E,~15-30 kev Wi

Fig. 46 The dominant energy-dependent factors in thermonuclear reac-
tions. Most of the reactions occur in the high-energy tail of the max-
wellian energy distribution, which_introduces the rapidly falling factor
exp (—E/kT). Penetration through the coulomb barrier introduces the
factor exp (—bE-}), which vanishes strongly at low energy. Their
product is a fairly sharp peak near an energy designated by E,, which is
generally much larger than k7. The peak is pushed out to this energy by
the penetration factor, and it is therefore commonly called the Gamow

peak in honor of the physicist who first studied the penetration through
the coulomb barrier. Clayton



0.7
CIZ(p"y)N 13
E,= 37.9kev
i T A = 22.8kev
& I
Fﬂl &
+ T=30x10°K
QII@ 0.4
|
S 03
= 27.9 kev—>-
o
- 0.2}
0.1}
| | | | | ] ]
0 10 20 30 40 50 60 70 80 90

E, kev

Fig. -7 The Gamow peak for the reaction C12(p,y)N13at T = 30 X 10¢ °K.
The curve is actually somewhat asymmetric about E,, but it is nonetheless
adequately approximated by a gaussian.

Clayton
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Resonance = very sharp peak in the reaction rate

So there exists a narrow range of

. . Resonance reactions
temperature in which the reaction rate T1 Energy of interacting
S 3 power law particles = Energy level

of compound nucleus
—> an “ignition” (threshold) temperature

For a thermonuclear reaction or a nucleosynthesis (fusion)
process, the reaction rate is expressed as

g o< pMm T




Nuclear reaction rate

1/3

2,2

yAWA _ —_

v 15, X nin, (oV) < nyn, exp —C( 1T2) [cm™3s™1]
6

V AST2, 1y, 77

v Major reactions are those with smallest Z,Z,, i.e., lowest
Coulomb barriers.

v’ n; is the particle volume number density, n;m; = pX;, where X;
is the mass fraction

v 12 X Q p Xy Xo/mym, [erg g™ s



Average binding energy per nucleon (MeV)

fHe

Nuclear Fission
(e.g., power plants)

Fusion

y- (€.9., stars)

Binding energy per nuclear
particle (nucleon) in MeV

HE

Hl

Ma
I

Fe

The "iron group®
of isctopes are the

; i yield from
' ¢ nuclear fission
mast lightly bound, H :

S:Ni {most tightly bound)

58 Fe Elements heavier

26 &g e : than iron can yield
26" pavena MeV | energy by nuclaar
per nucleon | fission.
yiald from binding energy. |
H  nuclear fusion '
| Avarage mass :
i of fission fragments o ;
I 'is about 118, 35[_] :
1 | 1 1 1 1 | 1 1 1 1 EI 1 1 1 1 | 1 1 1 1 | 1 E
50 100 150 200

Mass Mumber, A

30 60 a0 120

150 180 210 240

MNumber of nucleons in nucleus

270
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Binding Energy per Nucleon

--

n

H 0.0

D 1.112260

T 2.827307

2.572693

7.074027

Li 5.332148

5.606490 Arnett
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Stellar Atmosphere and Structure

Problem Set #20201203, due in two weeks

1. With the attached figure and table, compute the number of neutral sodium

atoms in the ground state on the sun's surface.

log (W/A)

| | ' .
log Nf (A /5000R) F]"()m AHEI'

Data for solar sodium lines

A W (mA) f
3302.38 88 0.0214
3302.98 67 0.0049
5889.97 730 0.645

5895.94 560 0.325




A star of mass M and a homogeneous composition assumes a density of a
radial dependence, p(r) = p, [1 — (r/Ry)*], where p, is the central density,
and R, istheradiusofthe star. (a) Find m(r). (b) Find the relation
between Mand R,. (c) Derive and plot the pressure as a function of radius.
(d) What is the central temperature of the star?

The Lane-Emden equation for stellar structure is a form of Poisson equation,

612 ddé (62 df) =07

where ¢ is a dimensionless radius, 6, also dimensionless, describes the
density profile of the star, and n is the polytropic index. (a) Derive the
equation, and describe what each symbol stands for.  (b) Solve it analytically
for n = 1. Find the total mass of the star M = M(R), where R is the stellar
radius. (c¢) Assume n = 3 for the Sun, compute the central density, central
pressure, and central temperature. Compare the computed central
temperature with the currently best estimated central temperature.



D&u'f? ViU PA .Burnn‘ng

Mgoc? = 2 x 10°* ergs
1 amu = 931 Mev/c?

et e v (raate) () (=) ()

Z‘, ‘.’- ) ) 8 \ 3
/7 \ ,f/! J /

F.& MeV

u:?x'o I/](

‘ISH value
/

He

Protium Deuterium Tritium

Deuterium: D or “n, with the
nucleus consisting of 1 p* and 1 n°

(4
]

~Yi$-

?/H >~ 2x l:;
Earth ocean 1.6x 10~4
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D/H

e 156 ppm ... Terrestrial seawater (1.56 x 107%)
* 22~26 ppm ... Jupiter

* 17 ppm ... Saturn

* 55 ppm ... Uranus

200 ppm ... Halley’s Comet



The lower the mass density,
the more the Dabundant
D+D - *He+ ¥ (destruction) = faster > Das a sensitive tracer of

—  the density of the early
Universe

p — D + y (production of D) n

Before the Big Bang nucleosynthesis, there were
plenty of neutrons, but much less abundant than

protons, so all neutrons go into making *He

tp N M2 _ 20
2 'He= (n+p)/4 o n+p

Current value n/p = 0.12, so *He ~ 2/9, as observed
today.
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15 — : . |
... R=5Re o
h > t=4x10%
DEUTERIUM - i
T BURNING J
P 5
L) -tly)  Aty) gl
0-35x10° 10* g :
35x10°-10°  sx10* §
W-aEet  2mp° o t=4x10%
>3x 108 10° .
5? 05} |
o FULLY CONVECTIVE :
2 BELOW PHOTOSPHERE 3
—t=106y
RADIATIVE CORE °
BEGINS —>%
! [«
i . mRC='95 cé
OF iy 0 o l |
I f? 0o t=2x107y %—t=3><106y-
t=33x107y . © o 0—Mpc=-25
e o )
o o Mpc=-750
R=Ro -. %0 Mpg= 501
L t=107y
-05} = |
L | ; g . ) | ) ) LT
3.75 3.7 3.65 3.6
log Te

Pre main sequence evolution in the HR diagram of a low mass model (M = Mg, Z = 0.01,Y = 0.25)

2DburnsatT = 10°K

H(*H,y)3He

LiburnsatT =~ 3 X 10°K
"Li(*H,y)*He

IHburnsatT =~ 5 X 10°K

Iben 2013



Hydrostatic equilibrium

P Gm(r) P GM M GM?
ar r2 P, S0 R~ R2 R3 — P = pa Force/Area
M
Ideal gas law P=LkT;p=—3—> P:MT k
Hmpy R R3u my

uGaM
R

Equating the two pressure terms 2> T~

This should be valid at the star’s center, thus

uGM,
R,

T
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pccall a S'fm'3 cenfm( ‘fcmforarurc
wass oisfr.
G M P
& = /U :
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L thium Burning

7[_,‘ +TH — %He 4+ “ e (7’)3:(10‘[()

IsM [L?//Hlfvzx:;?

/),.:Wyo(:a/(. abuno{a"q (0 X ,{»u\!;r
?ndu:(!( by cosm e mys ol A"f+"‘43 4 by

( Tnverse YGacf.‘rm)
L; weasurable ~~ Stellay $F¢c+rq

e é7o8A absorff.‘m

(
"oactually doublet £7¢7,78 amsl £7¢7 93

bt difficule o rese/ve

Li’ (p, @)He*
Li°(p, a)He’
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Low-mass protostars, T, too low to ignite Li fusion, so inherit the
full ISM Li supply.

Higher-mass protostars can burn and destroy Li promptly, but the
base of the convection zone is below 3 X 10° K, so the surface
lithium abundance = ISM value.

Stahler & Palla



Presence of Li | A6707 absorption > stellar youth
—— CalA6718 prominent in late-type stars

2.0 T I I l
61 Cyg B
1.5
X
-
T
.g 1.0
©
o BP Tau
05+ —
Lil Cal
0 | | | |
6700 6705 6710 6715 6720 6725

Wavelength N (A)

Figure 16.9 Lithium absorption in a pre-main-sequence star. Shown is a portion of the optical
spectrum of BP Tau, a T Tauri star of spectral type K7, corresponding to an effective tempera-
ture of 4000 K. Also shown, for comparison, is a main-sequence star of the same spectral type,
61 Cyg B. Only in the first star do we see the Li I absorption line at 6708 A. Both objects also Stahler & Palla

have a strong line due to neutral calcium. -



Stars M /Mg > 0.08, core H fusion
Spectral types O, B, A, F G, K, M

Brown 0.065 > M /Mg > 0.013, core D fusion
Dwarfs  0.080 > M /Mg > 0.065, core Li fusion
Spectral types M6.5-9, L, T Y

Electron degenerate core

v10gem ™ < p. < 103gcm™
vT.<3x10°K
Planets M /Mg < 0.013, no fusion ever

1 Mg ~ 1000 M,
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Development of the radiative core
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The proton-proton chain

This neutrino carries away 0.26 MeV

0.420 MeV to the positron and neutrino (0.26
MeV); position and electron (each 0.511 MeV

'H+'H— *D+e” +v.  (1.44 MeV. 1.4 x 10% yr) rest energy) annihilate =» 1.442 MeV released

D+ 'H — SHe + v (5.493 MeV, 6 3)

pp I chain

SHe + *He — “He + 'H +'H (12.85 MeV, 10° yr)

Note: net 6 'H — *He + 2 'H

pp II chain

SHe + 4He — 7Be+’y (1.586 MeV)
7Be L e — 7L1+ v, (0.861 MeV)

7L1+ 1H_> 4He+4He (17347 MeV)

pp III chain

He + *He — "Be + ~
Be +'H— ®B+~v  (0.135 MeV)
8B & -, 8Be 4+ et 4 1, Thisneutrino carries away 7.2 MeV

*Be — %He + ‘He (18.074 MeV)

pp | important when
T.>5x 10°K

Qiprar = 1.44 X 2 + 5.49 x 2
+12.85 = 26.7 MeV
Qe = 26.7 - 0.26 X 2 = 26.2 MeV
> 6x 10 ergg™

v The baryon number, lepton number,
and charges should all be conserved.

v All 3 branches operate
simultaneously.

v' pp lis responsible for > 90% of
stellar luminosity 56
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Figure 4.3 The nuclear reactions of the p — p I, IT and III chains.

Among all fusion processes, the p-p
chain has the lower temperature
threshold, and the weakest
temperature dependence.

Qpp = (Myy — Mye) c?
= 26.731 MeV
(M, — My,) : mass deficit

But some energy (up to a few MeV,
depending on the reactions) is
carried away by neutrinos.
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... but the nucleus of deuterium, a deuteron, consists of a
proton and a neutron!

v p+p > “He (unstable)- p + p

v Hans Bethe (1939) realized that the weak interaction was
capable of converting a proton to a neutron (!) first

v" Weak interaction = a very small cross section

v The neutron is more massive, so this requires
energy, i.e., it is an endothermic process, but
neutron + proton > deuteron
(releasing binding energy, i.e., is exothermic)




The thermonuclear reaction rate is

fyp = 3.09 X 10737 nZ T, **exp (-33.81T, /%)

(1 + 0.0123 T3 +0.0109 T>3 4+ 0.0009 T,) [cm™3s71],
where the factor 3.09 X 1073"n; = 11.05 x 10'° p*Xj

And the energy generation rate is

Gpp = 2.38 X 108 p X3 T, >/ exp (-33.81 7, /)

(1 + 0.0123 T3 +0.0109 T>3 4 0.0009 T,) [ergg~1s™]




PP Ivs PP I
Thatis, >He to react with *He at a lower temperature,

or to react with *HeatT > 1.4 x 107 K

Relative importance of each chain
— Branching ratio< T,p,u

Above T > 3 x 107 K, PP III should dominate, but in reality, at
this temperature, other (CNO) reactions take over.

The overall rate of energy generation is determined by the
slowest reaction, i.e., the first one, with reaction time 101° yrs

Q,p~26.73 MeV (= 6.54 MeV per proton)

n~6forT~5x10°K
1Tn _ n~3.8forT ~ 15 X 10° K (Sun)
~ n~4—=6
App~ P ’ n~3.5forT =~ 20 x 106 K




CNO cycle
( bi-ceyele)

—P BN+ Ho 2C+ *He

CN cycle more
significant

NO cycle efficient

only when
T > 20x10°K

Figure 4.4 The nuclear reactions of the CNO bi-cycle.
e ——

C,N.O oo catalysts

5
2C4+ Ho BN+y 0 MN+ H > 1504y
BN o BCHet+vikmn 150 5 N 4 ot 4+ v
Bo4+ 'Ho I4N+)’;xoo‘y BN+ 'H » 160 4 y €=
HN+]H—*150+}/’!|JY 160+ lH—* I7F+y
50> BN+et+v 828 '"F - "0+t 4+ v
"0+ 'H— “N+ “He
)

Hydrogen buming

p T 4
/7 \’(@\w

ral
.

3C
@
@

net

- *“He

Recognized by Bethe
and independently by
von Weizsacker

CN cycle + NO cycle

Cycle can start from
any reaction as long as
the involved isotope is
present.

after that
~ 2 f‘ Mel carried away by

.GCNO .
the neutrinos

Beno ~ fT'é
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to | -

] At the center of the Sun,
QCNO/CIpp ~ 0.1

+5
[d CNO dominates in stars

> 1.2 M, i.e., of a spectral
type F7 or earlier
- large energy outflux

log €

-5 |- - .

| ! - - =» a convective core

65 70 75 80

log T
Fig 10.1. Nuclear emergy gemeration as a function of [ This separates the lower
temperature (with pX? =100 and X, =0.005X for the
proton-proton reaction and the carbon cycle, but p?Y* = 10* and upper MS
for the triple-alpha process). : )
Schwarzschild

v CN cycle takes over the PP chains near T,=18.
v Helium burning starts ~108 K.



A He Gas — the triple-alpha process He-burning ignites at Tc ~ 108 K

He + ‘He — *Be (=95 keV, i.e., endothermic) The lifetime of *Be is 2.6 x 10710 s but is still
longer than the mean-free time between a particles at Tx
(Edwin Salpeter, 1952)

"Be + ‘He — 2C + v (7.4 MeV) & bottleneck e
Note: net 3 *He — 2C

CEL

. ne¢ . s2
Q. =7278 Mev — 3 M=>"C

I ; ;
' L——é.‘?.?\’lo?ﬂr!g’» 0.1 0 H > Me

' &0
‘z N : .f * Y bottleneck = 2 - R -
O30

§
«—>"B.

Nucleosynthesis during helium burning s P
C*2(a, )0, Q =7.162 MeV
0'%(a, y)Nel®

A succession of (a, y) processes
> 10,%Ne, **Mg ... (the a-process)



4 carben /exygen Gas

,2C+MC '2C+'2C—>24Mg+y 160+l60-+328+y lbc 4 Ié«o
8 —_ 23Mg+" 3]S+n ?
T2 Exw'K — BNa + p 3Py, TR0k
- lzzNe+a +[Bsilt o o —
;;(C - /3 l,’e " —p O+2a 24Mg+20 Olgns ~ /6 IMé ‘"
. . . 9 Carbon buming %y
C-burning ignites when Tc ~ (0.3-1.2) X 10° K
) g

i.e., for stars 15-30 M

O-burning ignites when Tc ~ (1.5-2.6) X 10°
K, i.e., for stars > 15-30 M,

The pand a particles produced are captured é
immediately (because of the low Coulomb \‘i‘/ o

barriers) by heavy elements ¢
> 2 isotopes O burning - Si éa




Gpp = 2.4 X 10° p X2 Ts~%/3 exp[—33.8 Tg /3] [ergg=ts™1]

qx pXa T*

Gey = 8 X 1027 p X Xcy T ™23 exp[—152.3 Tg /3] [ergg=ts™1]

1 X
q X pXHXCN T 6 %=0.020kf0rPopI

H

Gag = 3.9 X 101! p2X 3 Tg > exp[—42.9Tg ] [ergg=!s7!]
~ 4.4 x 1078 p2X, > Tg*" [ergg=ls™ 1] (ifTg = 1)

Clayton
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Does 288 feltas the pams scenar/e ?

C+l £XI¢:’K

28¢: 4 209, - “fv ? ote  10%%

M@ ¢ COu/OMb bar’_;‘, be comso Rxtrem /y Ju’(; another

o
NUuclear reaction takes Place

% A»
“y sen
© < . Photoionization
ater e

EM Binding foree
Likew+S®
h

nuelfewd
nuc/ean binding -ﬁrct

. ¢
Bae” * < Photodisintegration
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For example, '°0 + o < “’Ne+ y
IfT < 10°K -
butif T > 1.5 x 107 K (in radiation field) «

So “®Si disintegrates at = 3 x 10° K to lighter elements

(then recaptured ...)
until a nuclear statistical equilibrium is reached

But the equilibrium is not exact
—> a pileup of the iron group nuclei (Fe, Co, Ni)
which can resist photodisintegration until 7 x 10° K



Nuclear Fuel | Process Tt reshold Products Energy per
(106 K) nucleon (MeV)

6.55
H CNO 15 He 6.25
He 3a 100 C, 0 0.61
C C+C 600 O, Ne,Na,Mg 0.54
O O0+0 1,000 Mg, S, P, Si ~0.3
Si Nuc. Equil. 3,000 Co, Fe, Ni <0.18

From Prialnik Table 4.1
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[ Interactions among charged particles — Coulomb barrier

[ If there are enough neutrons around — neutron capture, not
limited by Coulomb barrier, so proceed at relatively low T's
—> ever heavier isotopes or
—> radioactive decay

- anew element +e~ (beta decay) + v (antineutrino)

[ Stable nuclei: neutron captures
[ Unstable nuclei: neutron capture or f~ decay
O 5~ decay has a constant time scales

O n° capture time scales < (T, p), so may proceed slower
(s-process) or more rapidly (r~process) than the competing
f~ decays



S-process

-

A Y
% n, y)

slow”

r-process

....., ,P
\y
0,10, 7)

2
c t pass *.{ ==

Prialnik Fig. 4.7
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[ Nuclear reactions: mass to energy (light)

[0 The reverse, energy into mass, is also possible; e.g., a photo
- an electron + a position, if hv > 2m,c?, with the presence
of a nucleus

O kT ~ hv =~ 2m,c%, T =~ 1.2 x 101° K

O In reality, at T = 10° K, sufficient photons (tail of the Planck
function) for pair production. Annihilation immediately
destroys the positrons.



Lo + 124 MeV — 13 *He +4n

If T 111, even *He —» p™ + n®

So stellar interior has to be between a few T¢ and
a few T,.

Lesson: Nuclear reactions that absorb (rather than
emit) energy from ambient radiation field (in stellar
interior) can lead to catastrophic consequences.




Luminosity

Ohm’s law inacircuit,I = V /R,

in electromagnetics, J [current density] = o [conductivity] E [electric field]
In hydraulics, [flow] « [pressure gradient] / [resistance]

d (% aT 4) /dr
L ~ 4mR?
Kp (unit) Pressure = |[energy]| / |[volume]
, 4aT>dT

~ 4R —

3 kp dr
R2T3 4T Blackbody radiation
~ Energy density u = aT*
kp dr Radiation pressure P,,q = (1/3)u




dr(r) 3kpL(r)

For a given structure, dr 4ac 4mr?T>3

dT T, uGM
e A T

R2T*/R R*T* R* (,LLGM)4

L~ ~ ~
k(M/R3) kM M\ R

M4G4M3
K

L~




The opacity kK = k(p, T, 1)

] For solar composision, Kramers opacity

ko~ pT > valid for 10-10° K.
SO K~ /,L_3'5G_3'5M_2'5R0'5

and | 7, ~ ,LL7'5G7'5M5'5R_0'5

O For high-mass stars, i.e., high temperature and low density,

opacity by electron scattering

k=0.2(14+ X) cm®g '= const.

and L ~ p*GMP




Mass-luminosity relation for main-sequence stars

Log(L/Lo)

6_.

Prianik Fig. 1.6
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GM
T. ~ Be7
R

SoforagivenT,,M — R 1 L (o< R?

and T
MLR L Tesr) off

Main sequence is a run of L and T,¢r as a function
of stellar mass, with 7. nearly constant.

Why T, = constant?
Because onset of H burning ~107 K
regardless of the stellar mass



The main sequence

Recall for low-mass stars, L « M>> R~%> pp chain g « p. T*

The energy-generation equation,
dL

—— = 4mripeq
M\* (M\* MS
3 4_ p3 _
:>LOCR[)CT R (R3) (E) —F
R~MY13 ., Stellar radius < very weakly on the mass

L~M71/13 ~ M55 Stellar Luminosity < strongly on the mass



The main sequence in the HRD

Recall for low-mass stars, L o< M>> R™%> pp chain g « p. T*

The energy-generation equation,

dL 4
— = 4mrlp. q
2 4 6
3 T4 R3 ﬂ % — M_
= L < R3p? PE ] T R7
R~MY13 ... Stellar radius varies weakly with the mass

L~M71/13 ~ M55 _ Stellar Luminosity varies strongly ...

In the HRD, L « R? T — [981/1007 o T4
orlogl = 4logT, + const (i.e., constant radius)



For high-mass stars, L oM 3’ 3 GAIA'S HERTZSPRUNG-RUSSELL DIAGRAM
CNO cycle g o« p. T

30000 7000 5000 4000 3000 Surface temperature (K)
L 1 1 I 1

76/9 ol‘B A e K M Stellar type
Then, M5 o R, so L o T - -
orlogl =~ 8.4logT, + const "
That is, a steeper MS slope in the HRD
log L - "
Higher MS
o Lower MS
\ 15 -
- logT, [

Luminosity (L, ]






Metal poorer

Young (hot) population Bimodal population?
thin disc thick disc halo
L 30 kpc; H= 200 pc H=1 kpc D=30 kpc
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https://sci.esa.int/web/gaia/-/60210-gaia-s-hertzsprung-russell-diagram-for-different-populations-of-stars 82



https://sci.esa.int/web/gaia/-/60210-gaia-s-hertzsprung-russell-diagram-for-different-populations-of-stars

Main Sequence Lifetimes

TNuclear

x M~*> (for low-mass stars)
or
x M~4 (for massive stars)

Calibrated with the Sun.

X

M
L
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Energy can be transported by conduction or
convection, or radiation.

Conduction: by microscopic collision of particles
and movement of electrons.
Flux density [erg/s/cm?] = —kVT

Convection: by bulk motion of particles in a fluid
(gas or liquid): advection () (directional flow of

energy) OF diffusion (##k ) (non-directional along a
concentration gradient).

Convection does not happen in solids.

Stars transport energy by either radiation or
convection. Conduction is effective only In
compact objects, e.g., in isothermal cores in WDs.




Convective equilibrium (stability vs instability)

Convection takes over? When an element moves vertically,
does it continue to move? Key: Temperature gradients

Element maintaining pressure equilibrium with
surrounding, P, = P,, ideal gas law — p,T, = p,T,,

Consider an element floats upwards
phe If p, > py (or T, < T,) — sink back; no convection

T, <T,

To have convection, the element (rising adiabatically)
H should cool slower than the surrounding (in

radiative equilibrium), i.e.,
Py, Ty, p1 (dT) < (dT) Or‘ (dT) < (dT)
dr/ element dr/ surrounding dr/ad ar/rad



Compared with the
= Conveeron sets in when $he aliabatic surrounding temperature

Yemp. %rad-‘u* ao Smealley Phan gradient

vcw. %r“‘§.‘d by )‘AA“‘*'\V' 2@'“:(.

£, ((_gl_T ) ¢ ( AT Radiation can no longer transport
ar ¥ i the energy efficiently enough
=» Convective instability

For an adiabatic process, PV' = constant

The rising height is typified by the mixing length £, or
parameterized as the scale height A, defined as the pressure (or
density) varies by a factor of etimes. Usually 0.5 < ¥/, <2.0



. L
ar - ’"/r _ dénT
ar “P/p oden P

=> Criteriem gov sonvect ow e»am'/o'bro'm be cormng

AZnT odinT
<o‘?nl’ >¢d s (0'9"’ )rad

With the netedrvev 7 ( nabla D

vad < vr‘d)

e
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Convection takes place when the temperature
gradient is “sufficiently” high (compared with
the adiabatic condition) or the pressure (d_T> - (d_T)
dr
d rad

gradient is low enough. dr/,
Such condition also exists when the gas (d In T) g (d In T)
absorbs a great deal of energy without dlnPj . \dInP/ .
temperature increase, e.g., with phase change
or ionization

: . Nk
=>» when ¢y is large or y is small r=o-t1

In meteorology, dry and cool air tends to be stable, whereas wet and warm
air (smaller gamma values) is vulnerable to convection = thunderstorm
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How to calculate V. 47

dT 3 kp L(r) dP
dr ~ 4ac T? 4mr? and ar 9P
dT  k L(r)
So d—Poc 73 2
dT
v = (j :nT> = /T _ 3K P4 L(r)
nP/ . P/P 16mac T* GM ()



Note that for an adiabatic process for an ideal gas
O P =nkT < pT
dP _dp dT

S_ |
°P -, 7T

And recall again
v nk =c, — ¢,

vy = o _ 1Hn/2 _ 1+ E, where n is d.o.f.

Cy n/2 n

v Noten 2,7 \



How to calculate V47

1 P
dQ=c,dT + Pd (—) = ¢, dT ——dp =0

P P
P dT P dp dT dP dT
cvdT=p—2d(p)—>cv?=pr _)C”T:(CP_C”)<P T)
dT dP
— CPT = (Cp — Cv)?
__ (dlInT at / Cy 1 .
Vg = (d lnP)ad = ﬁ =1- . =1 v 0.4 for a monatomic gas

for whichy = 5/3.

So the condition for convective instability

. . dlogT
Notey , Voq (convection to take place) is (- 12: >) < 0.4.




N_:j_’ : Viad o P

A* N{‘u Vrad - 0
o/ways
Vad o v

red => e Convee? o .'

The evtermosk Royers €3 o Ster ore o./»mJ

MA, r‘d?af?vp %M: ,o"r?wws

&
. o Cmvccf.‘m eececwurs e, ¢her

@ ;QAVJQ ‘fwcmfwv Qrad.“:l Eov
reel'a?'ve ‘ﬁuo/bnm
@ SNa” ool abaf ve "fnfcra'fun ’rad ‘J
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Convection occurs when Vi.,q4 > Va4

That is, when V.., 4 is large, or
when V/,4 is small.
dT L, kp

Vrad = dr _ r2oT3

To recap

Vig =1 — ;, where y = Cp/cv

- V,q small = ¢, large =» H, dissociation (PMS Hayashi tracks)
H ionization, T~6,000 K

He ionization, T~20,000 K

He Il ionization, T~50,000 K




lonization satisfies both conditions because
1. Opacity 1

2. e receive energy — d.o.f. 7,50y N — V4 )
= susceptable to convection

=» Development of hydrogen convective zones inside stars.

Similarly, there are 15t and 29 helium convective zones.



For a very low-mass star (M < 0.4 Mg), ionizationof (0 2
H and He leads to a fully convective star = H A
completely burns off.

For a sun-like star, 1onization of H and He, and also O
: . : O~ O
the large opacity of H~ ions =» a convective ) O
envelope (outer 30% radius). %@
<)
© 09
For a massive star (M = 1.2 M), the core produces ] y
fierce amount of energy (via CNQO) - convective core
=» a large fraction of material to take part in the — 7

thermonuclear reactions / l .



Interiors of Binary Star System
Gliese 752

Gliese 752B (VB10)
Thermal Structure

;/ Jupiter
‘ to scale

Gliese 752A
Thermal Structure

Gliese 752A

Rotation and Magnetic Dynamo

Standard Maodel

A binary system at 5.74 pc. Gliese 752A (=Wolf 1055) is an M2.5 red dwarf (mass ~0.46
solar, m;~9.13), whereas Gliese 752B (VB 10) is an M8V (mass ~0.075 solar, mV~17.§90).



Temperature (K)

Structure of the solar atmosphere

1 million
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https://ase.tufts.edu/cosmos/view_picture.asp?id=174

T Tauri stars contracting
down to the ZAMS - an

enlarged chromosphere

-> emission spectra

I ' I
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Figure 8.4 The extent of convective zones (shaded areas) in main-sequence star models as

a function of the stellar mass [adapted from R. Kippenhahn & A. Weigert (1990), Stellar
Structure and Evolution, Springer-Verlag].
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Along the ZAMS, M, < R,, so the - > | |

central density o
p, X M,/R3 < M ? =
~
That is, lower-mass MS stars are .
denser at the cores 2
—> to provide sufficient pressure “éi
So temperature may never get "
high enough for H fusion g
o

—> Degeneracy important ' : :

Time log ¢ (yr)

Stahler & Palla, Fig 16.12 106



Electron Degeneracy
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Fermi-Dirac distribution for non-interacting,
indistinguishable particles obeying Pauli exclusion principle;
applicable to half-integer spin in TE. Examples of fermions
include the electron, proton, neutrons, and nuclei with odd mass
numbers, e.g., 3He (2 e, 2 p*, 1 n%)

Bose-Einstein distribution for particles not limited to single
occupancy of the same energy state. i.e., that do not obey Pauli
exclusion principle; with integer values of spin. Example bosons
include “He, the Higgs boson, gauge boson, graviton, meson.



A Fermi gas is called degenerate if the temperature is low

in comparison with the Fermi temperature/energy.

¢
3

1.0

0.9

0.8
0.7

o ] srac dl‘st_ 0.6 = 1
FQYMO )' f(E) = f(E)—e(—E_m—l-

0.4

0.3

0.2
0.1

fon"*' M8 kT o84 ) L= B 03 3% &5 &

€ — L, in units of 7

f( ( kT = 0) = é F éﬁéxre 6.3 Plot of the Fermi-Dirac distribution function f(g) versus ¢ — y in units of
& / the temperature 7. The value of f(e) gives the fraction of orbitals at a given energy
which are occupied when the system is in thermal equilibrium. When the system is
,F . ene rg y heated from absolute zero, fermions are transferred from the shaded region at ¢/u < 1
erm! to the shaded region at &/ > 1. For conduction electrons in a metal, u might
correspond to 50 000 K.
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Chemical Potential ()

* Temperature governs the flow of energy between
two systems.

* Chemical potential governs the flow of particles;
from higher chemical potential to the lower.




Bose-Einstein

S®)

Mo«xweH—Bu{tzmonn
dist.

v

‘Figure 6.6 Comparison of Bose-Einstein and Fermi-Dirac

7_ |
\

1 \
— .@i-DifaC ‘ \ Class
\

ical limit

'\§_\\

0
-2 -1 0 1
€ — i in units of 7

2

distribution functions. The classical regime is attained for

(e =) > 7, where the two distributions become nearly identical.

We shall see in Chapter 7 that in the degenerate regime at low

temperature the chemical potential i for a FD distribu
positive, and changes to negative at high temperature.

tion is
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100 |- —110
gop... T e 1
o g=Fermi level ¢, for 8 2 Fermi level
= 60 16 electrons; in the = .
© ground state the - — Ferm] energy’
i lowest eight levels —7 3 .
5 (16 orbitals) are 5 Fermi momentum
o v occupied o " «
e —— g
20
—14
i g
i |
0 ]
(a) (b)

 Figure 7.1 (a) The energies of the orbitals n = 1, 2, ..., 10 for an electron
confined to a line of length L. Each level corresponds to two orbitals, one for
spin up and one for spin down. (b) The ground state of a system of 16 electrons.
Orbitals above the shaded region are vacant in the ground state.
113



Gas Equation of State P = P(p,T)

In general, the pressure integral (momentum transfer)

1 00
P =§f vpn(p) dp
0

Foran deal gas P < pT

For a degenerate electron gas, P independent of T,
P « p>/3 (non-relativistic)

P < p*/3 (extremely relativistic)
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Particle in a Box

/\/W\ cf. standing wave in a string
/\\/\
= T E—

fo—l | /\ . ¥ = 0atthe walls
~ o ' : " ’ -> De Broglie wavelength
L=2A%452,.. A, =2L/n, n=1,2,3,
. hz
Since A,, = h/p ="y - Ex =1/, mv? = (mv)Z/Zm = SmaZ
h? n2h? 1 n?m?h?

No potential @ E,, = (mv)?/2m = = =

2mA%  8mlL? 2m L2
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Within the box, the Schrodinger equation,

d?y = 2m 2 . nmx
a2tz E¥ =0~ ‘/’n—\ESl“T

At the center, 14, 15 probability 2 max
), probability = 0

c.f. classical physics: same probability everywhere in the box




Consider an ateor Tn a box Cy, volume V= 13

2
wave eguation A I I PR) =
anengitt, 2. .= iz(f)z[n:w‘nz»‘nz]

2m g =

where Ne's are 3uan fum no,’

any POS;‘)‘O‘VQ an‘(jey
(Ne D

In -Hu PKM-? spack
2
7{2 77";
2 — (=)
F 2w Q
Nnr: raab';o M Separates
f£iiled o awmpty States
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| A% (mngp\2
For N elecfrowo o o cton X £y = ( / )

2m
NQ:‘ZX}X';‘/’?F n;:(-;_'-_-Ne)
/
2 spin states
hz ﬂz 2/3 ﬁz | /
e 2 Ne) = — (377 Ney @
. F’ Im V2/3 ;T = -
r hz 2/3 g/j
EF - 3— (3['2?1') . np
m
. SR

C [ectron concentras cwn

Fermi energy: the highest energy level filled at temperature zero
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Fermi energy of degenerate fermion gases o:

Phase of matter | Particles | __E; Ty = €;/kp[K]

Liquid 3He atoms 4 x107%eV 4.9

Metal electrons 2—10eV 5 x 10
White dwarfs  electrons 0.3 MeV 3 X 10°
Nuclear matter nucleons 30 MeV 3 x 101

Neutron stars neutrons 300 MeV 3 x 1012

hZ

2
R (3n2n,)/s




Considering the problem in terms of momentum.

‘De,_cge\,\e e ¥ %*’a'f(

2
- 12 ("R " - = e 2 T 2 /5
o [T — ) = e = - ( e s ( 2T Ve
s, = 2= g V. SpEel bt = T D
- 4 3 - t/
PR Naz 3.5« 70 = = ' w5 5 3 &
< 3 5 t 5’\‘, p— }\F: —‘_‘—‘y’\e>
V2
. \,\(‘\'0\ ; Vi < \
\%5‘”\ merdenty RTEE avate g
3
% \Py . 4w P AP = I Ne (40> AW
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Pressure and Momentum
1 (0.0]
P = § f vp n(p)dp Non-relativistic
0

'\?‘f&)ovwi ﬂ\*etbm/Q "&)

Qe

&(c\« QKQC** cvL) \
’
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In the non-relativistic case

PNR _ h? (%)2/3 1 (p)5/3
e,deg 20m€ T m%/?) L
p\5/3
— 1.00 x 10" (—) cgs|
e
- ,05/3

In the extremely relativistic case « = ¢ in the pressure integral

- 5 ()
ds = 5\E) il

4/3
— 1.24 x 107 (uﬁ) cgs]

4/3

X p

For a composition devoid of hydrogen, and not very rich in
extremely heavy elements, pu. ~ 2. 122



Mass-radius relation for a degenerate electron gas  P~—;

M 5/3 M5/3
R3 = RS
SoM 7, R\, p 7 7,electrons move ever faster.

R 1 M 5
| = ——] —1 — 1.397
o (RG) 308 (MG) 3 e

— MR3 = const

In the NR case, P o« p°>/3~ (

M*/3 .
—, no solution between M and R.

In the ER case, P « p*/3 =

A mass limit for a degenerate electron body (white dwartf)
Chandrasekhar limit My,p, S 5.8 Mg /us
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FIGURE 8.14. White dwarf Hertstrung—Eussell diagram. Lines of constant radius are

shown. Also shown are the masses based on completely degenerate core models containing
elements having pt, = 2 (after Weidemann (We68)). Reprinted with permission from Annual
Review of Astronomy and Astrophysics, Vol. 6, ©1968 by Annual Reviews, Inc.). 124
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