Other Effects on Stellar
Structure and Evolution




Stellar Evolution 1n a Nutshell

O M < 0.5 Mg — fully convective

00.5Mg <M < 2.25Mg

— RG (H shell fusion) — (He flash) He core fusion + mass loss

— AGB + CO core fusion + mass loss
— PN ejection + CO WD (0.55 M)

0 2.25Mg < M < 10.5 My — He ignition in ND condition

v M S 85Mg — COWD (< 1.1 M)

v 85Mp S M < 10.5 My — electron deg O and Ne core
— AGB + ONe WD ([1.1..1.37] M)

Iben



Effect of Rotation



Flattening f = (a— b)/a 1/2

(Ellipticity or oblateness)
< density and (balance
between gravitation force
and centrifugal force)

- . p?2
cf, eccentricity e = (1 — _)

a2
a: semimajor axis; b: semiminor axis
b/a: compression factor; aspect ratio

Jupiter: 1/16 = 6%
Saturn: 1/10

Sun: 1/100000
Moon: 1/900
Earth: 3/1000 (Degatorial 42 Km more than Dy ,,; bulge)
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Rotation vs Spectral Type
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Fig. 3. Projected equatorial velocities, averaged over all possible inclinations, as a Fig. 17.16. The average rotation rates are showq for spectral intervals as a function
of spectral type. (Data are from Uesugi and Fukuda (1982), Soderblom (1983),
function of spectral type. On the main sequence (luminosity class V), early-type stars

and Gray (1982b, 1984b).)
have rotational vclocities that reach and even exceed 200 km/s; these velocities drop

to a few km/s for late-type stars, such as the Sun (type G2) (Slettebak [20]; courtesy
Gordon & Breach)
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https://aa.oma.be/stellar_rotation

- 1.5 Mg, FO; 6 Lo
Rotation vs Stellar Mass | o = JGHTR

v’ Massive stars are fast rotators. <V>=Vory

) 5

v’ Rotation declinesinthe F ~ _ ~ 5
type (convection? disk?) :

2.0F

log (<v>

v Low-mass stars spin down
quickly early on (disk-star
coupling via B field), and then 1 . . .
experience weak-breaking on - Ic:; (M/M,) N N
the MS due to magnetic
breaking and winds.

Kawaler (1987?
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v" The fastest single rotators, other
than remnant objects such as
neutron stars, are Be stars; as fast as
~450 km/s, close to break-up speed

v’ Mass loss preferentially along the
equators

v" Stars no longer spherical

v' Giants and supergiants rotate slowly
because of angular momentum
conservation.

Fig. 17.22. The fastest rotation rates are shown by the xs. The theoretical break-
up velocities (top curve) approach the observed relation most closely in the B-star

range. (Data from Slettebak (1966).)



Rotation = star cooler and fainter T
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Fi16. 1.—Angular momentum per unit mass, as a function of mass fraction interior to a given cylinder
about the axis of rotation, for three assumed laws of differential rotation (Cases A, B, and C) and for a
uniformly rotating model (Case D) of 30 Mp, log J = 52.73.
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F16. 2.—Theoretical H-R diagram showing model sequences of increasing angular momentum _(solid
curves). Numbers on curves give calculated velocities at the equator in km sec™. The distribution of

angular momentum for each sequence is indicated by the letter A, B, C, or D. Bodenheimer (19 7 1) Ap], 167, 1 5%



Rotation
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Fig. 17.7. («) Computed proliles illustrate the bl'ozldcningocllbcl of rotation. The
profiles are labeled with esini. the wavelength is 4243 A| and the line has an
equivalent width of 100 mA. (h) These two early-G giants illustrate the Doppler
broadening of the line profiles by rotation.
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MESA Isochrones and Stellar Tracks (MIST)
https://waps.cfa.harvard.edu/MIST /interp_isos.html

PARSEC (CMD3.7 - STEV the OAPd server; Pardova)
http://stev.oapd.inaf.it/cgi-bin/cmd
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Effect of Magnetie Field



Stellar Magnetism

Magnetic field may be
important in star
formation; governing

mass (charged and neutral)
flow; B usually not
important in stars, except

in compact objects, such
as in WDs or NSs.

Typical field strengths

Earth/Sun ~1G
(sunspots ~kG)
Ap/Bp ~103 G
White dwarfs ~ 10° G
Neutron stars ~ 1014 G
Magnetars ~ 101> G (10! teslas)

So stellar magnetism may be important only at the
beginning and at the end of a star’s life.
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Some chemically peculiar (CP) stars, usually hot MS stars
(~10%, Ap and Bp stars), with B field in the outer layer to
stratify specific elements in the atmospheres (Ap/Bp stars),
e.g., He, N, and O to diffuse and settle into deeper layers, while
others, e.g., Mn (Manganese #), Sr (Strontium ££), Y
(Yttrium /), Zr (Zirconium %) are radially “levitated” to the
surface = spectral peculiarities.

The bulk chemical composition of the entire star remains
normal = that of ISM

Some CP stars have no strong field (Am stars).
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DIFFUSION PROCESSES IN PECULIAR A STARS

GEORGES MicHAUD*

Hale Observatories, Carnegie Institution of Washington,
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- ABSTRACT

It is suggested that diffusion processes aré responsible for most of the peculiar abundances observed
in Ap stars. If it is assumed that the atmosphéte is stable enough for diffusion processes to be important,
gravitational settling leads to the underabundances of He, Ne, and O in the stars where they are ob-
served (that is, with the 8., log g they are observed to have). Radiation pressure leads to the over-
abundances of Mn, Sr; Y, Zr, and the rare earths in the stars where they are observed. Silicon would be
expected fo be overabundant only if it has wide autoionization features. Phosphorus weuld be expected
to be overabundant in stars with fe¢; =~ 0.5, but is observed to be overabundant in stars with ¢ =~ 0.4.

The thagnetic fields obsérved in Ap stars could bring to the atmosphere the stability needed for dif-
fusion processes to be important. They would also guide diffusion into patches leading to the periodic
variation of the observed overabundances.
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Rotation axis T Magnetic axis

Radiation cone

Path of rotating beam

A pulsar is a rapidly rotating neutron star (not pulsating).
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[f a star has a weak radial magnetic field B,., and if the
star rotates differentially, B, is stretched horizontally
and will be amplified after a few rounds, By > B,

- Spruit dynamo

M dwarfs exhibit rapid, irregular flares, bright in the
blue and UV.

Ultracool dwarfs (< 1000 K) are magnetized, a few kG,
and emit radio radiation



Beginning of an 11-year *»
cycle = a few sunspots
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The magnetic field gets increasingly tangled because of the
differential rotation. The field breaking through the
surface is parallel to the surface and suppresses upward
convection = cooler and lower elevation (sunspots)

U N fter
B many

Bobcock’s magnetic dynamo model -



Sunspot pair

Magnetic field
lines

Solar rotation




Surface inhomogeneity (T fluctuations, composition
variations, B fields, activity) = distortion across
spectral lines as the star rotates

Diagnosed by brightness variations due
to starspots, or by Doppler imaging

P e e o e . .

) (@10 | Y
‘ ' || | . ‘. . ' ‘ ~
:

iviviviviviv

\ 1 v )
Q /

The BD Luhman 16b by the VLT



Surface magnetic field of
SU Aur (a young star of T
Tauri type), reconstructed
by Zeeman-Doppler
Imaging




Effect of Binarity



Binary Stars

The binary fraction of young stars comparable to that of MS stars.
Star formation = Binary formation = Cluster formation

One of the solutions (alternative: a disk and planets) to the
angular momentum problem during SF

Intricate |
magnetic
Interaction
between binary
components




Solar-type stars,

(singles):(doubles):(triples):(quadrupoles)=42:46:9:2
(Abt & Levy 1976)

SEPARATION (LOG AU)

-2 -1 0 1 2 3 4 5

A smooth period distribution T o
peaking ~14 yrs e ot 25
Mass ratio = ]
- fission (for close pairs), and = .
-> separate protostellar
contraction (for wide pairs) - s
L

PERIOD (LCG DAYS)



Close binaries =2 mass and
momentum exchanges

Originally more massive component
as the primary

Strong tidal forces
-> orbit/spin synchronization

Detached, semi-detached, contact
systems

Some with common envelopes

Numerous high-energy phenomena

Detached system
29



RS CVn stars: eruptive variables
and close binary systems

30



Effect of Mass Loss



Mass L.0sSS

Every star loses mass in every stage of evolution.

1 , GMm
E MVesc = R

i.e., due to kinetic energy of gas at the stellar surface.

Alternatively, there could be mechanisms to accelerate the
particles, e.g., coronal winds (stars with surface convection

-> acoustic waves, like the Sun), radiative winds (photon
momentum), line-driven (continuum-driven, dust-driven) winds,
rotation-driven (pulsation-driven) winds.



. Massloss (Reimers 1975)

Poa L/L
™Mo~ 4% 10713 /Lo

l (9/90) (R/Ro)

Central stars
of planetary nebulas

[Mg yr~']

g = GM /R*?

+5

Sunnow M = 2 x 107 M, yr~1
Cool supergiants M ~ 1077 —107> M, yr~!

-2

1 1
4.0 log Ty [K] 3.5

Fig. 8.8. The evolutionary paths in the Hertzsprung—Russell

diagram of Population I stars having 1.0 Mg and 1.1 Mg,

from central hydrogen burning (A) to the helium flash (E).

without taking mass losses into account. After A. V. Sweigart

and P. G. Gross (1978). The ejection of a mass of 0.1 .M, dur-

ing the helium flash was assumed. The further evolution of

the star of 1.0 M was calculated taking the mass loss ac-

cording to (7.105) into account, after D. Schonberner (1979).

F — G: the asymptotic giant branch: only one of the thermal .
pulses (he]iun?ﬂfshcs) which occur afte)r/I is drawn in, at J. Metal'FICh 9 maSS lOSS T
The mass loss becomes important at H and leads to a final

mass of 0.6 M, which is reached at K

Unsold 33
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A --- a blue-shifted absorption
superimposed on an emission line
- mass loss (cool gas toward us)

Lamers and Cassinelli, /ntroduction to Stellar Winds, Cambridge, 1999 35



Stellar Variability

Every star varies in brightness.

The solar constant
The flux density of the solar irradiance

at 1 au, including all frequencies

An average value; not a physical
constant; 1t varies

1.361 kW/m? at solar minimum;
0.1% greater at solar maximum
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Intrinsic variability physical

v Pulsating (RR Lyr; Cepheids, RV Tau; Mira; 6 Scu; ZZ Ceti)
v" Rotational (magnetic, spotted)
v Eruptive (novae, SNe, CVs, X-ray binaries; symbiotic; flare)

Extrinsic variability non-physical

v EC]IpSlng (by stars, planets, dust clumps; EA; EB; EW)
v" Gravitational microlensing

Some young variability (Orion var,, T Tauri stars, Be stars)
could have more than one mechanism.
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OGLEIll CAR-5C1 5494: folded lightcurve

EA (Algol-type)
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Other Main Sequences

Kippenhahn & Wright
Chap. 23
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_ Compared to H-MS,
| He-MS: R { but L T7T
2..
0_
- \0\5
<9l H-MS
g s e S B
lg Teff

Fig.23.1. In the Hertzsprung-Russell diagram the solid lines show the normal hydrogen main se-
quence (H-MS; Xy = 0.685, Xy, = 0.294), the helium main sequence (He-MS; Xy = 0, Xge =0.979)
and the carbon main sequence (C-MS; Xy = Xpe = 0, Xc = Xo = 0.497). The labels along the
sequences give stellar masses M (in units of Mg). Three lines of constant stellar radius (R in units
of Rp) are plotted (dashed)

Kippenhahn & Weigert
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Ig Test
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