Stellar Structure

Results

\checkmark Four first-order ordinary differential equations
\checkmark Three ordinary equations
\checkmark Four boundary conditions
\checkmark Seven variables; so given M and μ, structure is determined, $R, L, T_{\text {eff }} T_{c}, P_{c}$, etc.
$\checkmark \mu=\mu(r)$ varies inside the star, $\mu=\mu(\mathrm{r})$; also $\mu=\mu(t)$, if $q \neq 0$
$\checkmark \kappa$ is complicated; not well known even for He
$\checkmark 2$ BCs at center; 2 at surface; integrating the structure equations from one end, say $r=0, m=0, L=0$, may not end up to meet the BCs at the other end, $r=R_{*}, m=M_{*}, L=L_{*}$
\checkmark Needs special techniques even for a spherical and steady star

- No time dependence (i.e., time scales of property changes \gg time scales of equilibrium
- No B; no $\boldsymbol{\omega}$
- Convective transport, currently with no fundamental theory, largely simplified
- μ assumed to be homogeneous
- No relativistic effects

Masseverteilung der Sonne

Dichteverteilung der Sonne

Druckverteilung der Sonne

Density profile --- ρ increases toward center.

Temperature profile --- T increases toward center.
For $1 M_{\odot}$,
$T(0) \approx 1.5 \times 10^{7} \mathrm{~K}$ $T\left(R_{\odot}\right) \approx 5800 \mathrm{~K}$
For $10 M_{\odot}, T(0) \approx 2 \times$ hotter

Massive stars at the center: (1) hotter, (2) less dense, and (3) pressure higher

Energy generation rate --- q increases toward center.

Mass-radius relation

In general, $M_{*} \nearrow \Rightarrow R_{*} \nearrow$
There is a slope break near $M_{*} \approx M_{\odot}$ because of stellar structural changes.

Fig. 22.2. The line shows the mass-radius relation for the models of the zero-age main sequence plotted in Fig. 22.1. For comparison, the best measurements (as selected by POPPER, 1980) of mainsequence components of detached (dots) and visual (triangles) binary systems are indicated

Central Temperature

$T_{c} \rightarrow$ (dominant) nuclear reaction

$$
\begin{aligned}
\mathrm{T}_{\odot} & \approx 1.5 \times 10^{7} \mathrm{~K} \\
& =15 \times 10^{6} \mathrm{~K}=15 \mathrm{~T}_{6}
\end{aligned}
$$

In general, $M_{*} \nearrow \Rightarrow T_{c} \nearrow$
For $M<M_{\odot}, M \uparrow \Rightarrow T_{c} \uparrow \uparrow$
For $M>M_{\odot}, M \uparrow \Rightarrow T_{c} \uparrow$
($M 60 \times, \uparrow 3 \uparrow$)
$\square M<1.2 M_{\odot}$, proton-proton chain
$\square M>1.2 M_{\odot}$, CNO cycle \rightarrow stronger T dependence
\rightarrow steeper T gradient \rightarrow a convective core

Mass-luminosity relation

In general, $M_{*} \nearrow \Rightarrow L_{*} \nearrow$

Slope varies with respect to different mass ranges.

Overall,

$$
\frac{L}{L_{\odot}} \approx\left(\frac{M}{M_{\odot}}\right)^{3.5}
$$

Fig. 22.3. The line gives the mass-luminosity relation for the models of the main sequence shown in Fig.22.1. Measurements of binary systems are plotted for comparison (the symbols have the same meaning as in Fig. 22.2)

$$
\begin{aligned}
& \frac{L}{L_{\odot}} \approx 0.23\left(\frac{M}{M_{\odot}}\right)^{2.3} \quad\left(\frac{M}{M_{\odot}}<0.43\right) \\
& \frac{L}{L_{\odot}} \approx 0.23\left(\frac{M}{M_{\odot}}\right)^{4}\left(0.43<\frac{M}{M_{\odot}}<2\right) \\
& \frac{L}{L_{\odot}} \approx 0.23\left(\frac{M}{M_{\odot}}\right)^{3.5} \quad\left(2<\frac{M}{M_{\odot}}<55\right) \\
& \frac{L}{L_{\odot}} \approx 32000\left(\frac{M}{M_{\odot}}\right)^{1} \quad\left(\frac{M}{M_{\odot}}>55\right)
\end{aligned}
$$

Fig. 22.5. The heavy solid line gives the central temperature T_{c} (in K) over the central density ϱ_{c} (in $\mathrm{g} \mathrm{cm}^{-3}$) for the same zero-age main-sequence models as in Fig. 22.1. The dots give the positions of some models with masses between $M=0.085$ and $M=50$ (in solar masses). The labels below the curve indicate the fractional contribution of the radiation pressure P_{rad} to the total pressure in the centre. The dot-dashed line at the left gives roughly the border between dominating CNO-cycle and dominating $p p$-chain reactions. The dashed lines give the constant degeneracy parameter ψ of the electron gas

Time Scales

Different physical processes inside a star, e.g., nuclear reactions (changing chemical composition) are slow (longer time scales); structural adjustments ($d P / d t$) take places on relatively shorter time scales.
\checkmark Dynamical timescale
\checkmark Thermal timescale
\checkmark Nuclear timescale
\checkmark Diffusion timescale

Dynamical Timescale

hydrostatic equilibrium $\xrightarrow{\text { perturbation }}$ motion $\xrightarrow{\text { adjustment }}$ hydrostatic equilibrium

Free-fall collapse

Equation of motion $\ddot{r}=-\frac{G M_{r}}{r^{2}}-\frac{1}{\varrho} \frac{d P}{d r}$
Near the star's surface $r=R, M_{r}=M$, so $\ddot{R}=-\frac{G M}{R^{2}}-\frac{1}{\varrho} \frac{d P}{d R}$
Free-fall means pressure << gravity, so $\ddot{R} \approx-\frac{G M}{R^{2}}$
Assuming a constant acceleration $R=-(\ddot{R} / 2) \tau_{\mathrm{ff}}^{2}$, so

$$
\tau_{\mathrm{ff}}=\left(2 R^{3} / G M\right)^{1 / 2}=\frac{1}{\left(\frac{2}{3} \pi G \bar{\rho}\right)^{1 / 2}} \approx 0.04\left(\frac{\rho_{\odot}}{\bar{\rho}}\right)^{1 / 2}[\mathrm{~d}]
$$

Stellar Pulsation

The star pulsates about the equilibrium configuration
\rightarrow same as dynamical timescale

$$
\tau_{\text {pulsation }} \propto 1 / \sqrt{\bar{\rho}}
$$

Propagation of Sound Speed (pressure wave)

Pressure induced perturbation,

$$
R / \tau_{\mathrm{ff}}^{2}=-\frac{\ddot{R}}{2}=\frac{G M}{R^{2}}+\frac{1}{\varrho} \frac{d P}{d R} \approx \frac{1}{\varrho} \frac{d P}{d R} \approx \frac{1}{\varrho} \frac{P}{R}
$$

so $\frac{R}{\tau_{\mathrm{ff}}} \approx \sqrt{\frac{P}{\rho}} \approx c_{S}$ (sound speed) $\propto \sqrt{T}$ (for ideal gas) $\tau_{\mathrm{s}} \approx \frac{R}{c_{S}}$
In general, $\tau_{\mathrm{dyn}} \approx \frac{1}{\sqrt{G \bar{\rho}}} \approx \frac{1.6 \times 10^{15}}{\sqrt{n}}[\mathrm{~s}]=1000 \sqrt{\left(\frac{R}{R_{\odot}}\right)^{3}\left(\frac{M_{\odot}}{M}\right)}[\mathrm{S}]$

Thermal Timescale

Kelvin-Helmholtz timescale (radiation by gravitational contraction)

$$
E_{\text {total }}=E_{\text {grav }}+\mathrm{E}_{\text {thermal }}=\frac{1}{2} E_{\text {grav }}=-\frac{1}{2} \alpha G M^{2} / R
$$

This amount of energy is radiated away at a rate L, so timescale

$$
\begin{aligned}
\tau_{\mathrm{KH}} & =\frac{E_{\text {total }}}{L}=\frac{1}{2} \alpha G M^{2} / R L \\
& =2 \times 10^{7} M^{2} / R L \quad[\mathrm{yr}] \text { in solar units }
\end{aligned}
$$

$$
\tau_{\mathrm{KH}} \approx 2 \times 10^{7}\left(\frac{M}{M_{\odot}}\right)^{2}\left(\frac{R_{\odot}}{R}\right)\left(\frac{L_{\odot}}{L}\right)[\mathrm{yr}]
$$

$$
\begin{array}{c|c}
M=1 \mathcal{M}_{\odot}, R=1 \mathrm{pc} & M=1 \mathcal{M}_{\odot}, R=1 \mathcal{R}_{\odot} \\
\hline \tau_{\mathrm{dyn}} \approx 1.6 \times 10^{7} \mathrm{yr} & \tau_{\mathrm{dyn}} \approx 1.6 \times 10^{3} \mathrm{~s} \approx 30 \mathrm{~min} \\
\tau_{\text {ther }} \approx 1 \mathrm{yr} & \tau_{\text {ther }} \approx 3 \times 10^{7} \mathrm{yr}
\end{array}
$$

Nuclear Timescale

Time taken to radiate at a rate L on nuclear energy
$4{ }^{1} H \rightarrow{ }^{4} \mathrm{He}\left(Q=6.3 \times 10^{18} \mathrm{erg} / \mathrm{g}\right)$
$\tau_{\text {nuc }}=\frac{E_{\text {nuc }}}{L}=6.3 \times 10^{18} \frac{M}{L}$

$$
\tau_{\mathrm{nuc}} \approx 10^{11}\left(\frac{M}{M_{\odot}}\right)\left(\frac{L_{\odot}}{L}\right)[\mathrm{yr}]
$$

From the discussion above, $\tau_{\text {nuc }} \gg \tau_{\text {KH }} \gg \tau_{\text {dyn }}$

Mário Schönberg (1914 Brazil - 1980)

ON THE EVOLUTION OF THE MAIN-SEQUENCE STARS

Subrahmanyan Chandrasekhar (1910 India - 1995 USA)

The Schönberg-Chandrasekhar limit

 --- the maximum mass of a fusion-less stellar core that can support against gravitational collapse
THE ASTROPHYSICAL JOURNAL

AN INTERNATIONAL REVIEW OF SPECTROSCOPY AND ASTRONOMICAL PHYSICS

M. Śchönberg ${ }^{1}$ and S. Chandrasekhar

ABSTRACT

The evolution of the stars on the main sequence consequent to the gradual burning of the hydrogen in the central regions is examined. It is shown that, as a result of the decrease in the hydrogen content in these regions, the convective core (normally present in a star) eventually gives place to an isothermal core. It is further shown that there is an upper limit (~ 10 per cent) to the fraction of the total mass of hydrogen which can thus be exhausted. Some further remarks on what is to be expected beyond this point are also made

$$
\frac{M_{c}}{M} \approx 0.37\left(\frac{\mu_{e}}{\mu_{c}}\right)^{2}(\sim 10.15 \% \text { in reality })
$$

Take ionized H in inv ; pure He in cores $\mu=1.34$ $M_{c} \sim 8 \sim 9 \% M \quad \mu_{c} \sim 2 \mu_{s}$

Beech 1988

An isothermal core cannot exceed $\sim 10 \%$ of the total stellar mass, for otherwise the core cannot support the gravitational pressure of the envelope, and the core contracts.

No longer isothermal; T increases; if $\gtrsim 10^{8} \mathrm{~K}$, He is ignited.
The core determines the stellar evolution (fate); the envelope follows.

Main-Sequence Lifetime of the Sun

Energy Gained in a PP Chain

- $4 \mathrm{H} \rightarrow 1 \mathrm{He}+$ neutrinos + energy
- Mass of $4 \mathrm{H}=6.693 \times 10^{-27} \mathrm{~kg}$
- Mass of $1 \mathrm{He}=6.645 \times 10^{-27} \mathrm{~kg}$ Mass deficit $\rightarrow \mathbf{0 . 0 4 8} \times \mathbf{1 0}^{-27} \mathrm{~kg}=0.7 \%$
$\mathrm{M}_{\odot} \approx 2 \times 10^{33}[\mathrm{~g}]$
$\mathrm{L}_{\odot} \approx 4 \times 10^{33}[\mathrm{ergs} / \mathrm{s}]$
Fusion efficiency

Nuclear

 physics$$
\tau_{\odot}^{\mathrm{MS}} \approx \mathrm{M}_{\odot} \frac{(0.007)(0.1) c^{2}}{\mathrm{~L}_{\odot}}=3.15 \times 10^{17}[\mathrm{~s}]=10^{10}[\mathrm{yr}]
$$

Given $L_{\mathrm{MS}} / L_{\odot} \approx\left(M / M_{\odot}\right)^{3.5} \rightarrow \tau^{\mathrm{MS}} \approx 10^{10}\left(M_{\odot} / M\right)^{2.5}[\mathrm{yr}]$

Diffusion Timescale

Time taken for photons to walk out randomly from the stellar interior to eventual radiation from the surface

$$
\sigma_{\text {Thomson }}=6.6525 \times 10^{-25}\left[\mathrm{~cm}^{2}\right]
$$

Thus, mean free path $\ell=1 /\left(\sigma_{T} n_{e}\right)$, where (all cgs units)

$$
\overline{n_{e}} \approx 10^{24}\left(\bar{\rho}_{\odot} \approx 1.4\right) ; n_{c} \approx 10^{26}\left(\rho_{\mathrm{c}} \approx 150\right) . \ell \approx[0.015 . .1 .5] \mathrm{cm}
$$

Take $\ell \approx 0.3 \mathrm{~cm}$, mean-free time $\tau=(\ell / c) \approx 10^{-11} \mathrm{~s}$
Random walk, RMS distance after N steps $d=\sqrt{N} \ell$. Let $d=R_{\odot} \rightarrow N \approx 5 \times 10^{22}$.
$\tau_{\text {diff }}=$ mean free time \times steps $=\tau N \approx 10^{4}[\mathrm{yr}]$

Fig. 7-11A A Model Solar Interior. Density relative to the central density ρ / ρ_{c}, temperature relative to central temperature T / T_{c}, net luminosity relative to total luminosity L_{γ} / L_{\odot}, and hydrogen abundance X are shown as functions of fractional mass M_{r} / M. The chemical composition is $X=0.730, Y=0.245$, and $Z=0.025$. The age is 4.5×10^{9} years. [After S. Torres-Peimbert, E. Simpson, and R. K. Ulrich, $1969(329)$.

$$
x_{c}=0.376
$$

Fig. 7-11B The Evolution of the Sun during 7 Billion Years. Total luminosity L and central values of pressure P_{c}, temperature T_{c}, density ρ_{c}, and hydrogen abundance X_{c} are shown as functions of time t, which is measured from the initial (homogeneous) state for which the composition is $X=0.730, Y=0.245$, and $Z=0.025$. The power of ten by which each value must be multiplied is indicated in parentheses. The values of P_{c}, ρ_{c}, and L are expressed in cgs units, and T_{c} is expressed in degrees Kelvin. [After S. Torres-Peimbert, E. Simpson, and R. K. Ulrich, 1969 (329).]

At ZAMS, X is homogeneous.

$$
\begin{array}{rl}
P_{\text {deg }} \sim & 0.017 P_{\text {total }} \text { at ZAMS } \\
0.075 & 9.2 \times 10^{9} \mathrm{yr}
\end{array}
$$

Phase Diagram of Water
$\rho-T$ diagram

$$
\begin{aligned}
& \boldsymbol{P}_{\text {ideal gas }} \propto \rho T / \mu \\
& \boldsymbol{P}_{e, \text { deg }}^{N R}=1.00 \times 10^{13}\left(\frac{\rho}{\mu_{e}}\right)^{5 / 3}[\mathrm{cgs}] \\
& \boldsymbol{P}_{e, d e g}^{E R}=1.24 \times 10^{15}\left(\frac{\rho}{\mu_{e}}\right)^{4 / 3}[\mathrm{cgs}] \\
& \boldsymbol{P}_{\text {rad }}=\frac{1}{3} a T^{4}
\end{aligned}
$$

Figure 7.1 Mapping of the temperature-density diagram according to the equation of state.
Non-Relativistic, Non-Degenerate (ie., ideal gas)
Non-Relativistic, Extremely Degenerate
Extremely Relativistic, Extremely Degenerate

$$
\begin{aligned}
& \left.\begin{array}{ll}
N R, N D & P \sim \rho T \\
N R, E D & P \sim \rho^{5 / 3}
\end{array}\right\} \log \rho=1.5 \log T+\operatorname{con} t . \\
& \left.\begin{array}{rl}
E R, E D \quad & P \sim \rho^{4 / 3} \\
& (\sim \rho T)
\end{array}\right\} \log \rho=3 \log T+\operatorname{con} t \\
& \left.\begin{array}{ll}
\text { Pram us ideal gas } & P_{\text {rad }} \sim T^{\mu} \\
& P_{\text {gas }} \sim \rho T
\end{array}\right\} \quad \log \rho=3 \log T+\operatorname{conot}
\end{aligned}
$$

Radiation Pressure versus Gas Pressure

$P_{\text {gas }} \propto \mathrm{T}$ balances self-gravitation OK; but $P_{\text {rad }} \propto T^{4}$, so as stellar M Л, $\mathrm{T}_{\mathrm{c}} \nearrow \Longrightarrow P_{\mathrm{rad}}$ ЛЛ
$P_{\text {rad }}$ plays a more important role in more massive stars.
$P_{\text {rad }} \approx P_{\text {gas }}$ around $5 \mathrm{M}_{\odot}$
\Rightarrow A limit when $P_{\text {rad }}$ predominates

Eddington (1930)

Maximum Radiation Pressure

$$
\begin{aligned}
L<L_{\mathrm{Edd}} & =\frac{4 \pi c G M}{\kappa}=\frac{4 \pi c G M m_{p}}{\sigma_{T}} \text { (assuming ionized } \mathrm{H} \text {) } \\
& \approx 3.2 \times 10^{4}\left(\frac{M_{*}}{M_{\odot}}\right)\left[L_{\odot}\right]=1.26 \times 10^{38}\left(\frac{M_{*}}{M_{\odot}}\right)[\mathrm{erg} / \mathrm{s}]
\end{aligned}
$$

This is the Eddington limit.

If $L>L_{\text {Edd }} \rightarrow$ hydrostatic equilibrium is violated \rightarrow super-Eddington luminosity \rightarrow stellar wind

Stellar Mass Upper Limits

$L \sim M^{3}$
$\frac{L_{\mathrm{Edd}}}{L_{\odot}}=\frac{1.26 \times 10^{38}}{4 \times 10^{33}}\left(\frac{L_{*}}{L_{\odot}}\right)^{1 / 3} \rightarrow L_{*} \sim 5 \times 10^{6} \mathrm{~L}_{\odot} \rightarrow M_{*}^{\max } \approx 170 M_{\odot}$
Observationally, there seems indeed a limit, e.g., Eta Carina, $\sim 150 \pm 50 M_{\odot}$
$L_{\mathrm{Edd}} \leftrightarrow \kappa, \quad$ so $L_{\mathrm{Edd}}^{\text {Pop I }}<L_{\mathrm{Edd}}^{\text {Pop II }}<L_{\mathrm{Edd}}^{\text {Pop III }}\left(\approx 300 \mathrm{M}_{\odot}\right)$

Stellar Mass Lower Limits

$q_{P P} \propto \exp \left[-33.8 T_{6}{ }^{-1 / 3}\right]$
Highly sensitive to temperature.
Below about at $5 T_{6}$, the rate becomes too low to supply energy (recall the Gamow peak).

This corresponds to about $0.1 \mathrm{M}_{\odot}$; more precise modeling leads to $\approx 0.08 \mathrm{M}_{\odot}$.

There could be stars in which only the first two stages of the pp chain occur, so the stars will accumulate ${ }_{2}^{3} \mathrm{He}$ in the interior.
Stars have masses ranging from ~ 0.1 to ~ 100 solar masses.

Other Main Sequences

He MS = He stars
For H MS mixed gas, $\mu \approx 0.62$. For He stars, $\mu \approx 1.34$

Recall for low-mass stars

$$
L \sim \mu^{7.5} \quad L \sim \mu^{7^{7.5} G^{7.5}} M^{5.5} R^{-0.5}
$$

and for massive stars

$$
L \sim \mu^{4}
$$

So $\log \left(\mathrm{L}_{\mathrm{He}} / \mathrm{L}_{\mathrm{H}}\right) \approx[2.5 . .1 .33]$
For C MS, $\log \left(\mathrm{L}_{\mathrm{C}} / \mathrm{L}_{\mathrm{He}}\right) \approx 0.5$

Fig. 23.2. Mass-luminosity relations for the models of the hydrogen, helium, and carbon main sequences of Fig. 23.1

He-MS to the far left of the H MS, stars smaller but at higher luminosities.

Fig.23.1. In the Hertzsprung-Russell diagram the solid lines show the normal hydrogen main sequence ($\mathrm{H}-\mathrm{MS} ; X_{\mathrm{H}}=0.685, X_{\mathrm{He}}=0.294$), the helium main sequence ($\mathrm{He}-\mathrm{MS} ; X_{\mathrm{H}}=0, X_{\mathrm{He}}=0.979$) and the carbon main sequence ($\mathrm{C}-\mathrm{MS} ; X_{\mathrm{H}}=X_{\mathrm{He}}=0, X_{\mathrm{C}}=X_{\mathrm{O}}=0.497$). The labels along the sequences give stellar masses M (in units of M_{\odot}). Three lines of constant stellar radius (R in units of R_{\odot}) are plotted (dashed)

Stellar Evolution in a Nutshell

$\square M \lesssim 0.5 \mathrm{M}_{\odot} \rightarrow$ fully convective

- $0.5 \mathrm{M}_{\odot} \lesssim M \lesssim 2.25 \mathrm{M}_{\odot}$
$\rightarrow \mathrm{RG}+$ (He flash) He core $\rightarrow \mathrm{AGB}+\mathrm{CO}$ core
$\rightarrow \mathrm{PN}$ ejection + CO WD $\left(0.55 \mathrm{M}_{\odot}\right)$
- $2.25 \mathrm{M}_{\odot} \lesssim M \lesssim 10.5 \mathrm{M}_{\odot} \rightarrow$ He ignition in ND condition

$$
\checkmark M \lesssim 8.5 \mathrm{M}_{\odot} \rightarrow \mathrm{CO} \mathrm{WD}\left(<1.1 \mathrm{M}_{\odot}\right)
$$

$\checkmark 8.5 \mathrm{M}_{\odot} \lesssim M \lesssim 10.5 \mathrm{M}_{\odot} \rightarrow$ electron deg 0 and Ne core \rightarrow AGB + ONe WD ([1.1 .. 1.37] M_{\odot})

Eifect of Rotation

Flattening $f=(a-b) / a$ (Ellipticity or oblateness) \leftrightarrow density and (balance between gravitation force and centrifugal force)

Jupiter: $1 / 16 \approx 6 \%$
Saturn: 1/10
Sun: $1 / 100000$
Moon: 1/900
Earth: 3/1000 ($D_{\text {eqatorial }} 42 \mathrm{~km}$ more than $D_{\text {polar }}$; bulge)

Solar Rotation

The Sun rotates slowly, $\approx 2 \mathrm{~km} \mathrm{~s}^{-1} @$ equator ($P \sim 25 \mathrm{~d}$); slower at higher latitudes ($P \sim 34 \mathrm{~d}$ at poles).
Differential rotation
in the convective region; rigid rotation in the radiative region (within $0.7 R_{\odot}$)

Rotation vs Spectral Type

Fig. 3. Projected equatorial velocities, averaged over all possible inclinations, as a function of spectral type. On the main sequence (luminosity class V), early-type stars have rotational velocities that reach and even exceed $200 \mathrm{~km} / \mathrm{s}$; these velocities drop to a few km / s for late-type stars, such as the Sun (type G2) (Slettebak [20]; courtesy Gordon \& Breach)

Fig. 17.16. The average rotation rates are shown for spectral intervals as a function of spectral type. (Data are from Uesugi and Fukuda (1982), Soderblom (1983), and Gray (1982 b, 1984 b).)

https://aa.oma.be/stellar rotation

Rotation vs Stellar Mass

$$
\begin{array}{cc}
1.5 M_{\odot} ; \mathrm{F} 0 ; 6 L_{\odot} & \\
\downarrow & v_{\text {crit }}=\sqrt{G M / R}
\end{array}
$$

\checkmark Massive stars are fast rotators.
\checkmark Rotation declines in the F type (convection? disk?)
\checkmark Low-mass stars spin down quickly early on (disk-star coupling via B field), and then experience weak-breaking on the MS due to magnetic breaking and winds.

Fig. 17.22. The fastest rotation rates are shown by the $\times \mathrm{s}$. The theoretical breakup velocities (top curve) approach the observed relation most closely in the B-star range. (Data from Slettebak (1966).) equators conservation.
\checkmark The fastest single rotators, other than remnant objects such as neutron stars, are Be stars; as fast as $\sim 450 \mathrm{~km} / \mathrm{s}$, close to break-up speed
\checkmark Mass loss preferentially along the
\checkmark Stars no longer spherical
\checkmark Giants and supergiants rotate slowly because of angular momentum

Rotation \rightarrow star cooler and fainter

Fig. 1.-Angular momentum per unit mass, as a function of mass fraction interior to a given cylinder about the axis of rotation, for three assumed laws of differential rotation (Cases A, B, and C) and for a uniformly rotating model (Case D) of $30 \mathfrak{M}_{\odot}, \log J=52.73$.

$$
D: \text { solid body rotation }
$$

Rotation law:

$$
\begin{aligned}
& \text { angular momentum distribution } \\
& j\left(m_{\mathfrak{w}}\right) \text { as a function of, } m_{\mathfrak{w}} \text {, the mass } \\
& \text { fraction interior to the cylinder of } \\
& \text { radius } \mathfrak{w} \text { about the rotation axis. }
\end{aligned}
$$

Fig. 2.-Theoretical H-R diagram showing model sequences of increasing angular momentum (solid curves). Numbers on curves give calculated velocities at the equator in $\mathrm{km} \mathrm{sec}^{-1}$. The distribution of angular momentum for each sequence is indicated by the letter A, B, C, or D.

Rotation
 \rightarrow line broad and shallow

HR 9024 (OU And)
 G1 IIIe

HR 3664 G6 III

Line blending

(b)

Fig. 17.7. (a) Computed profiles illustrate the broadening effect of rotation. The profiles are labeled with $v \sin i$. the wavelength is $4243 \AA$, and the line has an equivalent width of 100 mA . (b) These two early-G giants illustrate the Doppler broadening of the line profiles by rotation.

Efiect of Magnetic Field

Stellar Magnetism

Magnetic field may be important in star formation; governing mass (charged and neutral) flow; \boldsymbol{B} usually not important in stars, except in compact objects, such as in WDs or NSs.

Typical field strengths

$$
\begin{aligned}
& \text { Earth/Sun } \sim 1 \mathrm{G} \\
& \quad \text { (sunspots } \sim \mathrm{kG}) \\
& \text { Ap/Bp } \sim 10^{3} \mathrm{G} \\
& \text { White dwarfs } \sim 10^{6} \mathrm{G} \\
& \text { Neutron stars } \sim 10^{12} \mathrm{G} \\
& \text { Magnetars } \sim 10^{15} \mathrm{G}\left(10^{11}\right. \text { teslas) }
\end{aligned}
$$

So stellar magnetism may be important only at the beginning and at the end of a star's life.

Some chemically peculiar（CP）stars，usually hot MS stars （ $\sim 10 \%$ ，Ap and Bp stars），with B field in the outer layer to stratify specific elements in the atmospheres（Ap／Bp stars）， e．g．， He, N ，and O to diffuse and settle into deeper layers，while others，e．g．，Mn（Manganese 錳），Sr（Strontium 鍶），Y （Yttrium 釷），Zr（Zirconium 鋯）are radially＂levitated＂to the surface \rightarrow spectral peculiarities．The bulk chemical composition of the entire star remains normal＝that of ISM

Some CP stars have no strong field（Am stars）

DIFFUSION PROCESSES IN PECULIAR A STARS

Georges Michaud*
Hale Observatories, Carnegie Institution of Washingtion, California Institute of Technology
Received 1969 September 19

Abstract

It is suggested that diffusion processes are responsible for most of the peculiar abundances observed in Ap stars. If it is assumed that the atmosphere is stable enough for diffusion processes to be important, gravitational settling leads to the underabundances of He, Ne, and O in the stars where they are observed (that is, with the $\theta_{\text {eff }}, \log g$ they are observed to have). Radiation pressure leads to the overabundances of $\mathrm{Mn}, \mathrm{Sr} ; \mathbf{Y}, \mathrm{Zr}$, and the rare earths in the stars where they are observed. Sílicon would be expected to be overabundant only if it has wide autoionization features. Phosphorus would be expected to be overabundant in stars with $\theta_{\text {eff }} \simeq 0.5$, but is observed to be overabundant in stars with $\theta_{\text {eff }} \simeq 0.4$.

The magnetic fields observed in Ap stars could bring to the atmosphere the stability needed for diffusion processes to be important. They would also guide diffision into patches leading to the periodic variation of the observed overabundances.

An RS Canum Venaticorum (CVn) binary

A pulsar is a rapidly rotating neutron star (not pulsating).

If a star has a weak radial magnetic field B_{r}, and if the star rotates differentially, B_{r} is stretched horizontally and will be amplified after a few rounds, $\mathrm{B}_{\phi} \gg B_{r}$
\rightarrow Spruit dynamo
M dwarfs exhibit rapid, irregular flares, bright in the blue and UV.

Ultracool dwarfs (<1000 K) are magnetized, a few kG, and emit radio radiation

Beginning of an 11-year cycle \rightarrow a few sunspots appear at mid-latitude; progressively more in number and at lowerlatitudes.

Yearly Averaged Sunspot Numbers 1610-2000

The magnetic field gets increasingly tangled because of the differential rotation. The field breaking through the surface is parallel to the surface and suppresses upward convection \rightarrow cooler and lower elevation

Bobcock's magnetic dynamo model

Surface inhomogeneity (T fluctuations, composition variations, B fields, activity) \rightarrow distortion across spectral lines as the star rotates

Diagnosed by brightness variations due to starspots, or by Doppler imaging

The BD Luhman 16b by the VLT

Surface magnetic field of SU Aur (a young star of T Tauri type), reconstructed by means of Zeeman-Doppler imaging

Effect of Binarity

Binary Stars

The binary fraction of young stars comparable to that of MS stars.
Star formation $=$ Binary formation $=$ Cluster formation One of the solutions (alternative: a disk and planets) to the angular momentum problem during SF

Solar-type stars,
(singles):(doubles):(triples):(quadrupoles)=42:46:9:2
(Abt \& Levy 1976)
A smooth period distribution peaking ~14 yrs

Mass ratio \rightarrow fission (for close pairs), and separate protostellar contraction (for wide pairs)

Close binaries \rightarrow mass and momentum exchanges
Originally more massive component as the primary
Strong tidal forces \rightarrow orbit/spin synchronization

Detached; semi-detached; contact systems

Some with common envelopes

Numerous high-energy phenomena

b

Contact systems

Semidetached system

RS CVn stars: eruptive variables and close binary systems

RS CVn stars
possible model

Eifect of Mass Lass

Mass Loss

Every star loses mass in every stage of evolution.

$$
\frac{1}{2} m v_{e s c}^{2}=\frac{G M m}{R}
$$

i.e., due to kinetic energy of gas at the stellar surface.

Alternatively, there could be mechanisms to accelerate the particles, e.g., coronal winds (stars with surface convection \rightarrow acoustic waves, like the Sun), radiative winds (photon momentum), line-driven (continuum-driven, dust-driven) winds, rotation-driven (pulsation-driven) winds.

Fig. 8.8. The evolutionary paths in the Hertzsprung-Russell diagram of Population I stars having $1.0 \mathcal{M}_{\odot}$ and $1.1 \mathcal{M}_{\odot}$, from central hydrogen burning (A) to the helium flash (E), without taking mass losses into account. After A. V. Sweigart and P. G. Gross (1978). The ejection of a mass of $0.1 \mathcal{M}_{\odot}$ during the helium flash was assumed. The further evolution of the star of $1.0 \mathcal{M}_{\odot}$ was calculated taking the mass loss according to (7.105) into account, after D. Schönberner (1979). $\mathrm{F} \rightarrow \mathrm{G}$: the asymptotic giant branch; only one of the thermal pulses (helium flashes) which occur after I is drawn in, at J. The mass loss becomes important at H and leads to a final mass of $0.6 \mathcal{M}_{\odot}$, which is reached at K

Mass loss (Reimers 1975)

$$
\dot{M} \approx 4 \times 10^{-13} \frac{L / L_{\odot}}{(g / g \odot)\left(R / R_{\odot}\right)}\left[\mathrm{M}_{\odot} \mathrm{yr}^{-1}\right]
$$

$$
g=G M / R^{2}
$$

Sun now $\dot{M} \approx 2 \times 10^{-14} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$
Cool supergiant $\dot{M} \approx 10^{-7}$ to $10^{-5} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$

P Cygni profile of a spectral line

 --- a blue-shifted absorption superimposed on an emission line \rightarrow mass loss (cool gas toward us)
Stellar Variability

Every star varies in brightness.
The solar constant The flux density of the solar irradiance at 1 au, including all frequencies

It is an average value; the solar constant is not a physical constant; varies
$1.361 \mathrm{~kW} / \mathrm{m}^{2}$ at solar minimum; 0.1% greater at solar maximum

Kitchin

Intrinsic variability physical

\checkmark Pulsating (RR Lyr; Cepheids, RV Tau; Mira; δ Scu; ZZ Ceti)
\checkmark Rotational (magnetic, spotted)
\checkmark Eruptive (novae, SNe, CVs, X-ray binaries; symbiotic; flare)

Extrinsic variability non-physical

\checkmark Eclipsing (by stars, planets, dust clumps; EA; EB; EW)
\checkmark Gravitational microlensing

Some young variability (Orion var., T Tauri stars, Be stars) could have more than one mechanism.

Period-luminosity relation for pulsating variables

A stellar flare from an M dwarf

To recall Kelvin's classic phrase, there are two clouds obscuring the theory of the structure and mechanism of the stars. One is the persistent discrepancy in absolute amount between the astronomical opacity and the results of calculations based either on theoretical or experimental physics. The other is the failure of our efforts to reduce the behaviour of subatomic energy to anything approaching a consistent scheme. Whether these clouds will be dissipated without a fundamental revision of some of the beliefs and conclusions which we have here regarded as securely established, cannot be foreseen. The history of scientific progress teaches us to keep an open mind. I do not think we need feel greatly concerned as to whether these rude attempts to explore the interior of a star have brought us to anything like the final truth. We have learned something of the varied interests involved. We have seen how closely the manifestations of the greatest bodies in the universe are linked to those of the smallest. The partial results already obtained encourage us to think that we are not far from the right track. Especially do we realise that the transcendently high temperature in the interior of a star is not an obstacle to investigation but rather tends to smooth away difficulties. At terrestrial temperatures matter has complex properties which are likely to prove most difficult to unravel; but it is reasonable to hope that in a not too distant future we shall be competent to understand so simple a thing as a star.

