Stellar Equations of State

Photon "gas"

$$
P_{R}=\frac{2}{c} \int I \cos ^{2} \theta \mathrm{~d} \omega=a T^{4} / 3 \text { (for isotropic radiation) }
$$

Gas Equation of State $P=P(\rho, T)$
In general, the pressure integral (momentum transfer)

$$
P=\frac{1}{3} \int_{0}^{\infty} v(p) p n(p) d p
$$

Ideal gas

$$
P=n k T=\frac{\rho}{\mu m_{H}} k T
$$

Electron Degeneracy

...when temperature is exceedingly low or matter is highly compressed

Compact Objects
Nuclear energy $4^{m} H-m_{e}=0.029 m_{H}$

$$
\begin{aligned}
\text { mass deficit }= & 7 \times 10^{-3} \mathrm{~g} / \mathrm{g} \\
\therefore \text { Energy available } & =m c^{2}=6 \times 10^{18} \mathrm{gg} \mathrm{~g}^{-1}
\end{aligned}
$$

Chemical energy

$$
\approx 100 \text { kcal } \Rightarrow 4 \times 10^{12} \mathrm{eg} \mathrm{~g} \mathrm{~g}^{-1}
$$

Gravitational energy 2.9. for $0, \frac{3}{5} \frac{M_{\theta}^{2} G}{R_{\theta}} \sim 2 \times 10^{48} \mathrm{eg}$

$$
\Rightarrow 10^{15} \log g^{-1}
$$

Accretion $\frac{M G}{r} \cdot \dot{m}$

In general $\frac{\varepsilon_{n u z}}{\text { mass }} \sim 0.01 \mathrm{C}^{2} \quad \frac{E_{\text {grave }}}{\text { mass }} \sim \frac{3 G M}{5 R}$.

$$
\uparrow \uparrow \text { as } R \downarrow \downarrow
$$

For very compact objects, longe amounts of gravitational energy can be released, perhaps even more than nuclear energy,

$$
R \lesssim \frac{M G}{0.01 \mathrm{c}^{2}} \sim 10^{7} \mathrm{~cm} \sim 100 \mathrm{~km} \text {, for } 1 \mathrm{M}_{0}
$$

of. Schwareschild radio $R_{S} \equiv \frac{2 G M}{c^{2}} \sim 3 \mathrm{~km}$, for $1 M_{0}$

Atoms in a white dwarf are fully ionized and the e^{-}gas is degenerate.

184 u Bessel observed the oscillated path of Sirius 1862 Sirius B discoved by Clark

$$
\begin{aligned}
& M(\operatorname{sinin} B) \sim 2 \times 10^{33} \mathrm{~g} \longleftarrow \text { orbit } \\
& R(\operatorname{sirin} B) \sim 2 \times 10^{9} \mathrm{~cm} \longleftarrow \text { surface temp. }
\end{aligned}
$$

$$
c f R_{\theta} \sim 7 \times 10^{10} \mathrm{~cm}
$$

$$
\begin{aligned}
& \bar{p}_{\text {siring } B}= \frac{M}{\frac{4}{3} \pi R^{3}} \sim 0.7 \times 10^{5} \mathrm{~g} \mathrm{~cm}^{-3} \\
& c f \bar{\rho}_{\text {sun }} \sim 1 \mathrm{gan}^{-3}
\end{aligned}
$$

Sirius A and B by the $H S T$

Sirius B and A by the Chandra

For $\omega D_{s} \quad\langle\rho\rangle \sim 10^{5}-10^{6} \mathrm{~g} \mathrm{am}^{-3}$
mean separation of carbon ions

$$
\begin{aligned}
\left\langle d_{i i}\right\rangle \sim\left(\frac{\rho}{m_{c}}\right)^{-1 / 3} & \approx 0.02 \AA \\
m_{c} & \simeq 12 \mathrm{~m}_{\mathrm{H}}
\end{aligned}
$$

but the size of a normal carbon atom

$$
r_{c} \simeq \frac{a_{0}}{z} \simeq \frac{a_{0}}{t} \simeq 0.08 \mathrm{~A}
$$

\therefore complete ionization
\rightarrow fermion gas $I f$ separate nuclei $d e^{-}$ electron gas
Mean separation of electrons

$$
\left\langle d_{e e}\right\rangle \sim\left(\frac{z \rho}{m_{0}}\right)^{-1 / 3} \approx 0.01 A
$$

but $\lambda_{e}=\left[\hbar^{2} / m_{e} k T\right]^{1 / 2} \approx 10 \AA \Rightarrow Q M$ treatment!

Fermi-Dirac distribution for non-interacting, indistinguishable particles obeying Pauli exclusion principle; applicable to half-integer spin in TE. Examples of fermions include the electron, proton, neutrons, and nuclei with odd mass numbers, e.g., ${ }^{3} \mathrm{He}\left(2 \mathrm{e}^{-}, 2 \mathrm{p}^{+}, 1 \mathrm{n}^{0}\right)$

Bose-Einstein distribution for particles not limited to single occupancy of the same energy state. i.e., that do not obey Pauli exclusion principle; with integer values of spin. Example bosons include ${ }^{4} \mathrm{He}$, the Higgs boson, gauge boson, graviton, meson.

A Fermi gas is called degenerate if the temperature is low in comparison with the Fermi temperature/energy.

Fermi-Dirac dist ${ }_{f(t)}$

$$
f(\varepsilon)=\frac{1}{e^{(\varepsilon-\mu) / R^{T}}+1}
$$

$$
\mu: \underset{\substack{\text { chemical } \\ \text { potential }}}{ }
$$

$$
\mu(k T=0)=\varepsilon_{F}
$$

Figure 6.3 Plot of the Fermi-Dirac distribution function $f(\varepsilon)$ versus $\varepsilon-\mu$ in units of the temperature τ. The value of $f(\varepsilon)$ gives the fraction of orbitals at a given energy which are occupied when the system is in thermal equilibrium. When the system is
Fermi energy heated from absolute zero, fermions are transferred from the shaded region at $\varepsilon / \mu<1$ to the shaded region at $\varepsilon / \mu>1$. For conduction electrons in a metal, μ might
correspond to 50000 K .

Chemical Potential (μ)

- Temperature governs the flow of energy between two systems.
- Chemical potential governs the flow of particles; from higher chemical potential to the lower.

___ Fermi level \rightarrow Fermi energy; Fermi momentum

Figure 7.1 (a) The energies of the orbitals $n=1,2, \ldots, 10$ for an electron confined to a line of length L. Each level corresponds to two orbitals, one for spin up and one for spin down. (b) The ground state of a system of 16 electrons. Orbitals above the shaded region are vacant in the ground state.

Particle in a Box

cf. standing wave in a string
$\Psi=0$ at the walls
\rightarrow De Broglie wavelength

$$
\lambda_{n}=2 L / n, \quad n=1,2,3, \ldots
$$

Since $\lambda_{n}=h / p=h / m v \rightarrow E_{K}=1 / 2 m v^{2}=(m v)^{2} / 2 m=\frac{h^{2}}{2 m \lambda^{2}}$
No potential $\rightarrow E_{n}=(m v)^{2} / 2 m=\frac{h^{2}}{2 m \lambda_{n}^{2}}=\frac{n^{2} h^{2}}{8 m L^{2}}=\frac{1}{2 m} \frac{n^{2} \pi^{2} \hbar^{2}}{L^{2}}$

Within the box, the Schrödinger equation,

$$
\frac{d^{2} \psi}{d x^{2}}+\frac{2 m}{\hbar^{2}} E \psi=0 \rightarrow \psi_{n}=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L}
$$

At the center, ψ_{1}, ψ_{3} probability \rightarrow max ψ_{2} probability $=0$
c.f. classical physics: same probability everywhere in the box

Consider an atom in a box of volume $V=l^{3}$ wave equation $-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=\varepsilon \psi$ energies, $\varepsilon_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi}{l}\right)^{2}\left[n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right]$
where x_{i} 's are quantum nos' any positive integer
(n_{i})
In the phase space

$$
\varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi n_{F}}{l}\right)^{2}
$$

n_{F} : radius that separates filled o empty states

$$
\varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(\frac{\pi n_{F}}{l}\right)^{2}
$$

$$
\begin{aligned}
N_{e}= & 2 \times \frac{1}{8} \times \frac{4}{3} \pi n_{F}^{3} \quad n_{F}=\left(\frac{3}{\pi} N_{e}\right)^{1 / 3} \\
& 2 \text { spin states } \\
\therefore \varepsilon_{F}= & \frac{\hbar^{2}}{2 m} \frac{\pi^{2}}{V^{2 / 3}}\left(\frac{3}{\pi} N_{e}\right)^{2 / 3}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} \frac{N_{e}}{V}\right)^{2 / 3} \\
\varepsilon_{F} & =\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n_{e}\right)^{2 / 3} \sim n_{e}^{2 / 3}
\end{aligned}
$$

electron concentration
Fermi energy: the highest energy level filled at temperature zero

Fermi energy of degenerate fermion gases

Phase of matter	Particles	\boldsymbol{E}_{F}	$T_{F}=\varepsilon_{F} / k_{B}[\mathrm{~K}]$
Liquid ${ }^{3} \mathrm{He}$	atoms	$4 \times 10^{-4} \mathrm{eV}$	4.9
Metal	electrons	$2-10 \mathrm{eV}$	5×10^{4}
White dwarfs	electrons	0.3 MeV	3×10^{9}
Nuclear matter	nucleons	30 MeV	3×10^{11}
Neutron stars	neutrons	300 MeV	3×10^{12}

$$
\varepsilon_{F}=\frac{\hbar^{2}}{2 m_{e}}\left(3 \pi^{2} n_{e}\right)^{2 / 3}
$$

Considering the problem in terms of momentum , ie., in the momentum space.

Degenerate State

$$
\begin{aligned}
& E_{n}= \frac{\hbar^{2}}{2 m}\left(\frac{n \pi}{l}\right)^{2} \Rightarrow E_{f}=\frac{\hbar^{2}}{2 m}\left(\frac{n_{F} \pi}{l}\right)^{2}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n_{e}\right)^{2 / 3} \\
&\text { Total } \left.N_{e}=2 \cdot \frac{1}{8} \cdot \frac{4}{3} \pi n_{F}^{3}=\frac{\pi}{3} n_{F}^{3} \Rightarrow n_{F}=\left(\frac{3}{\pi} n_{e}\right)^{1 / 3}\right] \\
& P_{z} \quad \text { Uncertainty principle } \Delta V \Delta^{3} p \lesssim h^{3} \\
& p_{x} \quad 2 \cdot 4 \pi p^{2} \alpha p=h^{3} \cdot n_{e}(p) d p \\
& p_{y} \quad u_{p}+0 p_{F}, 2 \cdot \frac{4}{3} \pi p_{F}^{3}=N_{e}=n_{e} \cdot h^{3} \Rightarrow p_{F}=\left(\frac{3 h^{3}}{8 \pi} n_{e}\right)^{1 / 3}
\end{aligned}
$$

Pressure and Momentum

$$
\boldsymbol{P}=\frac{1}{3} \int_{0}^{\infty} v p n(p) d p
$$

Presame integral $\mathbb{P}=\frac{1}{3} \int_{0}^{\infty} n(p) v p d p$ (use $v=p / m_{e}$)

$$
\begin{aligned}
& =\frac{1}{3} \int_{0}^{p_{F}} \frac{8 \pi p^{2}}{h^{3}} \frac{p}{m_{e}} p d p \\
& =\frac{8 \pi}{3 m_{e} h^{3}} \frac{1}{5} p_{F}^{5}=\frac{8 \pi}{15 m_{e} h^{3}} p_{F}^{5} \\
\text { For electrons, } n_{e} & =\frac{\rho}{\mu_{e} m_{H}} \quad \therefore \mathbb{P}
\end{aligned}
$$

In the non-relativistic case

$$
\begin{aligned}
P_{\mathrm{e}, \mathrm{deg}}^{\mathrm{NR}} & =\frac{h^{2}}{20 m_{e}}\left(\frac{3}{\pi}\right)^{2 / 3} \frac{1}{m_{\mathrm{H}}^{5 / 3}}\left(\frac{\rho}{\mu_{e}}\right)^{5 / 3} \\
& =1.00 \times 10^{13}\left(\frac{\rho}{\mu_{e}}\right)^{5 / 3}[\operatorname{cgs}] \\
& \propto \rho^{5 / 3}
\end{aligned}
$$

In the extremely relativistic case $v \rightarrow c$ in the pressure integral

$$
\begin{aligned}
P_{\mathrm{e}, \mathrm{deg}}^{\mathrm{ER}} & =\frac{h c}{8}\left(\frac{3}{\pi}\right)^{1 / 3} \frac{1}{m_{\mathrm{H}}^{3 / 4}}\left(\frac{\rho}{\mu_{e}}\right)^{4 / 3} \\
& =1.24 \times 10^{15}\left(\frac{\rho}{\mu_{e}}\right)^{4 / 3}[\mathrm{cgs}] \\
& \propto \rho^{4 / 3}
\end{aligned}
$$

For a composition devoid of hydrogen, and not very rich in extremely heavy elements, $\mu_{e} \approx 2$.

Gas Equation of State $P=P(\rho, T)$

In general, the pressure integral (momentum transfer)

$$
P=\frac{1}{3} \int_{0}^{\infty} v p n(p) d p
$$

For an deal gas $P \propto \rho T$

For a degenerate electron gas, P independent of T,

$$
\begin{aligned}
& P \propto \rho^{5 / 3} \text { (non-relativistic) } \\
& P \propto \rho^{4 / 3} \text { (extremely relativistic) }
\end{aligned}
$$

Phase Diagram of Water
$\rho-T$ diagram

$$
\begin{aligned}
& \boldsymbol{P}_{\text {ideal gas }} \propto \rho T / \mu \\
& \boldsymbol{P}_{e, \text { deg }}^{N R}=1.00 \times 10^{13}\left(\frac{\rho}{\mu_{e}}\right)^{5 / 3}[\mathrm{cgs}] \\
& \boldsymbol{P}_{e, d e g}^{E R}=1.24 \times 10^{15}\left(\frac{\rho}{\mu_{e}}\right)^{4 / 3}[\mathrm{cgs}] \\
& \boldsymbol{P}_{\text {rad }}=\frac{1}{3} a T^{4}
\end{aligned}
$$

Figure 7.1 Mapping of the temperature-density diagram according to the equation of state.
Non-Relativistic, Non-Degenerate (ie., ideal gas)
Non-Relativistic, Extremely Degenerate
Extremely Relativistic, Extremely Degenerate

$$
\begin{aligned}
& \left.\begin{array}{ll}
N R, N D & P \sim \rho T \\
N R, E D & P \sim \rho^{5 / 3}
\end{array}\right\} \log \rho=1.5 \log T+\operatorname{con} t . \\
& \left.\begin{array}{rl}
E R, E D \quad & P \sim \rho^{4 / 3} \\
& (\sim \rho T)
\end{array}\right\} \log \rho=3 \log T+\operatorname{con} t \\
& \left.\begin{array}{ll}
\text { Prod us ideal gas } & P_{\text {rad }} \sim T^{\mu} \\
& P_{\text {gas }} \sim \rho T
\end{array}\right\} \quad \log \rho=3 \log T+\operatorname{conot}
\end{aligned}
$$

Mass-radius relation for a degenerate electron gas $\quad P \sim \frac{M^{2}}{R^{4}}$
In the NR case, $P \propto \rho^{5 / 3} \sim\left(\frac{M}{R^{3}}\right)^{5 / 3}=\frac{M^{5 / 3}}{R^{5}} \Rightarrow M R^{3}=\mathrm{const}$ So M 入, $R \searrow, \rho \nearrow \nearrow$, electrons move ever faster.

$$
\log \left(\frac{R}{R_{\odot}}\right)=-\frac{1}{3} \log \left(\frac{M}{\mathrm{M}_{\odot}}\right)-\frac{5}{3} \log \mu_{e}-1.397
$$

In the ER case, $P \propto \rho^{4 / 3}=\frac{M^{4 / 3}}{R^{4}}$, no solution between M and R.
A mass limit for a degenerate electron body (white dwarf) Chandrasekhar limit $\quad M_{W D} \lesssim 5.8 M_{\odot} / \mu_{e}^{2}$

$$
\begin{aligned}
& L=\sigma T_{e}^{\mu}\left(4 \pi R^{2}\right) \\
& \log \left(\frac{L}{L_{\theta}}\right)=4 \log \left(\frac{T_{R}}{T_{e \Theta}}\right)+2 \log \left(\frac{R}{R_{\theta}}\right)
\end{aligned}
$$

FIGURE 8.14. White dwarf Hertzsprung-Russell diagram. Lines of constant radius are shown. Also shown are the masses based on completely degenerate core models containing elements having $\mu_{e}=2$ (after Weidemann(We68)). Reprinted with permission from Annual Review of Astronomy and Astrophysics, Vol. 6, ©1968 by Annual Reviews, Inc.).
\rightarrow GAIA'S HERTZSPRUNG-RUSSELL DIAGRAM

White Dwarfs in Globular Cluster M4

https://esahubble.org/images/opo0210f/

GC NGC 6397 (~12 Gyr) by the HST

