

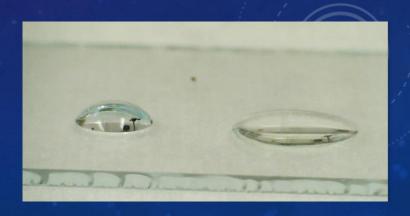
中央大學天文所、物理系 2021.11.06 仰望書房

https://www.astro.ncu.edu.tw/~wchen/wp_chen/essay/oceans.pdf

NASA探索外星生命的指引

- Follow the water!
- 人類自古就「逐水而居」(可靠水源;飲用、航行)
- 人體組成70%是水;地球表面 > 70%由水覆蓋

水這個東西 H₂O

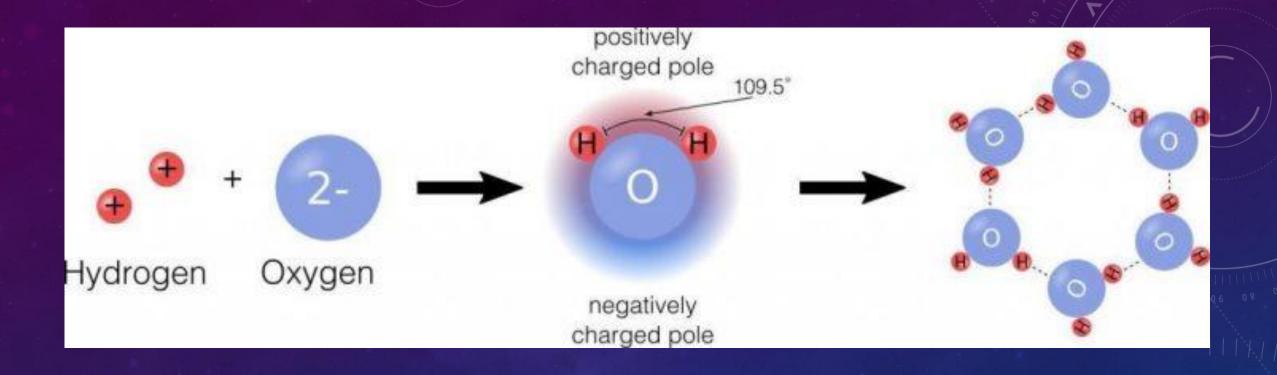


當然是抄,沒有抄怎麽泡咖啡?

■ 我們知道的這種生命:有效而穩定的液態化學

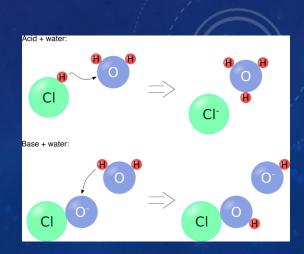
不一定是抄,但抄很不錯;宇宙含量多

- ■奇特的「固態較輕」 特寒的環境,冰下保有活形
- ■比熱大、汽化熱大 優越的調溫功能
- □ 表面張力大 框住液態態化學及應
- ■「萬用溶劑」帶着營養趴趴走
- □偏振



(左)水的表面張力比(右)酒精來得大

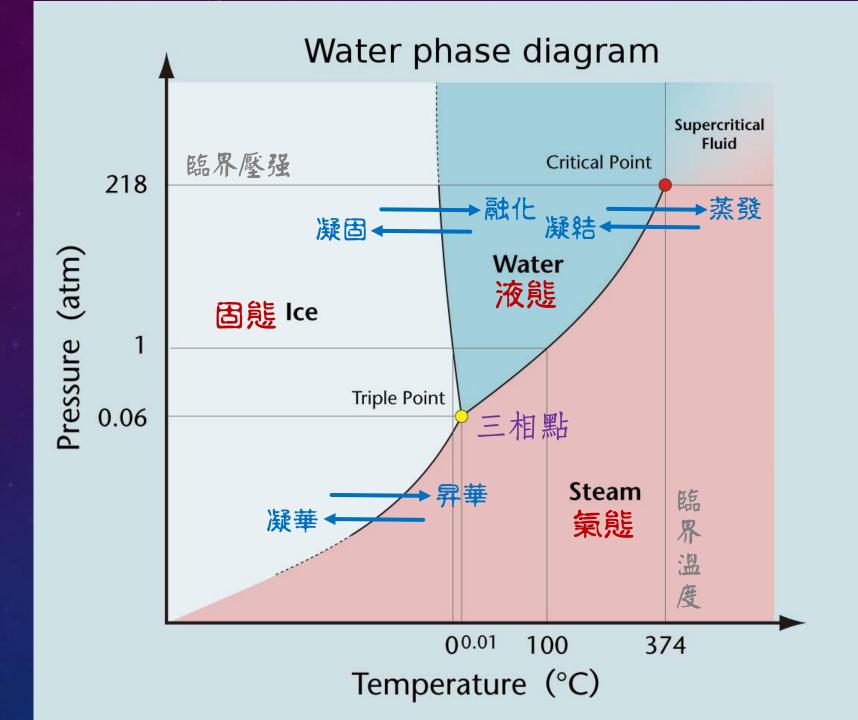
天文學家的週期表


1 氫 H																	2 氦 He
3 鋰 Li	数 Be		大霹靂	大恆	星	超新星	小恆星	宇	宙	人工		5 硼	。 碳 <mark>C</mark>	7 氦	8 氧 0	9 氟 <mark>F</mark>	10 Ne 氖
新 Na	12 鎂 Mg							- 教	線			33 Al	₩ Si	15 P	16 S 硫	17 Cl 氯	18 氩 Ar
19 鉀K	20 鈣	21 鈧 Sc	盆 Ti 鈦 □	23 V 釟	24 銋	25 猛 Mn	26 Fe 鐵 Fe	27 盆Co	28 鎳 Ni	29 銅 Cu	30 鋅 Zn	31 鎵 Ga	32 鍺Ge	33 神 As	34 硒 Se	35 溴 Br	36 Kr 氪
37 銣 Rb	38 銀 Sr	39 红	40 銋	41 鈮 Nb	42 Mo	43 答 Tc	44 Ru	45 発 Rh	46 迎 Pd	47 銀 Ag	48 Cd 竵 Cd	49 细 In	50 Sn 錫	51 銻	52 쮺 Te	53 I 碘	54 氙 Xe
55 銫 Cs	56 鋇 Ba	鑭系	72 Hf 给 …	73 Ta 鉭	74 W 鎢	75 森 Re	76 鋨	⁷⁷ Ir 銥	78 鉑	⁷⁹ Au	80 Hg	81 Tl 鉈	82 鉛 Pb	业	84 針 Po		86 Rn 氡
87 鍅 Fr	88 鐳 Ra	錒系	104 鑪 Rf	105 針 Db	¹⁰⁶ Sg	107 皱 Bh	108 鐉 Hs	109 婆 Mt	¹¹⁰ Ds 鐽	111 Rg 錀	¹¹² Cn 鎶	113 Nh 鉨	### Fl	¹¹⁵ Mc 鏌	116 並 Lv	¹¹⁷ Ts 础	¹¹⁸ Og 氣
		•															
		Lord A	57 T a	58 Ca	59 Dw	60 Nd	61 Dm	62 cm	63 E.,	64 Ca	65 Th	66 Dv	67 ца	68 En	69 Tm	70 Vh	71 ,,

+新理論:緻密天體(中子星、黑洞)合併製造大量複雜元素

水分子為電中性,但結構不對稱,因此微微「正負偏極」,容易跟別的極性分子(包括水分子本身)結合

還能「犧牲小我」中和酸、鹼



常見液體的比較

溶劑	水 (H ₂ O)	阿摩尼亞 (NH ₃)	甲醇 (CH ₃ OH)	乙醇 (C ₂ H ₅ OH)	
液態溫度(℃)	$0 \sim +100$	$-78 \sim -33$	$-94 \sim +65$	$+37 \sim +207$	
溫度範圍(℃)	100	45	159	170	
比熱 (kJ/kg°C)	4.2	4.7	2.1	2.5	
汽化熱 (kJ/kg)	2257	1396	1100	846	

氣壓小 (例如高海拔) 則沸點降低 大氣太稀薄,液體無法存在地表

T水沸點[°C]≈100-0.5(H/152.4 m)

1 atm

=760 mmHg

= 101.3 kPa

= 1.013 bar

= 14.7 PSI

= 760 torr

行星或衛星要有液態水,就不能離恆星太遠(結冰)或太近(蒸發)

恆星光度 $L = (4\pi R_*^2)(\sigma T_*^4)$

$$\frac{L}{4\pi d^2} (1 - A) \eta \pi a^2 = \zeta \pi a^2 \sigma T_d^4$$

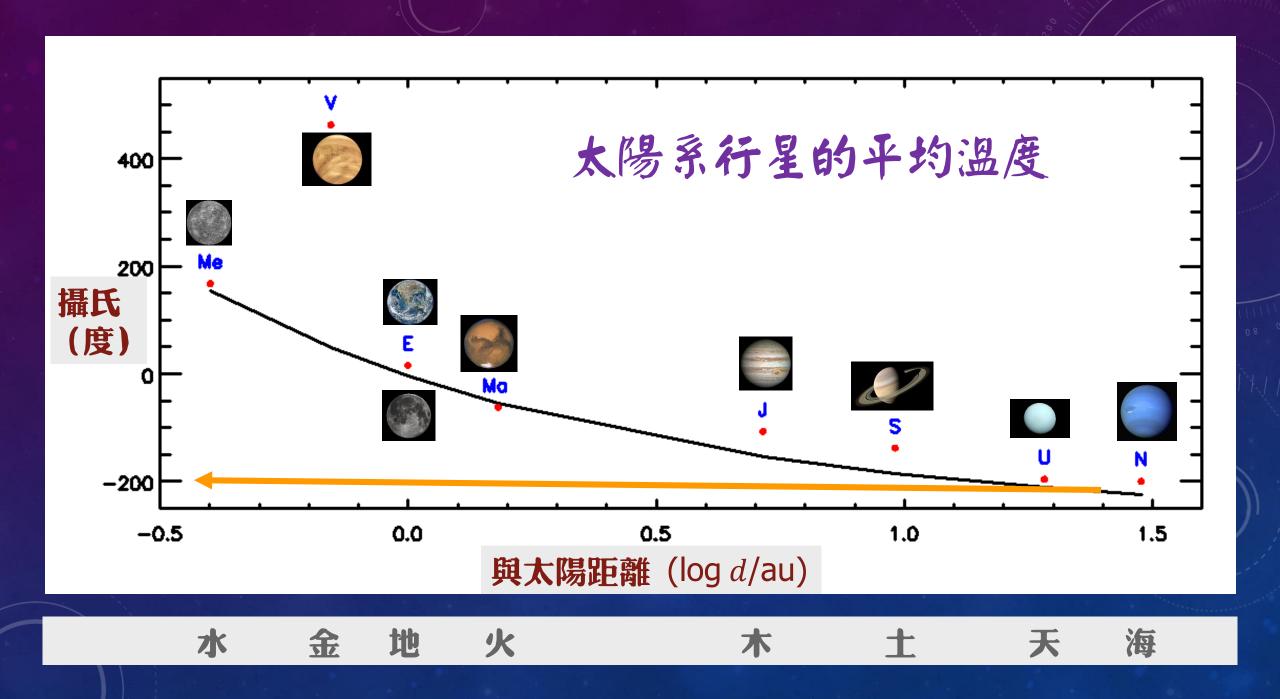
$$T_d = T_* \left(\frac{R_*}{d}\right)^{1/2}$$

通量

反射率

發射面積

吸收面積


行星或衛星的平衡溫度與恆星距離平方根成正比;越遠越冷

以太陽來說,如果帶入地球的參數 A=0.3,預期 $T=254 \text{ K} \approx -20 \text{ K}$... 遠在冰點以下實際上地球平均溫度 $\approx +15 \text{ K}$

這是溫室效應的結果!


習題:恆星理論認為太陽年輕時,光度比現在微弱些,所以地球當時應該冷得多,但是地質資料沒有這樣的證據 ··· (The Young Sun Paradox)

行星	水	金	地	火	木	土	天王	海王
太陽距離 (au)	0.4	0.7	1.0	1.5	5.2	9.6	19.2	30.1
反照率	0.1	0.9	0.3	0.25	0.3	0.3	0.3	0.3
預期溫度 (°C)	16	-85	-18	-60	-161	-19	-215	-226
	2					0		
實際均溫 (°C)	16	462	15	-63	-108	-139	-197	-201
	7							

水星 (Mercury)

 $a=0.31\sim0.47$ au; $T=-220^{\circ}\text{C}\sim427^{\circ}\text{C}$ P 地表大氣 $\lesssim 0.5$ Pa

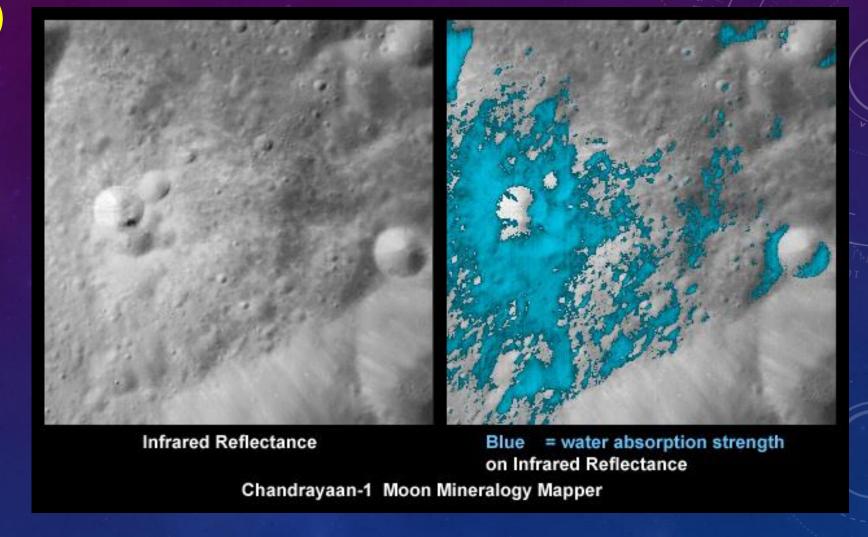
極區地下可能有水冰(來自行星內部,或外部撞擊)

極少量水汽

全星 (Venus)

 $a = 0.72 \sim 0.73$ au; T = 464°C

P地表大氣 = 93 bar = 9.3 MPa = 92 atm; 主要 CO_2 , 水汽 0.002%


地球 (Earth)

地球與太陽距離恰當,本身夠大以致引力抓住足夠大氣,地表因此有大量液態水

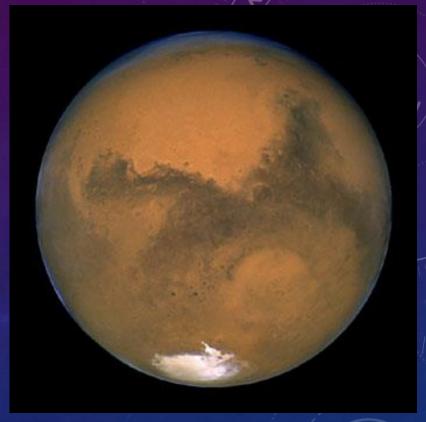

地球海水占整個地球質量 1/4400,比太陽系任何天體都多這些水怎麼來的?彗星、小行星撞擊?火星、月球也被撞呀

同位素 → 小行星 main-belt comets or active asteroids 小行星的軌道, 彗星的組成 (都在木星軌道之內) e.g., 7968 Elst-Pizarro 小行星 → 133P/Elst-Pizarro

月球 (Moon)

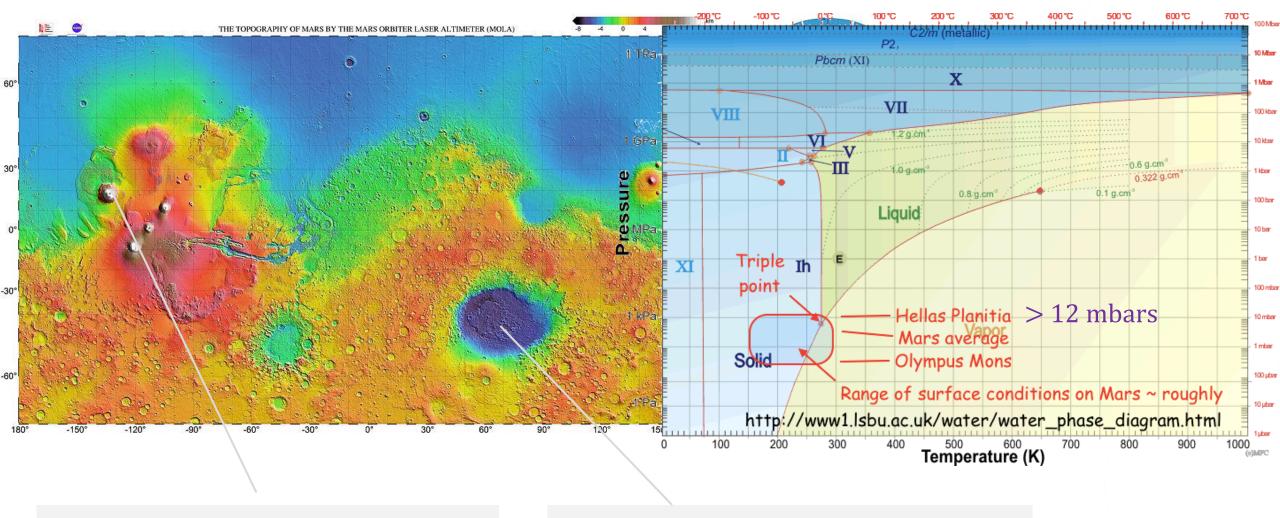
2009 印度太空機構 ISRO (The Indian Space Research Organization) 搭載美國 NASA Moon Mineralogy Mapper (M³) 偵測到月球表面波長2.8~3.0 micron 的水吸收譜帶

2018年 NASA 確認 M³ 觀測到月球兩極有水冰


2020年 NASA SOFIA 觀察到即使向陽面也有水 (雖然含量只有薩哈拉沙漠的百分之一)

來源:撞擊的彗星、小行星, 或是太陽風氫氣(質子)撞擊 月面含氧礦物

https://youtu.be/U70y8ypCbyA


火星 (Mars)

- 紅色外觀源於土壤及大氣中的氧化鐵(鐵鏽)
- ✓ 直徑 6792 公里 = 地球 53%
- ✓ 質量為地球 1/10
- ✓ 自轉軸傾斜24度,有季節變化,兩極有冰 → 極帽 (polar caps)
- 二顆小衛星(<10公里), Phobos ('fear') 及 Deimos ('panic') 形狀皆不規則,為攫獲之小行星; Phobos 越來越接近火星
- 表面大氣壓 = 6.518 millibars



Olympus Mons (火表最高點; 22 km high; 134W,18N)

Hellas Planitia (火表最低點;7km deep; 70E,43S);

Residual water ice inside an unnamed impact crater on Vastitas Borealis, a broad plain that covers much of Mars' far northern latitudes. Credit: ESA/ESA/DLR/FU Berlin (G. Neukum)

巨型行星擁有眾多衛星具有岩石表面(或是矮行星),可以撐 托海洋,即使溫度低於冰點,但在覆蓋表面的冰層之下,仍可 能有海洋存在。

歐羅巴 (Europa) 木衛二

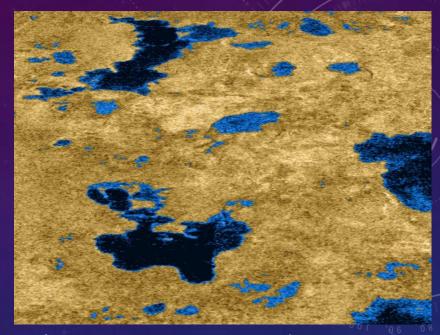
木星強大潮汐力加熱;冰層20 km 之下可能有龐大海洋直徑只有地球 1/4,但海水總量可能是地球2倍

甘尼米德 (Ganymede) 木衛三

太陽系最大衛星,沒有大氣,但有磁場

卡利斯多 (Callisto) 木衛四

地下冰層厚達100公里,之下有200公里深的海洋?


埃歐 (Io)木衛一

活躍地質活動 >400座活火山地下有岩漿海

泰坦 (Titan) 土衛六

大氣是地球1.5倍,成分幾乎都是氮氣(95~98%)

表面有甲烷構成的湖泊;地表之下50 公里就有海洋 → 複雜的有機化學, 與早期地球相仿,適合生物發展

卡西尼太空船飛越泰坦時利用雷達偵 測到表面由甲烷構成的湖泊(NASA)

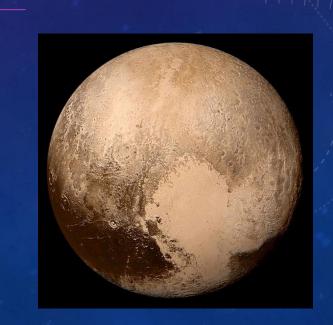
如果甲烷的湖泊中有生物,它們吸入氫分子(而非氧),以乙炔代謝(而非葡萄糖),然後呼出甲烷(而非二氧化碳)

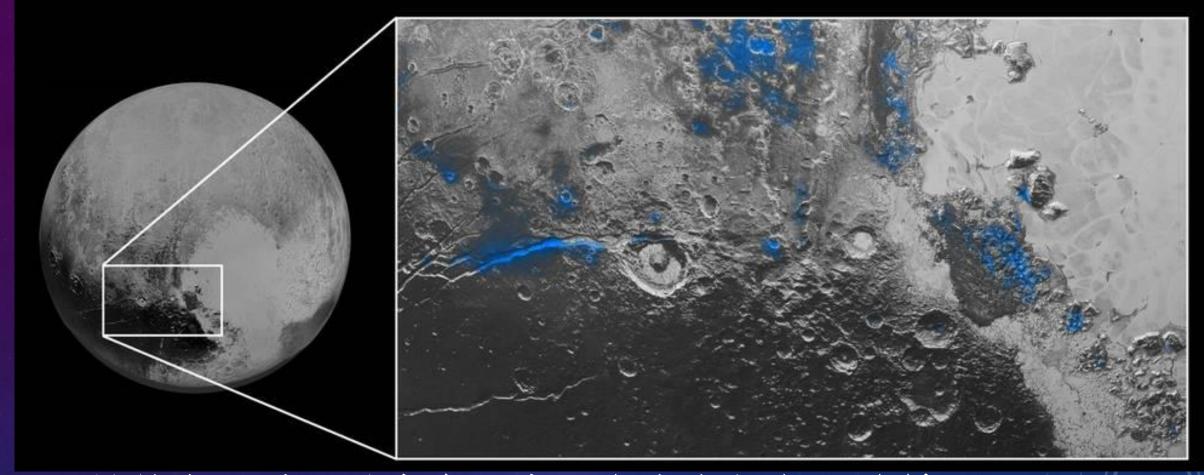
地球生物以水為溶劑,土衛六上面的生物,則說不定利用甲烷或乙烷為溶劑,或以甲烷為化學反應的細胞膜

特里同 (Triton)海衛一

公轉與海王星自轉相反 > 古伯帶中的矮行星?

陽光微弱,溫度 -235°C 地球半徑 21% (月球為 27%)


→ 內部放射性元素提供熱能維持大規模地下海洋; 表面充滿固態氮;偶有氮氣噴泉



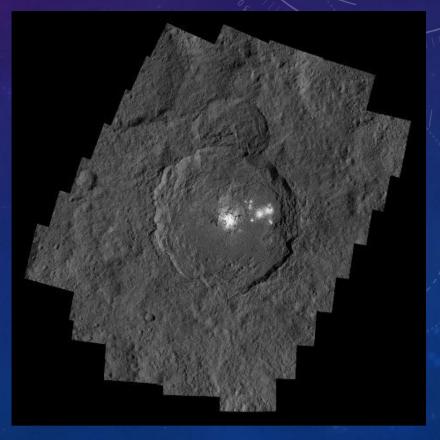
Voyager 2

冥王星 (Pluto)矮行星

30~49 au;地球半徑 19% 溫度 -229℃ 表面滿是冰山、固態氮與固態甲烷;地質活躍, 可能是內部放射線元素產生的熱能,地下有超過 100公里深的液態海洋?

冥王星是太陽系天體當中,表面亮度與顏色反差最 大者(有如 lapetus) ··· 藍色標示水冰所在 Animation video

離太陽這麼遠,溫度這麼低,怎麼還能這麼活躍?


設神星 (Ceres)矮行星

早年溫度高,可能富含水,表面的碳酸鈣(Na₂CO₃)或許就是殘存的證據

目前冰層之下可能有液態海洋

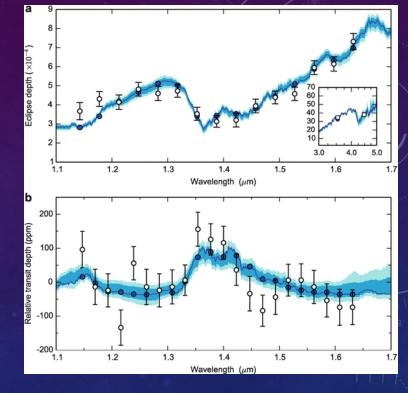
「曙光號」飛過穀神星時,拍攝到表面白色亮點,目前已知成分為碳酸鈉,但成因仍不明(NASANASA)

系外行星與適居區

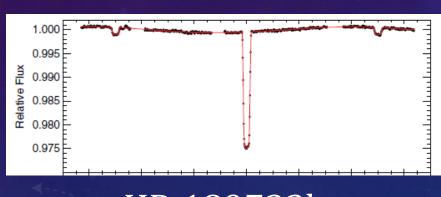
怎麼知道是否有海洋?

理論預期

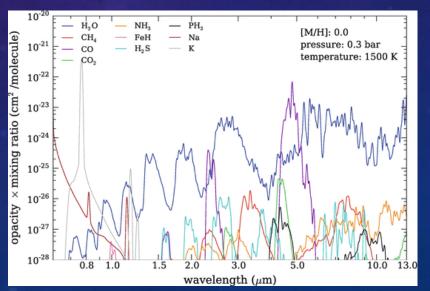
- -Location, location, location! 地點、地點,還是地點
- 一質量夠大


實際觀測凌星與沒有凌星的光譜差別

(Secondary) occultation


熱輻射光譜

WASP-43b


透射光譜

Transit

HD 189733b

太陽成分模擬光譜 (不透明度)

Kreidberg 2017 *Handbook of Exoplanets*, pp 1--23

喝水、聽海,在地球上多麼稀疏平常 科學家一貫求知,要探天外之水,太空之海, 而這些探索才正要開始