Characterization of Stellar and Substellar Members in the Coma Berenices Star Cluster

Shih-Yun Tang ${ }^{1} \oplus$, W. P. Chen ${ }^{1,2} \oplus$, P. S. Chiang ${ }^{2} \oplus$, Jessy Jose ${ }^{3,4}$, Gregory J. Herczeg ${ }^{3} \oplus$, and Bertrand Goldman ${ }^{5,6}$
${ }^{1}$ Department of Physics, National Central University, 300 Zhongda Road, Zhongli, Taoyuan 32001, Taiwan
${ }^{2}$ Graduate Institute of Astronomy, National Central University, 300 Zhongda Road, Zhongli, Taoyuan 32001, Taiwan
${ }^{3}$ Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Haidian District, Beijing 100871, People's Republic of China
${ }^{4}$ Department of Physics, Indian Institute of Science Education and Research, Rami Reddy Nagar, Karakambadi Road, Mangalam (P.O.) Tirupati 517507, India
${ }^{5}$ Max Planck Institute for Astronomy, Konigstuhl 17, D-69117 Heidelberg, Germany
${ }^{6}$ Universite de Strasbourg, CNRS, Observatoire astronomique de Strasbourg, UMR 7550, F-67000 Strasbourg, France
Received 2018 March 7; revised 2018 June 4; accepted 2018 June 4; published 2018 July 27

Abstract

We have identified stellar and substellar members in the nearby star cluster Coma Berenices, using photometry, proper motions, and distances of a combination of 2MASS, UKIDSS, URAT1, and Gaia/DR2 data. Those with Gaia/DR2 parallax measurements provide the most reliable sample to constrain the distance, averaging 86.7 pc with a dispersion of 7.1 pc , and age of $\sim 800 \mathrm{Myr}$, of the cluster. This age is older than the $400-600 \mathrm{Myr}$ commonly adopted in the literature. Our analysis, complete within 5° of the cluster radius, leads to identification of 192 candidates, among which, after field contamination is considered, about 148 are true members. The members have $J \sim 3$ mag to $\sim 17.5 \mathrm{mag}$, corresponding to stellar masses $2.3-0.06 M_{\odot}$. The mass function of the cluster peaks around $0.3 M_{\odot}$, and in the sense of $d N / d m=m^{-\alpha}$, where N is the number of members and m is stellar mass, with a slope $\alpha \approx 0.49 \pm 0.03$ in the mass range $0.3-2.3 M_{\odot}$. This is much shallower than that of the field population in the solar neighborhood. The slope $\alpha=-1.69 \pm 0.14$ from $0.3 M_{\odot}$ to $0.06 M_{\odot}$, the lowest mass in our sample. The cluster is mass-segregated and has a shape elongated toward the Galactic plane. Our list contains nine substellar members, including three new discoveries of an M8, an L1, and an L4 brown dwarfs, extending from the previously known coolest members of late-M types to even cooler types.

Key words: brown dwarfs - stars: evolution - stars: luminosity function, mass function - open clusters and associations: individual (Coma)
Supporting material: machine-readable table

1. Introduction

Stars are formed in groups out of interstellar molecular clouds. Those clusters that remain gravitationally bound, i.e., surviving internal dynamics and external disturbances, appear as star clusters. Stellar aggregates provide the early evolutionary environments for a star, in which planets and moons are formed. Since members in a star cluster are formed essentially at the same time, and share similar compositions, space motions, and spatial locations in space, star clusters have been used extensively for studies of stellar evolution, tests, and calibrations of stellar atmospheric models, clustered star formation, starburst processes, or stellar dynamics (Brandner et al. 2008; Rochau et al. 2010; Gennaro et al. 2011).
An embedded or infrared cluster may not remain gravitationally bound as the turbulent parental cloud disperses (Lada \& Lada 2003). Later on, through mutual gravitational interaction, higher-mass members lose kinetic energy and sink to the center, whereas lower-mass members gain speed and occupy a progressively larger volume of space. Those that exceed the escape velocity of the system, notably the least massive members at the time, are most susceptible to being thrown out ("stellar evaporation") to supply field stars (e.g., Mathieu 1984), with an evaporation timescale $\tau_{\text {evap }} \approx$ $100(D / v)(0.1 N / \ln N)$ for a system of N equal-mass stars of a size scale D and typical velocity v (Shu 1982; Binney \& Tremaine 1987; Bhattacharya et al. 2017).
It is not clear if there is an "initial mass function" for star clusters, namely, if more massive systems are favored or less preferred in formation. It is plausible that most star clusters we witness now are remnants of massive systems such as those
super star clusters seen near the Galactic center (e.g., Brandner et al. 2008), the Orion Nebular cluster (e.g., Hillenbrand 1997), and the pristine globular clusters. In addition to internal stellar dynamics, Galactic disturbances also act to disintegrate a star cluster, with effects such as tidal disruption from nearby giant molecular clouds or star clusters, passages through spiral arms or disks, or shear forces arising from Galactic differential rotation. While the youngest systems are shaped by the parental cloud structure (Chen et al. 2004), tidal distortion is evidenced in many open clusters or even in globular clusters (Chen et al. 2004; Chen \& Chen 2010; Bhattacharya et al. 2017). Only a recently dissolved star cluster in the solar neighborhood may be recognized as a star moving group, if the then-members still share common space positions and kinematics (Zuckerman \& Song 2004).
While low-mass stars are susceptible to ejection, their total mass plays a decisive role in the survival of a star cluster (de Grijs \& Parmentier 2007); a cluster must have a sufficient number of low-mass stars to have longevity ($\gtrsim 1 \mathrm{Gyr}$) against external stirring (de Grijs 2009). Nearby young systems such as Hyades ($\sim 47 \mathrm{pc}, 625 \mathrm{Myr}$), Praesepe ($\sim 170 \mathrm{pc}$, 757 Myr ; Gáspár et al. 2009; van Leeuwen 2009), and the Coma Berenices star cluster ($\sim 90 \mathrm{pc}, 600 \mathrm{Myr}$; Tsvetkov 1989; van Leeuwen 1999) are particularly suitable targets to identify the low-mass stellar or even substellar members in the context of cluster disintegration.
The Coma Berenices star cluster (Melotte 111, hereafter Coma Ber, R.A. $=12^{\mathrm{h}} 25^{\mathrm{m}}$, decl. $=26^{\circ} 06^{\prime}$, J2000) was first listed by Melotte (1915), and Trumpler (1938) first characterized its stellar members. Despite its proximity, the cluster has
been relatively poorly studied due to its large sky coverage ($>5^{\circ}$), hence the difficulty in distinguishing members against field stars. Casewell et al. (2006) combined 2MASS (Two Micron All Sky Survey) and USNO-B1.0 (United States Naval Observatory) data to identify some 100 possible cluster members. Using optical and 2MASS photometric data, Melnikov \& Eislöffel (2012) identified very-low-mass candidates to the limit of $I<20.1 \mathrm{mag}$ in an area of $22.5 \mathrm{deg}^{2}$, with no proper motion constraints except removal of high proper motion stars. Five of their candidates have luminosities and colors consistent with being brown dwarfs. Terrien et al. (2014) included SDSS/APOGEE (Sloan Digital Sky Survey, Apache Point Observatory Galactic Evolution Experiment) radial velocity data in membership determination, and found a few K and early-M members that were previously unknown.

Kraus \& Hillenbrand (2007) conducted a comparative study between Praesepe and Coma Ber, using the 2MASS, SDSS, USNOB 1.0, and UCAC-2.0 (USNO CCD Astrograph Catalog) surveys for photometric and astrometric member selection. They found a clear mass segregation in Praesepe, i.e., with massive stars being concentrated toward the central region, whereas lower-mass members occupied a progressively larger volume in space, but not in Coma Ber, which has a similar linear size but was thought to be somewhat younger. Wang et al. (2014) confirmed the mass segregation in Praesepe, and concluded that the lowest-mass members they detected, $\sim 0.1 M_{\odot}$, are being stripped away.

Here, we present a comprehensive characterization of the stellar and substellar member candidates of Coma Ber. We first summarize the archival data on photometry, astrometry, and distance used in this work, and then report how membership is determined. A set of bright candidates with parallax distances serves as the high-confidence sample to constrain the cluster parameters, such as the distance, age, and size, etc., which in turn guide the identification of faint stellar and substellar candidates. We then present the infrared spectroscopy that confirm the brown dwarf nature of these members. With a sample of stellar and substellar members, we derive the luminosity function, mass function, shape, and dynamical status of the cluster. For a star with no parallax measurement available, we derive the distance by first estimating its spectral type from photometric colors, and then comparing the observed flux to the expected luminosity for that spectral type. We describe the method in the Appendix.

2. Data and Analysis

In this work, stellar membership is diagnosed by grouping of stars in position in space and in kinematics. For bright stars, we use 2MASS photometry and URAT1 (USNO Robotic Astrometric Telescope) proper motions, whereas for faint stars, we analyze both the photometry and proper motions from the UKIRT Infrared Deep Sky Survey (UKIDSS) and Galactic Clusters Survey (GCS, Lawrence et al. 2012). Distance information comes from parallax measurements by Gaia/ DR2, or is estimated using the spectral type.

2.1. Archival Data for Distance

Distance determination is based on parallax measurements, whenever available, by Gaia/DR2 (Gaia Collaboration et al. 2018). Gaia is a space mission designed for astrometry by the European Space Agency, launched on 2013 December
19. The latest data release (DR2), including the first 22 months of the nominal mission lifetime, contains celestial positions and apparent brightness for ~ 1.7 billion sources, among which 1.3 billion also have parallaxes and proper motions available (Lindegren et al. 2018). For our study the empirical limit for the Gaia/DR2 is $J \sim 15 \mathrm{mag}$, and only measurements with $\varpi / \Delta \varpi>10$ are considered in the analysis, where ϖ is the parallax and $\Delta \varpi$ is the error (Lindegren et al. 2018).

For an object with no parallax data, we estimate its spectral type via multiband photometry, from which the distance is derived. Photometric data in optical wavelengths include those of SDSS/DR12 (Alam et al. 2015) and PS1 (Panoramic Survey Telescope and Rapid Response System, Chambers et al. 2016). In a few cases we utilize the SDSS flags to distinguish a star from a galaxy. For photometry extending to mid-infrared wavelengths, "ALLWISE" (Cutri et al. 2013) has been used, which combines the data of the Wide-field Infrared Survey Explorer (WISE) (Wright et al. 2010) in the cryogenic phase of the mission, and NEOWISE (Mainzer et al. 2011) in the first post-cryogenic phase.

2.2. Archival Data for Proper Motion and Photometry

Proper motions are taken from Gaia/DR2 when available, as long as the measurements are reliable, again with $\varpi / \Delta \varpi>10$. Alternatively, proper motions are extracted from URAT1 (Zacharias et al. 2015), which is an astrometric catalog as a follow-up project of UCAC. In addition to proper motions, with typical errors 5-8 mas yr^{-1}, URAT1 provides photometry in one single " f " band (between R and I). URAT1 covers almost the entire northern sky and extends down to decl. -15° in some areas, cataloging over 228 million objects at a mean epoch around 2013 May. A large fraction (83\%) of the URAT1 entries $\left(3^{\prime \prime}\right.$ matching radius) list 2MASS J, H, and K_{s} magnitudes. Some 16% of URAT1 sources are supplemented with five-band photometry (BVgri) from the AAVSO Photometric All-Sky Survey (APASS).

In our analysis, photometry is taken from 2MASS whenever available. The 2MASS Point Source Catalog (Skrutskie et al. 2006) has 10σ detection limits of $J \sim 15.8 \mathrm{mag}, H \sim 15.1 \mathrm{mag}$, and $K_{s} \sim 14.3 \mathrm{mag}$, and saturates around $J \sim 9 \mathrm{mag}, H \sim$ 8.5 mag , and $K_{s} \sim 8$ mag.

The UKIDSS/GCS aimed to measure the very-low-mass end of the stellar mass functions in 10 star clusters. As for other UKIDSS surveys, the Large Area Survey (LAS) covered only the edge of Coma Ber, whereas the Galactic Plane Survey (GPS) did not include Coma Ber at all. Proper motions are available for UKIDSS/GCS starting with DR9 (Collins \& Hambly 2012; Smith et al. 2014). For the work reported here, we use the latest data release DR10, but its spatial coverage is incomplete within the surveyed sky of $78.5 \mathrm{deg}^{2}$ toward the cluster (see Figure 1), missing a sky area of about $7 \mathrm{deg}^{2}$ in the Z - and Y-bands, $2.5 \mathrm{deg}^{2}$ in the J-band, and $3 \mathrm{deg}^{2}$ in the H-band, due to poor data quality (Boudreault et al. 2012). The K-band observations were taken at 2 epochs to enable proper motion estimates. The typical proper motion error of the GCS in our data is about 5 milli-arcseconds (mas) per year. We have made use of the ZYJHK data, with the detection limits at an error of $0.15 \mathrm{mag} Z=20.5, \quad Y=20.3, \quad J=19.5$, $H=18.8, K 1=18.0$, and $K 2=18.1 \mathrm{mag}$, respectively, and with the saturation limits $Z=11.3, \quad Y=11.5, \quad J=11.0$, $H=11.3$, and $K 1=9.9 \mathrm{mag}$ (Lodieu et al. 2012). The photometric sensitivity of each band is depicted in Figure 2.

Figure 1. UKIDSS/GCS sources (in black) toward Coma Ber with ZYJKs photometric measurements. No data are available in the blank regions due to poor image quality flagged by the UKIDSS quality control. Also shown are the 2 MASS sources (in light blue) within the 5° radius of the "cluster region" of our study. For display clarity, only one in two sources, selected randomly, is shown.

Our investigation is limited to UKIDSS sources with a probability greater than 70% of being a star, using the UKIDSS database flag to distinguish a star from a galaxy, with a photometric error less than 0.15 mag and being fainter than $J=12$ mag. The sky area of our study, limited by the UKIDSS/GCS coverage of $78.5 \mathrm{deg}^{2}$, or about a 5° radius toward Coma Ber, is chosen as the "cluster region." In addition, a patch of sky of a 3° radius roughly 11° to the east from the cluster center is used in experimental design as the "control field."

3. Members of the Coma Ber Star Cluster

The early work by Trumpler (1938) led to the identification of 37 members brighter than a photographic magnitude of 10.5 within a 7° diameter on the basis of proper motions, colormagnitude relation, and radial velocities. An additional seven candidates with no radial velocity measurements were also proposed. While the bright members in Coma Ber display a density structure similar to those of Praesepe and the Pleiades (Artyukhina \& Kholopov 1966), there is a paucity of faint members, often attributed to stellar evaporation (Argue \& Kenworthy 1969). Candidates reported recently by Casewell et al. (2006, 105 members), Kraus \& Hillenbrand (2007, 149 members), and Mermilliod et al. (2008, 31 members) are mostly bright. The later work by Melnikov \& Eislöffel (2012, 82 stars) expanded the member list to include late-M spectral types, i.e., into the brown dwarf regime. The selection by

Mermilliod et al. (2008) included radial velocities for some candidates, but neither Mermilliod et al. (2008) nor Melnikov \& Eislöffel (2012) incorporated proper motion information into membership determination.

The age of Coma Ber reported in the literature ranges from $\sim 300 \mathrm{Myr}$ to 1 Gyr (Tsvetkov 1989, summarized in their Table 5), but usually an age between 400 Myr and 600 Myr is adopted (Odenkirchen et al. 1998; Kraus \& Hillenbrand 2007; Casewell et al. 2014).

3.1. Evolved Members

We analyze evolved members to constrain the age. In Coma Ber, any post-main-sequence members are too bright to render reliable 2MASS photometry, so we characterize them with optical photometry. Table 1 lists the parameters of the five brightest stars in the region. For 18 Com, a subdwarf F5 IV with a Gaia distance $59.8 \pm 0.4 \mathrm{pc}$ and proper motions $\left(\mu_{\alpha} \cos \delta, \mu_{\delta}\right)=(-17.57 \pm 0.17,0.68 \pm 0.12){\text { mas } \mathrm{yr}^{-1}, 7}^{7}$ its deviation from theoretical isochrones (shown in Figure 3) suggests that it is not a part of the cluster. The other four stars have distance, photometry, and kinematics consistent with membership. The star 12 Com, a known member, is a doublelined spectroscopic binary (Griffin \& Griffin 2011) consisting of an A2/A3 dwarf and a mid-typed giant (Abt (2008, F6 III),

[^0]

Figure 2. Number of UKIDSS/GCS stars in various bands, for all the stars (the red line) in the cluster region shown in Figure 1, and for those with photometric errors less than 0.15 mag (green) or 0.10 mag (blue).

Griffin \& Griffin (1986, G7 III)). The coeval age of the binary system 670 Myr (Griffin \& Griffin 1986) and a Gaia distance 84.5 ± 1.7 pc both indicate membership.

The star 31 Com, a G0 IIIp giant, known to have varying $v \sin i$ (Massarotti et al. 2008), suggestive of binarity, is located at 6.8 deg from the cluster center, i.e., outside our analysis range, but it has photometry, astrometry, and distance consistent with membership. It has been considered a member by Casewell et al. (2006) and by Mermilliod et al. (2008), and is also included in our member list.

Using the Padova isochrone (Bressan et al. 2012), assuming null reddening $(E(B-V)=0.006$, Nicolet 1981) and solar metallicity (Friel \& Boesgaard 1992; Netopil et al. 2016), an age of 800 Myr gives an overall better fit than younger ages, as evidenced in Figure 3, where for each star the absolute magnitude is computed using the Gaia/DR2 parallax and the apparent magnitude taken from the Bright Star Catalog, without correction for extinction or reddening. The fit is considered satisfactory, given the known binarity of 12 Com and 31 Com , and non-membership of 18 Com . We therefore conclude Coma Ber to be about 800 Myr old.

3.2. Bright Members

A bright candidate is selected as having proper motions, from Gaia/DR2 or from URAT1, within $17 \mathrm{mas}_{\mathrm{yr}}{ }^{-1}$ from $\left(\mu_{\alpha} \cos \delta, \mu_{\delta}\right)=(-11.21,-9.16)$ mas yr^{-1}, a range judiciously chosen to include all known proper motion members in the literature. Figure 4 illustrates how this range encompasses the literature candidates. The concentration is more obvious for the samples of Casewell et al. (2006) and Kraus \& Hillenbrand (2007), which included proper motions in their membership

Figure 3. Optical absolute M_{V} vs. $M_{B}-M_{V}$ diagram for the brightest stars in the cluster region. Each number labels the name of a star, e.g., " 12 " means 12 Com in Table 1. Also plotted are the PARSEC isochrones, from top to bottom, of 300 Myr , 600 Myr , 800 Myr (thick line), and 1000 Myr . An age of 800 Myr fits the data better than younger ages.

Table 1
Post-main-sequence Stars

Name	$\begin{aligned} & \text { R.A. (2000) } \\ & \text { (deg) } \end{aligned}$	Decl. (2000) (deg)	$\begin{gathered} J \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} e J \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} H \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} e H \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} K \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} e K \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} \mu_{\alpha} \cos \delta \\ \left(\text { mas }_{\mathrm{yr}}{ }^{-1}\right) \end{gathered}$	$\begin{gathered} \mu \delta \\ \left(\text { mas yr }^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta \mu \\ \left(\operatorname{mas} \mathrm{yr}^{-1}\right) \end{gathered}$	SpTy	$\begin{gathered} B \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} V \\ (\mathrm{mag}) \end{gathered}$	Comments
12 Com	185.62626	+25.84614	3.781	0.254	3.401	0.216	3.236	0.244	-10.9	-9.6	0.5	F6 III+A3V	5.30	4.81	\ldots
14 Com	186.60021	+27.26820	4.409	0.240	4.235	0.194	4.149	0.036	-16.0	-13.4	0.4	F0p	5.22	4.95	\ldots
16 Com	186.74703	+26.82568	4.796	0.192	4.727	0.020	4.649	0.024	-11.5	-9.2	0.4	A4 V	5.05	4.96	\cdots
31 Com	192.92465	+27.54068	3.629	0.292	3.367	0.218	3.260	0.286	-11.0	-8.3	0.3	G0 IIIp	4.39	4.94	Outside 5 degs
18 Com	187.36261	+24.10894	4.864	0.194	4.572	0.036	4.574	0.288	-17.6	0.7	0.2	F5 IV	5.90	5.47	not a member

Figure 4. Gaia/DR2 proper motion vector plots for candidates identified by (a) Trumpler (1938), (b) Casewell et al. (2006), (c) Kraus \& Hillenbrand (2007), (d) Mermilliod et al. (2008), (e) Melnikov \& Eislöffel (2012), and (f) Gaia Collaboration et al. (2017). In each case, the black circle marks a radius of 17 mas yr ${ }^{-1}$ centered at $\left(\mu_{\alpha} \cos \delta, \mu_{\delta}\right)=(-11.21,-9.16) \mathrm{mas}_{\mathrm{yr}}{ }^{-1}$, which indicates our selection range for bright candidates. For display clarity, only one in five field stars, selected randomly, is shown.

Figure 5. Gaia/DR2 parallax measurements of (a) all the stars toward the cluster region, and all the stars toward the field, which has a sky area of $9 / 25$ or about one-third of the cluster region, and (b) our 393 preliminary candidates that passed the proper motion and isochrone selection. The inset expands to show the distance range $50-120 \mathrm{pc}$, in which most cluster members are distributed.
criteria, than for those of Mermilliod et al. (2008) or Melnikov \& Eislöffel (2012), which applied no proper motion criteria.

Furthermore, a bright candidate is selected as being brighter than $J=14 \mathrm{mag}$ with photometric errors $<0.15 \mathrm{mag}$, and along the PARSEC isochrone (Bressan et al. 2012; Chen et al. 2014, 2015; Tang et al. 2014) bracketed with a color range $(-0.07,+0.3)$ in the J versus $J-K_{s}$ color-magnitude diagram (CMD), $(-0.25,+0.15)$ in J versus $J-H$, and $(-0.07,+0.11)$ in H versus $H-K_{s}$. With these criteria, binary systems would still be selected. After excluding 23 candidates, all fainter than about $J \sim 12 \mathrm{mag}$, considered as galaxies by SDSS (class $=3$), a total of 450 sources satisfy the initial proper motion and CMD scrutiny. Of these, 393 have Gaia/ DR2 counterparts.
Figure 5 plots the distance distributions of (a) all Gaia stars in the cluster region (within 5° radius), and all Gaia stars in the control field (3° radius), with a sky area $9 / 25$ of the cluster region, and (b) the 393 preliminary candidates with Gaia measurements available. The clustering around 85 pc stands out clearly, particularly in (b). The fact that in (b) away from the peak the number does not increase much with distance, hence the space volume, in contrast to the case in (a), indicates an effective winnowing by proper motions and CMD.

Gaia Collaboration et al. (2017) analyzed a radius $10^{\circ} .4$ around Coma Ber, and reported 50 members based on Gaia/ DR1 data. All their members have been confirmed by our selection (40 within and 9 outside the 5° cluster-centric radius), except BD +272139 , which should have been in their list but is not, perhaps because of an editing glitch (Gaia Collaboration et al. 2017, their Table D. 2 containing only 49 entries, though there should have been 50).

To bootstrap the three proper motion data sets used in this study, we compare the Gaia/DR2, URAT1, and UKIDSS/ GCS measurements in the cluster region, shown in Figure 6.

The Gaia/DR2 and URAT1 measurements are consistent with each other, and are used to supplement each other for bright candidates. There is, however, a systematic offset of UKIDSS/ GCS measurements relative to those of URAT1, computed for all stars with $J=12-15 \mathrm{mag}$, i.e., common in both data sets, $\left(\Delta \mu_{\alpha} \cos \delta, \Delta \mu_{\delta}\right)=(-3.57,-0.61)$. After the offset is applied, the UKIDSS/GCS proper motion vector center $(-7.64,-8.55)$ mas yr^{-1} is used to select faint members.

Distance is a critical parameter in membership identification. Although the apparent magnitude of a star in isochrone fitting and the proper motion both implicitly incorporate the distance criterion, ambiguity exists. In addition to direct parallax measurements, we have developed a distance estimator using the photometry data taken from the PS1, SDSS, and YJHK from UKIDSS, plus $W 1$ and $W 2$ from WISE. Our algorithm first estimates the spectral type of a star. This part is adapted from the photo-type method developed by Skrzypek et al. (2015), in which a combination of photometric colors of a target is compared against a database of templates of different spectral types, from which a match is chosen, in a least-squares sense, as the most probable spectral type. The work by Skrzypek et al. (2015) was devised for late-M, L, and T type dwarfs only, and we expand the templates to include earlier spectral types (see the Appendix). Once the spectral type is determined, the distance is then derived by comparison of the apparent magnitude and absolute magnitude in each band, rendering a median distance when all bands are considered. Our experiments using different stellar data sets with spectral types known to be K or M types indicate an accuracy within 1-2 subtypes in most cases, with the majority of interlopers being extragalactic or post-main-sequence objects, both expectedly rare in our field. Earlier than K type, the estimator still works reasonably fine, albeit with larger scattering; see Figure 7. Currently, no interstellar reddening is taken into account, and the algorithm is validated only for main-sequence stars. This distance estimator, which we call phot- d, offers an effective filtering by distance of stars that would have contaminated our member sample by chance inclusion in proper motion and CMD selection. More details on phot-d are given in the Appendix.
Figure 8 illustrates the J versus $J-K_{s}$ CMD toward Coma Ber. Member candidates chosen on the basis of proper motions, distances, and isochrone are marked, together with those satisfying proper motion and isochrone conditions but having inconsistent distances, which would have been disguised as contaminants if no distance information were available. Also shown is the false-positive sample of the control field processed following the same selection procedure used for the cluster region. In this analysis, the distance range has been taken as $50-120 \mathrm{pc}$ to account for the possible uncertainty of the phot-d distance. It is encouraging that the false-positive rate is low, particularly for the bright candidates ($\gtrsim 1 M_{\odot}$) Within this distance range, there are 131 bright Gaia members, averaging 87.0 pc with a standard deviation (dispersion) 8.1 pc .

3.3. Faint Members

For faint stars, we have adopted the proper motion vector center $\left(\mu_{\alpha} \cos \delta, \mu_{\delta}\right)=(-7.64,-8.55){\operatorname{mas~} \mathrm{yr}^{-1} \text { for }}^{-1}$. UKIDSS/GCS, also within a radius of $17 \mathrm{mas}_{\mathrm{yr}}{ }^{-1}$ for membership selection. In addition, a candidate is selected to be fainter than $J=12 \mathrm{mag}$, with photometric errors $<0.15 \mathrm{mag}$, and along the DUSTY isochrone bracketed with a color range $(-0.35,+1.2)$ in the Z versus $Z-K$ CMD, and

Figure 6. (a) Comparison of URAT1 and Gaia/DR2 proper motion values, in R.A. (solid line) and in decl. (dashed line). (b) Same as in (a), but for URAT1 and UKIDSS/GCS.

Figure 7. (a) phot-d determined distance vs. Gaia measured distance for a sample of preliminary candidates toward Coma Ber satisfying proper motions and CMD criteria. The red line with a unity slope shows equality. The black filled circles mark the relatively bright stars $J \sim 12-14$ mag, and the blue symbols represent the nearby stars with Gaia distances closer than 150 pc . (b) The difference between phot-d and Gaia distances for the nearby sample in (a).

Figure 8. (a) 2MASS J vs. $J-K s$ for the bright sample in the cluster region. The gray dots represent all 2 MASS sources. The circles mark the candidates satisfying the proper motion and isochrone criteria, and are further constrained, respectively, by parallax distances (in red filled circles) and phot-d distances (in blue open circles). Those satisfying both proper motion and isochrone selection but otherwise rejected by distances, are represented by black pluses (with Gaia distances) or by green crosses (with phot- d distances. Stellar masses, per the PARSEC isochrones, are indicated. (b) The same as (a) but for the control sample, with the same symbols as in (a). The stars that satisfied all criteria of proper motions, isochrone, and distance here are false positives. Typical errors in $2 \mathrm{MASS} J-K_{s}$ colors are presented as horizontal bars to the right.
$(-0.1,+0.5)$ in J versus $J-K$, as shown in Figure 9. The ranges of colors are chosen to be deliberately wide to allow for uncertainties in photometry/color and also in isochrones. The distance range, as chosen for the bright sample, is chosen to be $50-120 \mathrm{pc}$ for either the Gaia or the phot-d distances.

Note that in J versus $J-K$, which is often used to identify substellar objects, the isochrone passes through populated regions, so such a CMD is not as discriminating as those involving shorter wavelengths such as Z versus $Z-K$ for lowmass objects. Our investigation hence relies primarily on Z versus $Z-K$, though for very cool objects a marked flux suppression sometimes renders detection at neither Y nor Z in UKIDSS/GCS. For these, analysis with J versus $J-K$ would be applied. The lesson is that there are no preferred colors to identify cool objects, and a combination of CMDs must be iterated. As a comparison, Figure 10 presents how literature candidates behave in our diagnostic 2MASS J versus $J-K_{s}$ and UKIDSS/GCS Z versus $Z-K$ CMDs, overlaid with several theoretical 800 Myr isochrones adopting the average distance 85 pc . We note that for a nearby cluster such as Coma Ber, assuming a single distance in a CMD would introduce intrinsic scattering unless absolute magnitudes are plotted (see for example Figure 3). While the bright literature candidates by and large follow the model isochrones, the faint ones are discrepant.

Combining the bright (Section 3.2) and faint (Section 3.3) candidates together results in 194 candidates within the cluster
region. This sample is spatially complete, notwithstanding the UKIDSS voids, and forms the basis of our characterization of the cluster. The candidates are listed in Table 2. The first column gives the running number. Columns 2 and 3 are the coordinates, followed by columns 4 to 9 representing J mag, its error, H mag, its error, and K mag and its error. Columns 10 to 12 give the proper motions and the error. Column 13 lists the distance, followed by column 14, which contains the references if the star is a known literature candidate. The last column indicates the data source, where " 1 " stands for 2MASS photometry $\left(\mathrm{JHK}_{s}\right)$ plus Gaia/DR2 proper motions, "2" stands for 2MASS photometry $\left(J H K_{s}\right)$ plus URAT-1 proper motions, " 3 " stands for UKIDSS/GCS (JHK) plus Gaia/DR2 proper motions, and " 4 " means that $J H K$ photometry and proper motion are both from UKIDSS/GCS, with no transformation between 2MASS and UKIDSS photometric measurements.

Candidates in Table 2 are categorized as (1) those with parallax distances (Nos. 1-154; this is the most reliable member list to our knowledge to date of the Coma Ber cluster); and (2) the other 38 with distances estimated by photd (Nos. 155-192). For sources with parallax measurements but $\varpi / \Delta \varpi<10$, their photo- d distances are adopted. In each category the entries are in ascending R.A. order.
The criterion of the ratio $\varpi / \Delta \varpi>10$ for Gaia/DR2 data is biased against a distant source for which ϖ would be small (so is the ratio) even though $\Delta \varpi$ is already relatively small. These sources tend to be distributed in the vertical segment of the J

Figure 9. (a) The J vs. $J-K$ CMD, just as in Figure 8, with the same symbols, but for the faint sample using UKIDSS/GCS data. The additional golden dots mark the brown dwarf candidates identified in this work. The stellar masses, per the PARSEC (the black line) or the DUSTY models (the orange line), are indicated. Additional isochrones, those of Cond (the blue line) and BT-Settl (the green line), are also shown. (b) The Z vs. $Z-K$ CMD, using the same symbols as in (a). One source marked as a purple triangle in (a) does not appear here because of no detection at Z. For display clarity, only one in every five field stars (as gray dots), selected randomly, is shown.
versus $J-K s$ CMD. They are hence likely background giants; as such, phot-d, which is valid for dwarfs only, would underestimate the distances. At the moment we do not have an effective method to remove these individual contaminants from the member list, except by statistical subtraction by the control sample.

There are individual objects considered as member candidates in the literature but outside the 5° radius. A total of 15 have been reaffirmed by our analysis, including, for example, 31 Com, presented above as a post-main-sequence member (Section 3.1), and two reported by Kraus \& Hillenbrand (2007): HD 111878 with a Gaia distance 85.1 pc , and HD 109390 at 120.1 pc (close to the limit of our distance range). This selected sample is spatially incomplete and thus is not included in further analysis, but is listed in Table 3 for reference, with the same table format as in Table 2, except with no last column because all data are from 2MASS and Gaia/DR2.

For potential usefulness, we also summarize in Table 5 the literature candidates rejected by our selection. The table is in a two-column format arranged in ascending R.A. order. For each star, the coordinates, references for candidacy, and an offending code in our analysis are given: $1=$ rejection by proper motions, $2=$ rejection by CMD, $4=$ rejection by distance. The code is additive, so, for example, a literature candidate that has consistent proper motions but is inconsistent with being a member in CMD position and in distance has a code $=6$.

3.4. Brown Dwarf Members

Any member fainter than $Z=17.3 \mathrm{mag}$ has a mass less than $0.08 M_{\odot}$, and is therefore a brown dwarf. There are several lines of evidence to further substantiate its brown dwarf nature. First, late-M, L, and T dwarfs are known to have UKIDSS colors different from those of field stars (Hewett et al. 2006), and all our brown dwarf candidates indeed have colors, shown in Figure 11, consistent with being M- or L-type objects. Second, all these candidates have spectral types estimated by phot- d as being brown dwarfs.

Moreover, while very-low-mass objects have distinctly red $W 1-W 2$ colors (Kirkpatrick et al. 2011) owing to the lack of methane absorption at $W 2(4.6 \mu \mathrm{~m})$ relative to the flux at $W 1$ $(3.4 \mu \mathrm{~m})$, their $W 3(12 \mu \mathrm{~m})$ and $W 4(22 \mu \mathrm{~m})$ fluxes often fall below the sensitivity limits of WISE unless they are located in the solar vicinity (see, for example, Scholz et al. 2011).

Among the efforts to identify brown dwarfs in Coma Ber, the spectroscopic study by Casewell et al. (2014) led to confirmation of an M9 (their cbd34, R.A. $=12: 23: 57.37$, decl. $=+24: 53: 29.0, \quad \mathrm{~J} 2000, \quad J=15.94 \mathrm{mag}$), an $\mathrm{L} 1 \quad$ (their cbd67, \quad R.A. $=12: 18: 32.71, \quad$ decl. $=+27: 37: 31.3, \quad$ J2000, $J=17.68 \mathrm{mag}$), and an L2 (their cbd40, R.A. $=12: 16: 59.89$, decl. $=+27: 20: 05.5, \quad \mathrm{~J} 2000, \quad J=16.30 \mathrm{mag}), \quad$ among which cbd40 was stripped of its membership on the basis of its brightness and colors. Our candidate list includes cbd34 but not cbd67, which satisfies neither the proper motion nor the photometric criterion, and is therefore a field brown dwarf. West et al. (2011) compiled a catalog of spectroscopic M dwarfs on the

Figure 10. Color-magnitude diagrams for literature candidates in (a) 2MASS J vs. $J-K_{s}$ and (b) UKIDSS/GCS Z vs. $Z-K$. Data include those from (Trumpler 1938, in plus symbols), Casewell et al. (2006, open circles) Kraus \& Hillenbrand (2007, in cross), Mermilliod et al. (2008, open diamonds), Melnikov \& Eislöffel (2012, in open triangles), Gaia Collaboration et al. (2017, dots), and Casewell et al. (2005, their BD candidates, star symbols). Also plotted are lines depicting evolutionary models of PARSEC (in black), Dusty (in orange), Cond (in blue), BT-Settl (in green), and an empirical dwarf sequence from Kraus \& Hillenbrand (2007, in orange). The stellar masses according to PARSEC or Dusty are labeled. For display clarity, only one in every five UKIDSS field stars (as gray dots), selected randomly, is shown.
basis of the Sloan Digital Sky Survey DR7. Among the M dwarfs in our cluster region, 10 satisfy our selection criteria of proper motions, CMD, and distance, and indeed have been included in our list.

Table 4 summarizes the properties of the substellar objects, a subset of the member candidates in Table 2. Following the same identification numbers as in Table 2 in the first column, the next columns list, respectively, the coordinates, UKIDSS Z, Y, J, H, and $K 1$ magnitudes, and then the UKIDSS proper motions. The last two columns compare the spectral type determined with spectroscopy, as reported in the literature or observed by us, and the spectral type estimated with phot-d. In general, the spectral typing with phot-d is in agreement within $1-2$ subtypes with observations. This gives us confidence in our phot-d method. The first six sources in Table 4 are all of late-M types known in the literature (West et al. 2011; Casewell et al. 2014), and we have confirmed their membership. The M9 objects, namely Nos. 176, 55, and 130, were the coolest known members in Coma Ber before our work.

In Table 4 there are a few miscellaneous objects, A, B, and C , that are not classified as member candidates but are worth clarification. Stars A and B have similar infrared colors (from Z to WISE W2) as those of known brown dwarfs, as seen in the two-color diagrams shown in Figure 11. Yet, at shorter wavelengths object A has PS1 measurements $g_{P 1}=19.97$ mag, $r_{P 1}=18.73 \mathrm{mag}$, and $i_{P 1}=17.61 \mathrm{mag}$, and object B has $g_{P 1}=20.55 \mathrm{mag}, r_{P 1}=19.30 \mathrm{mag}$, and $i_{P 1}=18.03 \mathrm{mag}$. Compared with the mean values and standard deviation of
the M-type brown dwarfs in Table $4, g_{P 1}=21.51 \pm 0.56 \mathrm{mag}$, $r_{P 1}=21.94 \pm 0.19 \mathrm{mag}$, and $i_{P 1}=19.54 \pm 0.32 \mathrm{mag}$, the two stars stand out as significantly brighter. The phot-d analysis suggests both to be of early-M types. While the binarity of a hot plus a cold component may explain the brightness inconsistency, we do not have evidence at the moment as to the nature of either star.

Object C has JHK magnitudes and proper motions consistent with being substellar, but has Z and Y magnitudes below the UKIDSS/GCS limits. It is the only source in the table that has been clearly detected not only in $W 1$ and $W 2$, but also in $W 3$ and $W 4$ (see Figure 12.) It is likely a galaxy.

3.4.1. Follow-up Spectroscopy

Confirmation spectra of the brown dwarf candidates were acquired with Palomar/TripleSpec or with Gemini/GNIRS. Three targets, No. 159, A, and B, were observed using TripleSpec (Herter et al. 2008) on 2016 December 14, with a slit width $1^{\prime \prime}$. The sky was clear and the observations were executed at an airmass of about 1.20. The standard A-B-B-A nodding sequence was followed along the slit to record target and sky spectra. The exposure time per pointing was 300 s , with a total integration of 1200 s for each target. Flat-fields and argon lamp spectra were taken after every set of target observations. A nearby A0 V star was observed for each target for telluric correction, as well as for flux calibration.

SPEXTOOL package version 4.1 (Vacca et al. 2003; Cushing et al. 2004) has been used for processing of the

Table 2
Candidate Members of Coma Ber

No. (1)	R.A. (2000) (deg) (2)	Decl. (2000) (deg) (3)	J (mag) (4)	$\begin{gathered} \text { Jerr } \\ (\mathrm{mag}) \end{gathered}$	H (mag) (6)	Herr (mag) (7)	Ks (mag) (8)	Kserr (mag) (9)	$\begin{gather*} \hline \mu_{\alpha} \cos \delta \\ \text { mas } \mathrm{yr}^{-1} \\ (10) \tag{5} \end{gather*}$	$\begin{gathered} \mu_{\delta} \\ \operatorname{mas} \mathrm{yr}^{-1} \\ (11) \end{gathered}$	$\begin{gathered} \Delta \mu \\ \operatorname{mas} \mathrm{yr}^{-1} \\ (12) \end{gathered}$	Dist (pc) (13)	Ref. ${ }^{\text {a }}$ (14)	Data ${ }^{\text {b }}$ (15)
Distance by Parallax														
1	181.09398	24.02144	12.787	0.002	12.297	0.001	11.962	0.001	-12.3	-9.4	0.2	85.4	c	3
2	181.09694	24.82066	8.750	0.023	8.414	0.018	8.343	0.019	-12.5	-9.9	0.1	82.4	cf	1
3	181.36050	26.33820	10.524	0.031	9.871	0.031	9.676	0.035	-3.8	-17.8	0.1	74.1		1
4	181.36131	26.33937	10.783	0.022	10.152	0.018	9.937	0.019	-4.9	-20.6	0.1	73.9		1
5	181.38475	22.90031	13.488	0.002	12.966	0.002	12.656	0.002	-7.8	-12.5	0.2	92.8		3
6	181.39774	25.02538	15.531	0.007	14.980	0.007	14.477	0.008	-12.9	-9.7	1.1	87.7		3
7	181.53316	24.35440	12.719	0.022	12.118	0.021	11.864	0.020	-11.3	-17.4	0.2	119.0		1
8	181.63802	23.86454	13.482	0.027	12.958	0.032	12.592	0.025	-12.4	-9.6	0.2	84.4	c	1
9	181.79992	26.06119	13.116	0.024	12.572	0.023	12.278	0.022	-12.2	-9.2	0.2	84.3	c	1
10	181.92396	24.21646	9.959	0.022	9.332	0.022	9.177	0.017	-9.3	-8.7	0.1	93.4	c	1
11	181.99044	25.58648	9.534	0.022	9.028	0.019	8.906	0.017	-9.9	-8.3	0.2	92.7	cf	1
12	182.03835	24.72508	13.279	0.024	12.711	0.023	12.374	0.023	-11.7	-8.0	0.3	85.2	c	1
13	182.37284	29.32707	10.790	0.019	10.126	0.021	9.913	0.017	-17.4	-15.4	0.3	94.8		1
14	182.67053	26.42563	14.321	0.004	13.802	0.003	13.352	0.003	-11.3	-8.3	0.6	82.0		3
15	182.69202	27.28147	5.659	0.029	5.668	0.031	5.600	0.033	-12.4	-9.5	0.2	86.9	ab	1
16	182.78072	25.99015	8.387	0.023	8.115	0.017	8.073	0.033	-11.9	-9.3	0.1	86.8	bcf	1
17	182.89646	29.37899	9.575	0.022	9.053	0.027	8.979	0.024	-11.8	-8.8	0.1	89.3	cf	1
18	182.94819	24.87139	13.938	0.003	13.075	0.003	-12.3	-10.3	0.2	83.8	c	3
19	183.10368	27.38006	7.274	0.024	7.130	0.021	7.082	0.021	-12.2	-9.4	0.1	85.7	abc	1
20	183.17821	25.22843	13.406	0.022	12.835	0.026	12.518	0.025	-11.8	-7.9	0.2	88.4	c	1
21	183.22177	26.25037	9.577	0.018	9.106	0.016	8.990	0.018	-12.1	-9.5	0.1	86.3	bcf	1
22	183.33962	23.37229	12.619	0.023	12.053	0.023	11.821	0.022	4.3	-10.3	0.1	99.0		1
23	183.43287	22.88796	7.211	0.027	7.052	0.017	6.990	0.033	-13.5	-8.4	0.2	86.6	cdf	1
24	183.44299	30.34077	13.582	0.027	13.012	0.033	12.681	0.026	-11.2	-19.3	0.7	99.8		1
25	183.61048	23.23399	11.806	0.024	11.244	0.031	10.972	0.022	-11.3	-8.9	0.1	91.0		1
26	183.81815	29.35072	12.506	0.021	11.952	0.021	11.684	0.018	-11.8	-9.3	0.1	87.4	c	1
27	183.88110	25.06697	13.022	0.021	12.423	0.020	12.159	0.023	-12.1	-9.1	0.2	88.4	c	1
28	184.00348	28.09662	11.077	0.024	10.525	0.033	10.240	0.018	-10.9	-7.7	0.6	86.8	bc	1
29	184.03485	25.76034	7.232	0.026	7.117	0.047	7.036	0.017	-12.2	-10.5	0.1	85.3	abcf	1
30	184.09773	28.41948	13.866	0.026	13.263	0.027	13.010	0.027	-10.4	2.0	0.3	85.2	ce	1
31	184.15536	26.89944	12.225	0.022	11.680	0.024	11.420	0.018	-12.3	-9.4	0.1	86.8	bc	1
32	184.17173	26.77747	13.141	0.020	12.563	0.024	12.301	0.023	-11.7	-10.4	0.2	85.9	ce	1
33	184.33914	25.48123	13.274	0.023	12.671	0.023	12.394	0.021	-11.9	-8.3	0.2	87.3	ce	1
34	184.42752	30.98329	12.900	0.002	12.389	0.001	12.054	0.001	-21.8	-13.6	0.1	81.1		3
35	184.46208	25.57132	7.086	0.018	6.982	0.024	6.928	0.017	-11.3	-9.6	0.1	89.4	abcf	1
36	184.55316	26.82093	12.016	0.022	11.459	0.021	11.153	0.020	-11.0	-6.3	0.7	78.0	bc	1
37	184.59100	25.40361	14.498	0.004	13.623	0.004	-13.6	-9.9	0.4	82.4	e	3
38	184.59132	27.74508	12.992	0.024	12.392	0.030	12.181	0.018	-12.2	-9.8	0.2	83.9	c	1
39	184.65070	23.12004	7.635	0.019	7.386	0.023	7.303	0.020	-15.0	-10.5	0.6	85.7	abcf	1
40	184.75610	24.84615	7.837	0.056	7.555	0.036	7.537	0.018	-16.2	-14.3	0.2	85.0	abc	1
41	184.75839	26.00832	6.082	0.026	6.004	0.049	5.981	0.023	-12.5	-8.5	0.3	86.4	abf	1
42	184.81311	28.28071	12.385	0.029	11.769	0.030	11.522	0.022	-3.0	-15.6	0.1	110.6		1
43	184.82992	23.03464	5.948	0.021	5.969	0.021	5.908	0.020	-12.6	-9.6	0.1	85.4	abf	1
44	184.86810	24.28422	7.867	0.019	7.557	0.044	7.492	0.027	-12.8	-2.9	0.3	83.8	abcf	1
45	184.90816	26.57905	12.776	0.029	12.239	0.033	11.917	0.023	-16.6	-9.6	0.7	87.9	bc	1
46	184.96089	28.46432	6.209	0.019	6.192	0.034	6.135	0.024	-12.3	-9.0	0.1	85.6	abf	1
47	184.96843	31.16615	15.278	0.006	14.718	0.006	14.284	0.006	-11.9	-10.6	0.8	80.0		3
48	185.06034	25.43537	12.214	0.001	11.464	0.001	-11.8	-8.7	0.1	92.4	c	3
49	185.16139	29.65041	12.392	0.024	11.790	0.028	11.502	0.025	-7.7	-23.4	0.2	65.4		1
50	185.16438	29.64768	11.495	0.022	10.871	0.028	10.633	0.025	-7.8	-23.9	0.1	65.6		1
51	185.18983	25.76584	7.974	0.021	7.740	0.033	7.649	0.026	-12.2	-8.3	0.1	84.4	abcf	1
52	185.31501	26.15388	9.614	0.019	9.087	0.024	8.972	0.020	-11.8	-9.4	0.1	84.9	bcdf	1
53	185.36137	24.99700	6.792	0.020	6.742	0.026	6.664	0.017	-12.0	-9.5	0.1	87.7	abf	1
54	185.41950	27.13081	10.712	0.023	10.125	0.025	9.887	0.019	-11.8	-8.9	0.1	87.3		1
55	185.42258	21.68386	15.651	0.008	15.119	0.009	14.661	0.011	-10.6	-8.2	1.3	102.4		3
56	185.45422	26.54907	8.214	0.026	7.863	0.027	7.857	0.027	-12.5	-8.1	0.1	86.5	abcf	1
57	185.48395	27.30948	7.565	0.024	7.399	0.042	7.325	0.020	-13.4	-9.0	0.1	85.3	abcf	1
58	185.55134	30.85934	13.940	0.028	13.344	0.026	13.030	0.028	-22.5	-14.0	0.3	77.5		1
59	185.56031	25.44897	13.980	0.028	13.397	0.032	13.080	0.024	-11.6	-9.5	0.3	87.3	ce	1
60	185.60311	22.46410	7.604	0.019	7.394	0.018	7.387	0.020	-11.8	-9.9	0.1	85.7	abcf	1
61	185.62626	25.84614	3.781	0.254	3.401	0.216	3.236	0.244	-10.8	-9.5	0.5	84.5	ab	1

Table 2
(Continued)

No. (1)	R.A. (2000) (deg) (2)	Decl. (2000) (deg) (3)	$\begin{gathered} J \\ (\mathrm{mag}) \\ (4) \end{gathered}$	$\begin{gathered} \text { Jerr } \\ (\mathrm{mag}) \\ (5) \end{gathered}$	$\begin{gathered} H \\ (\mathrm{mag}) \\ (6) \end{gathered}$	Herr (mag) (7)	$\begin{gathered} K s \\ (\mathrm{mag}) \\ (8) \end{gathered}$	Kserr (mag) (9)	$\begin{gather*} \mu_{\alpha} \cos \delta \\ \text { mas } \mathrm{yr}^{-1} \\ (10) \tag{12}\\ \hline \end{gather*}$	$\begin{gathered} \mu_{\delta} \\ \operatorname{mas} \mathrm{yr}^{-1} \\ (11) \end{gathered}$	$\begin{gathered} \Delta \mu \\ \operatorname{mas} \mathrm{yr}^{-1} \end{gathered}$	Dist (pc) (13)	Ref. ${ }^{\text {a }}$ (14)	Data ${ }^{\text {b }}$ (15)
62	185.63074	25.82848	7.406	0.029	7.150	0.026	7.024	0.018	-5.0	-5.4	1.2	66.2	a	1
63	185.66225	27.77868	14.418	0.004	13.904	0.003	13.524	0.004	-11.8	-8.3	0.4	90.2	ce	3
64	185.75796	21.56379	12.469	0.024	11.874	0.023	11.661	0.020	-23.2	-0.9	0.1	118.1		1
65	185.76285	22.13122	11.863	0.022	11.294	0.022	11.078	0.020	-1.4	-22.6	0.1	79.8		1
66	185.78496	25.85135	8.027	0.020	7.762	0.021	7.685	0.023	-12.3	-8.7	0.3	87.7	abcf	1
67	185.80006	23.93748	12.204	0.022	11.614	0.022	11.384	0.018	-11.7	-9.1	0.2	89.9	bc	1
68	185.80644	26.03844	12.025	0.020	11.519	0.016	11.226	0.019	-14.9	-12.0	0.5	81.7	c	1
69	185.86747	25.89440	9.920	0.022	9.354	0.022	9.260	0.020	-12.0	-9.8	0.1	86.2	bcd	1
70	185.92082	26.97991	7.461	0.021	7.334	0.080	7.253	0.021	-12.2	-7.9	0.1	87.5	abcf	1
71	185.92423	26.60147	8.137	0.023	7.791	0.033	7.739	0.020	-13.0	-9.5	0.2	92.4	abcf	1
72	185.94668	23.24565	9.677	0.021	9.129	0.022	9.018	0.018	-12.6	-10.0	0.1	85.1	bf	1
73	185.95401	24.13215	10.474	0.024	9.880	0.030	9.674	0.019	-17.9	-10.9	0.4	85.9	c	1
74	185.98129	23.41443	11.591	0.020	10.995	0.023	10.775	0.017	-11.3	-9.3	0.1	88.2	bc	1
75	186.01438	25.85121	6.179	0.024	6.075	0.047	6.054	0.018	-13.0	-5.9	0.5	95.0	ab	1
76	186.02385	26.12857	9.080	0.027	8.762	0.065	8.611	0.021	-11.7	-9.0	0.1	88.9	acd	1
77	186.04529	23.99336	12.266	0.021	11.664	0.020	11.452	0.018	-12.8	-9.0	0.1	82.4	bc	1
78	186.04673	26.88793	10.921	0.031	10.265	0.030	10.058	0.018	-11.3	-9.4	0.1	86.3		1
79	186.07718	26.09857	4.930	0.037	4.943	0.063	4.896	0.023	-24.7	-10.0	0.5	86.7	ab	1
80	186.11157	25.58248	5.844	0.019	5.778	0.031	5.731	0.016	-9.4	-10.9	0.1	85.9	ab	1
81	186.12976	25.08834	14.777	0.005	14.242	0.004	13.902	0.005	-21.9	-21.2	0.4	90.1	ce	3
82	186.18144	30.29726	11.423	0.023	10.801	0.028	10.601	0.022	-11.7	-10.3	0.1	85.3	c	1
83	186.25937	25.56064	7.051	0.018	6.849	0.016	6.762	0.031	-12.6	-8.2	0.1	87.1	abcf	1
84	186.26095	26.71060	11.621	0.019	11.028	0.016	10.791	0.020	-11.3	-8.8	0.1	84.0	bc	1
85	186.34369	23.22904	7.644	0.024	7.480	0.027	7.392	0.018	-11.2	-10.8	0.1	86.5	abf	1
86	186.35434	23.84796	10.715	0.020	10.072	0.020	9.873	0.017	-11.9	-7.6	0.1	89.2	c	1
87	186.46641	26.77665	7.411	0.024	7.303	0.059	7.205	0.026	-13.4	-8.6	0.1	86.3	abcf	1
88	186.47588	26.86073	11.984	0.022	11.389	0.028	11.143	0.020	-11.5	-7.8	0.1	87.7	c	1
89	186.50104	24.15579	10.979	0.021	10.356	0.029	10.142	0.025	-11.6	-6.6	0.1	86.7	bc	1
90	186.53527	24.65868	11.863	0.021	11.279	0.030	11.026	0.025	-11.8	-9.3	0.1	83.5	c	1
91	186.60021	27.26820	4.409	0.240	4.235	0.194	4.149	0.036	-16.0	-13.4	0.5	81.6	ab	1
92	186.66775	27.31204	12.462	0.022	11.896	0.029	11.672	0.025	-13.5	-9.2	0.2	81.8	c	1
93	186.71256	26.26715	9.855	0.022	9.275	0.026	9.156	0.020	-12.1	-8.0	0.1	86.0	bcdf	1
94	186.73599	22.67396	11.556	0.020	10.951	0.022	10.715	0.017	-11.0	-8.3	0.1	87.4	c	1
95	186.74702	26.82568	4.796	0.192	4.727	0.020	4.649	0.024	-11.5	-9.2	0.6	85.7	ab	1
96	186.76784	25.68371	13.946	0.030	13.395	0.040	13.026	0.030	-13.6	-5.9	1.1	100.0	c	1
97	186.77604	26.84567	8.642	0.037	8.327	0.026	8.246	0.036	-12.9	-7.8	0.3	89.6	abcf	1
98	186.83616	23.32981	8.912	0.021	8.537	0.021	8.451	0.017	-12.4	-9.1	0.1	84.0	bcf	1
99	186.90981	25.91208	6.285	0.023	6.222	0.027	6.226	0.017	-12.2	-9.3	0.1	84.4	abf	1
100	186.95118	28.19438	8.436	0.023	8.050	0.046	8.050	0.023	-13.4	-9.4	0.1	81.8	bcf	1
101	187.01885	24.35210	12.392	0.023	11.835	0.032	11.579	0.021	-12.0	-9.3	0.1	84.3	bc	1
102	187.03613	24.96473	12.507	0.026	11.903	0.031	11.666	0.023	-3.3	-17.7	0.1	100.0		1
103	187.08792	28.04054	8.943	0.024	8.472	0.044	8.465	0.027	-12.7	-9.0	0.1	83.2	bcf	1
104	187.11487	28.56222	12.284	0.022	11.709	0.028	11.471	0.023	-12.8	-8.4	0.1	86.3	c	1
105	187.14427	29.54501	14.337	0.004	13.835	0.003	13.467	0.003	-12.1	-8.8	0.3	85.3	c	3
106	187.15893	26.22693	6.137	0.052	6.022	0.029	5.994	0.017	-7.8	-10.2	0.2	86.4	abf	1
107	187.18560	25.89926	6.165	0.026	6.100	0.024	6.056	0.023	-22.3	-17.1	0.2	73.3	ab	1
108	187.22784	25.91280	5.221	0.020	5.297	0.034	5.289	0.017	-23.5	-15.6	0.4	73.9	ab	1
109	187.23505	26.54925	9.208	0.026	8.768	0.031	8.661	0.023	-12.9	-9.2	0.1	84.3	bcd	1
110	187.24021	27.78009	10.989	0.023	10.349	0.028	10.185	0.022	-13.8	-4.9	0.1	105.7	bc	1
111	187.33392	24.74286	13.553	0.026	12.984	0.032	12.679	0.021	-12.3	-8.4	0.2	82.0	c	1
112	187.33491	28.43433	13.025	0.023	12.426	0.033	12.214	0.020	-12.0	-8.4	0.2	89.9	c	1
113	187.35376	21.78045	10.714	0.023	10.048	0.028	9.881	0.021	-12.1	-9.8	0.1	82.5		1
114	187.42048	24.52071	8.202	0.019	7.841	0.047	7.725	0.029	-11.2	-8.6	0.1	87.9	abcf	1
115	187.52024	24.04274	11.774	0.022	11.182	0.016	10.937	0.019	-12.0	-8.7	0.1	88.0	bc	1
116	187.69229	23.76363	12.718	0.024	12.167	0.030	11.910	0.022	-14.7	-9.8	0.1	110.0	b	1
117	187.73906	22.77080	11.245	0.021	10.645	0.029	10.420	0.021	-12.4	-9.3	0.1	82.5	bc	1
118	187.75230	24.56715	5.293	0.037	5.308	0.027	5.269	0.017	-12.4	-9.7	0.4	83.4	ab	1
119	187.76286	27.73031	7.612	0.019	7.463	0.055	7.404	0.018	-12.4	-8.6	0.1	86.2	abcf	1
120	187.78398	24.27641	14.402	0.004	13.869	0.003	13.460	0.003	-14.0	-8.4	0.4	83.7	c	3
121	187.86551	25.39438	11.438	0.023	10.842	0.030	10.634	0.020	-12.0	-8.6	0.1	84.0	bc	1
122	187.90212	24.87421	13.452	0.026	12.878	0.028	12.594	0.025	-11.8	-9.0	0.2	86.6	ce	1
123	187.96062	29.31413	6.847	0.027	6.745	0.057	6.654	0.020	-10.9	-6.2	0.1	83.6	bf	1

Table 2
(Continued)

No. (1)	R.A. (2000) (deg) (2)	Decl. (2000) (deg) (3)	$\begin{gathered} J \\ (\mathrm{mag}) \\ (4) \end{gathered}$	Jerr (mag) (5)	$\begin{gathered} H \\ (\mathrm{mag}) \\ (6) \end{gathered}$	Herr (mag) (7)	$\begin{gathered} K s \\ (\mathrm{mag}) \\ (8) \end{gathered}$	Kser (mag) (9)		$\begin{gathered} \mu_{\delta} \\ \operatorname{mas} \mathrm{yr}^{-1} \\ (11) \end{gathered}$	mas y mas yr (12)	Dist (pc) (13)	Ref. ${ }^{\text {a }}$ (14)	Data ${ }^{\text {b }}$ (15)
124	188.18704	23.41905	6.836	0.029	6.720	0.044	6.659	0.020	3.7	-3.1	0.1	104.2		1
125	188.25256	27.71240	9.470	0.030	8.940	0.030	8.866	0.018	-13.0	-9.9	0.1	82.3	bcdf	1
126	188.33335	22.40649	8.855	0.019	8.470	0.023	8.402	0.020	-10.3	-7.4	0.1	83.9	cf	1
127	188.36980	26.44913	15.029	0.006	14.500	0.005	14.236	0.007	-20.6	-6.0	1.1	101.0		3
128	188.39255	24.28296	6.032	0.030	5.988	0.031	5.989	0.026	-11.9	-9.0	0.1	86.7	abf	1
129	188.42545	25.94274	9.031	0.029	8.601	0.036	8.584	0.020	-16.4	-9.7	0.1	90.2	cf	1
130	188.46503	31.11809	15.593	0.007	15.048	0.007	14.545	0.007	-11.3	-8.6	0.9	86.3		3
131	188.63078	25.75006	10.249	0.019	9.577	0.027	9.395	0.020	-13.2	-9.3	0.4	84.3	c	1
132	188.68958	27.38686	14.217	0.003	13.703	0.002	13.324	0.004	-12.9	-9.4	0.2	81.5	c	3
133	188.71789	25.15673	10.893	0.023	10.289	0.028	10.058	0.020	-16.7	-7.3	0.3	87.5	c	1
134	188.72619	27.45559	7.897	0.029	7.583	0.040	7.510	0.020	-16.6	-10.0	0.6	120.0	bc	1
135	188.82267	24.46504	11.142	0.023	10.508	0.028	10.309	0.022	-11.7	-7.8	0.1	89.9	c	1
136	188.89199	25.01716	13.446	0.027	12.882	0.032	12.621	0.026	-12.3	-8.4	0.2	84.8	c	1
137	188.96796	27.84477	13.851	0.027	13.228	0.032	12.955	0.028	-11.8	-8.5	0.2	88.3		1
138	189.03665	29.80297	12.371	0.022	11.759	0.029	11.535	0.021	-11.4	-10.3	0.2	84.5	c	1
139	189.31846	30.06635	15.147	0.006	14.630	0.006	14.276	0.006	-2.7	5.3	0.4	119.8		3
140	189.48458	25.86257	11.491	0.024	10.893	0.033	10.684	0.021	-12.7	-9.0	0.1	85.6	c	1
141	189.54769	23.55611	10.776	0.022	10.163	0.023	9.963	0.020	-12.0	-10.3	0.1	87.3		1
142	189.69180	26.31618	13.257	0.026	12.625	0.032	12.393	0.024	-12.2	-8.6	0.2	89.1	c	1
143	190.19120	27.20596	12.407	0.029	11.849	0.032	11.586	0.024	-12.8	-8.5	0.1	85.4	c	1
144	190.66186	25.16037	11.298	0.020	10.689	0.021	10.460	0.018	-11.3	-7.5	0.1	90.3	c	1
145	190.77738	24.25476	12.240	0.020	11.653	0.021	11.414	0.018	-12.2	-8.6	0.1	84.3	c	1
146	190.86251	23.99538	8.207	0.021	7.895	0.021	7.853	0.021	0.7	-4.2	0.1	88.3		1
147	190.89413	23.43523	13.495	0.003	12.957	0.002	12.684	0.002	-3.4	1.0	0.1	105.6		3
148	191.06186	23.45737	12.623	0.002	12.186	0.001	11.840	0.001	-25.8	-7.4	0.1	106.3		3
149	191.12490	24.93406	11.262	0.022	10.696	0.030	10.452	0.021	-12.2	-8.8	0.1	82.5		1
150	191.12880	28.16368	12.242	0.024	11.655	0.030	11.417	0.024	-12.7	-8.9	0.1	83.1	c	1
151	191.13160	25.78914	14.649	0.004	14.143	0.004	13.722	0.004	-12.2	-7.8	0.4	82.6		3
152	191.67721	25.40008	13.938	0.027	13.351	0.031	13.027	0.037	-11.9	-7.2	0.2	87.4	c	1
153	191.69063	24.98089	14.612	0.004	14.116	0.003	13.777	0.004	-7.4	-3.3	0.9	102.3		3
154	191.84451	24.76349	15.117	0.006	14.628	0.004	14.196	0.006	-11.8	-9.3	0.6	81.9		3
Distance by phot-d														
155	181.54707	26.83880	16.320	0.013	15.755	0.011	15.313	0.015	-14.8	-6.4	3.2	115.8		4
156	182.06965	27.51282	12.312	0.001	11.709	0.001	11.359	0.001	0.3	-11.4	2.8	104.6		4
157	182.16738	26.29052	16.088	0.011	15.486	0.008	15.078	0.013	-13.7	-23.5	3.2	$109.7^{\text {c }}$		4
158	182.76838	26.46638	14.833	0.005	14.242	0.003	13.918	0.004	-25.2	-8.1	2.9	$99.2^{\text {c }}$		4
159	182.81209	23.59442	16.787	0.020	16.109	0.013	15.499	0.014	-2.2	-9.1	6.9	$87.1{ }^{\text {c }}$		4
160	183.35818	21.50937	16.082	0.009	15.466	0.010	15.064	0.011	-17.5	-3.3	3.5	$109.1{ }^{\text {c }}$		4
161	183.48757	25.08627	9.797	0.020	9.130	0.014	9.071	0.013	-8.8	1.4	5.1	$103.0^{\text {c }}$		2
162	183.67470	26.49705	9.724	0.020	9.068	0.015	8.925	0.016	0.7	1.1	5.1	$79.4{ }^{\text {c }}$		2
163	184.51479	23.83123	10.725	0.022	10.054	0.020	9.938	0.018	-4.1	-6.7	5.2	$116.0^{\text {c }}$		2
164	184.55135	29.10878	10.232	0.022	9.540	0.022	9.396	0.020	-5.0	-10.7	5.5	$76.7^{\text {c }}$		2
165	184.60960	26.96763	12.921	0.029	12.329	0.036	12.070	0.022	-23.0	-17.5	5.9	80.2		2
166	184.61984	30.78003	10.680	0.026	9.980	0.030	9.844	0.022	-7.4	-12.8	6.0	$99.3{ }^{\text {c }}$		2
167	185.20981	22.08020	13.441	0.046	12.778	0.044	12.551	0.041	-24.5	-11.8	5.2	105.7		2
168	185.21537	23.32075	12.586	0.021	12.016	0.023	11.765	0.020	-1.8	-4.7	5.3	107.9		2
169	185.25005	21.91837	9.638	0.022	9.040	0.024	8.870	0.017	-1.2	-6.8	5.2	$72.6{ }^{\text {c }}$		2
170	185.31003	21.17550	10.633	0.021	9.910	0.022	9.780	0.018	-8.5	-1.7	5.2	$111.5{ }^{\text {c }}$	c	2
171	185.37505	23.18350	15.490	0.007	14.930	0.005	14.608	0.007	-5.5	-2.4	3.4	$92.0{ }^{\text {c }}$		4
172	185.55564	21.48469	14.834	0.005	14.265	0.004	13.937	0.005	-4.1	-15.9	3.4	$67.9^{\text {c }}$		4
173	185.71817	26.64010	9.777	0.027	9.263	0.032	9.115	0.021	-9.4	2.7	5.8	91.0	bc	2
174	185.74752	24.98287	9.396	0.027	8.811	0.044	8.674	0.019	-13.8	-7.9	5.8	$96.8{ }^{\text {c }}$	cd	2
175	185.79713	25.56805	10.430	0.018	9.735	0.016	9.591	0.019	-0.9	-6.9	5.1	$102.2{ }^{\text {c }}$		2
176	185.98912	24.89141	16.065	0.012	15.433	0.009	14.927	0.012	-17.1	-6.0	3.3	$75.5{ }^{\text {c }}$	e	4
177	186.69448	23.61378	10.303	0.022	9.645	0.020	9.514	0.017	-14.5	-17.9	5.2	$117.6^{\text {c }}$		2
178	186.85393	26.22864	10.770	0.024	9.999	0.029	9.860	0.020	-8.1	-5.7	5.9	$106.1^{\text {c }}$		2
179	187.63748	30.36935	12.303	0.001	11.663	0.001	11.439	0.001	-17.6	-12.1	2.5	111.8		4
180	187.83843	30.44276	13.445	0.023	12.906	0.030	12.623	0.021	-11.9	-9.4	5.5	109.4		2
181	187.89421	24.09135	11.948	0.021	11.318	0.028	11.091	0.021	-21.1	-19.2	6.0	51.1		2
182	188.02089	24.15844	15.424	0.006	14.866	0.006	14.653	0.010	1.9	-14.2	3.2	$98.3{ }^{\text {c }}$		4
183	188.33619	24.95474	10.794	0.030	10.123	0.032	9.927	0.020	-16.5	-16.6	5.9	52.8	c	2

Table 2
(Continued)

No. (1)	R.A. (2000) (deg) (2)	Decl. (2000) (deg) (3)	$\begin{gathered} J \\ (\mathrm{mag}) \\ (4) \end{gathered}$	Jerr (mag) (5)	$\begin{gathered} H \\ (\mathrm{mag}) \\ (6) \end{gathered}$	Herr (mag) (7)	$\begin{gathered} K s \\ (\mathrm{mag}) \\ (8) \end{gathered}$	Kserr (mag) (9)	$\begin{gathered} \mu_{\alpha} \cos \delta \\ \operatorname{mas~yr}{ }^{-1} \\ (10) \end{gathered}$	$\begin{gathered} \mu_{\delta} \\ \operatorname{mas} \mathrm{yr}^{-1} \\ (11) \end{gathered}$	$\begin{gathered} \Delta \mu \\ \text { mas } \mathrm{yr}^{-1} \\ (12) \end{gathered}$	Dist (pc) (13)	Ref. ${ }^{\text {a }}$ (14)	Data ${ }^{\text {b }}$ (15)
184	189.06597	23.41478	13.492	0.002	12.995	0.002	12.636	0.002	-8.3	1.9	3.0	71.4		4
185	189.07309	22.65018	9.640	0.020	9.069	0.031	8.882	0.014	-11.2	-7.4	5.5	$88.8{ }^{\text {c }}$		2
186	189.35725	27.17839	10.385	0.022	9.708	0.028	9.603	0.021	-6.1	-4.1	5.9	$109.5{ }^{\text {c }}$		2
187	189.80086	23.18844	13.490	0.023	12.866	0.022	12.602	0.024	-25.0	-14.2	4.9	$102.3{ }^{\text {c }}$		2
188	190.22918	23.83889	10.011	0.021	9.316	0.019	9.162	0.017	-5.4	-16.1	4.9	$92.8{ }^{\text {c }}$		2
189	190.37988	23.67833	15.170	0.006	14.673	0.004	14.304	0.006	-4.9	-3.2	3.4	117.8		4
190	190.41708	26.93449	8.852	0.018	8.346	0.038	8.278	0.020	-14.0	7.4	5.8	68.9		2
191	190.72371	24.91863	17.530	0.035	16.688	0.025	15.963	0.028	-16.6	-1.6	3.7	61.4		4
192	191.40753	24.84447	15.569	0.008	15.070	0.006	14.696	0.009	2.0	-11.9	3.2	$95.9^{\text {c }}$		4

Notes.
${ }^{\text {a (a) Trumpler (1938), (b) Casewell et al. (2006), (c) Kraus \& Hillenbrand (2007), (d) Mermilliod et al. (2008), (e) Melnikov \& Eislöffel (2012), (f) Gaia Collaboration }}$ et al. (2017), (g) Casewell et al. (2005).
${ }^{\mathrm{b}}$ (1) 2MASS photometry and Gaia/DR2 proper motions, (2) 2MASS photometry and URAT-1 proper motions, (3) UKIDSS/GCS photometry and Gaia/DR2 proper motions, (4) both photometry and proper motions are from UKIDSS/GCS.
c Gaia/DR2 parallax measurements with $\varpi / \Delta \varpi<10$.
(This table is available in machine-readable form.)

Table 3
Selected Literature Members beyond the 5° Radius Confirmed by This Work

No. (1)	R.A. (2000) (deg) (2)	Decl. (2000) (deg) (3)		$\begin{gathered} \hline \text { Jerr } \\ (\mathrm{mag}) \\ (5) \end{gathered}$		Herr (mag) (7)	$\begin{gathered} \hline K s \\ (\mathrm{mag}) \\ (8) \end{gathered}$	Kserr (mag) (9)	$\begin{gathered} \hline \mu_{\alpha} \cos \delta \\ \text { mas } \mathrm{yr}^{-1} \\ (10) \end{gathered}$	$\begin{gathered} \mu_{\delta} \\ \operatorname{mas} \mathrm{yr}^{-1} \\ (11) \end{gathered}$	$\begin{gathered} \Delta \mu \\ \text { mas yr }^{-1} \\ (12) \end{gathered}$	Dist (pc) (13)	Ref. ${ }^{\text {a }}$ (14)
1	177.15700	28.27510	9.02	0.026	8.63	0.029	8.59	0.02	-12.06	-9.36	0.09	89.29	f
2	178.88890	29.72820	9.69	0.022	9.19	0.022	9.06	0.017	-15.71	-9.67	0.11	90.45	f
3	179.31637	24.65142	12.05	0.024	11.44	0.024	11.2	0.023	-12.32	-10.85	0.14	84.31	c
4	179.72550	23.85242	12.21	0.02	11.65	0.024	11.38	0.018	-11.75	-8.79	0.17	91.18	c
5	179.77171	26.74294	11.22	0.019	10.58	0.019	10.37	0.019	-12.02	-8.79	0.06	89.33	c
6	180.61090	20.12300	8.65	0.018	8.39	0.034	8.31	0.02	-12.14	-7.95	0.08	90.26	f
7	184.47371	20.37667	12.33	0.021	11.72	0.022	11.5	0.018	-13.98	-8.02	0.30	82.26	c
8	184.62110	32.74890	6.13	0.019	6.05	0.024	6.02	0.016	-13.01	-9.28	0.13	83.66	f
9	188.12946	35.33119	8.41	0.019	8.13	0.023	8.09	0.018	-12.22	-10.34	0.07	83.61	df
10	188.52692	32.02686	7.28	0.02	7.06	0.02	7.02	0.023	-10.17	-11.71	0.08	120.14	c
11	191.77800	22.61680	7.32	0.032	7.08	0.038	7.03	0.017	-12.59	-8.92	0.10	83.30	f
12	192.92465	27.54068	3.629	0.292	3.367	0.218	3.26	0.286	-10.99	-8.31	0.34	87.01	bd
13	193.04837	25.37350	7.88	0.021	7.65	0.021	7.61	0.015	-11.47	-8.55	0.08	85.13	cdf
14	194.40350	28.97910	8.9	0.026	8.54	0.046	8.47	0.02	-11.57	-5.35	0.10	91.74	f
15	195.14658	23.65175	7.38	0.021	7.22	0.018	7.18	0.02	-11.97	-8.88	0.11	86.15	df

Note.
${ }^{\text {a }}$ (a) Trumpler (1938), (b) Casewell et al. (2006), (c) Kraus \& Hillenbrand (2007), (d) Mermilliod et al. (2008), (e) Melnikov \& Eislöffel (2012), (f) Gaia Collaboration et al. (2017).
data taken with TripleSpec, which includes the pre-processing, aperture extraction, and wavelength calibrations. The individual extracted and wavelength-calibrated spectra from a given sequence of observations, each with their own A0 standard star, were then scaled to a common median flux and combined using XCOMBSPEC in SPEXTOOL. The combined spectra were corrected for telluric absorption and fluxcalibrated using the respective telluric standards with XTELLCOR. All calibrated sets of observations of a given target were then median-combined to produce the final spectrum.
The spectra of candidates No. 191 and 160 were acquired by Gemini Fast Turnaround GN-2017B-FT-18, on 7 and on 11 December 2017, respectively, both under good sky conditions, using the cross-dispersed mode of GNIRS (Elias et al.

2006a, 2006b), covering $0.9-2.5 \mu \mathrm{~m}$ simultaneously with a resolving power $R \sim 1200$. The short blue camera with 32 lines $/ \mathrm{mm}$ grating was selected with a slit width $0!!45$ for No. 191 and 0 !" 675 for No. 160. The individual exposure time under the A-B-B-A nodding sequence was 150 s for No. 191, and 60 s for No. 160. Three sets of nodding sequence were observed for No. 191, and one set was taken for No. 160.

The GNIRS raw data were reduced by PyRAF using the Gemini and GRNIRS packages. We first cleaned the pattern noise, radiation events, flat-field, and sky-subtraction, then did the wavelength calibration by spectra of arc lamps. Each spectrum was extracted from the combined ABBA exposure files. Telluric absorption lines were removed with two A2 V standard stars (HIP 58297 and HIP 63006) observed before or after the observing run.

Figure 11. UKIDSS two-color diagrams of the M (green open circles), L (orange open squares), and T (purple open triangles) dwarfs in Hewett et al. (2006) in (a) $(Z-Y)$ vs. $(Y-J),(b)(Y-J)$ vs. $(J-H)$, and (c) $(J-H)$ vs. $(H-K)$ diagrams. The known M dwarfs from West et al. (2011) (i.e., our Nos. 6, 55,130 , 155 , and 157) are represented by black crosses; the M9 reported by Casewell et al. (2014; our No. 176) is marked as a blue diamond. The M brown dwarf and two L dwarfs found by this work are in black filled circles and in black pluses. Objects A and B are shown as thick red open circles, whereas object C, having no Z or Y detection, is marked with a golden star symbol.

Each reduced Palomar or Gemini 1D spectrum was then compared with the low-dispersion template spectra of brown dwarfs from SpeX (Rayner et al. 2003), from which the "best" match, judged by eye examination, was determined. Three candidates turned out to be bona fide substellar objects, with one late-M (No. 160), one early-L (No. 159), and one mid-L type (No. 191), shown in Figure 13. The classification was warranted by the characteristic absorption features due to methane/water near $1.4 \mu \mathrm{~m}$.
The Palomar/TripleSpec spectra for objects A and B are exhibited in Figure 14, together with template spectra from SpeX. Both spectra show the CN band feature near $1.1 \mu \mathrm{~m}$ characteristic of giants and supergiants (Loidl et al. 2001; Lançon et al. 2007). The Gaia measurements, however, yield $\varpi=2.5 \pm 0.2$ mas for star A, and $\varpi=2.6 \pm 0.3$ mas for star B , respectively, placing each at $\sim 400 \mathrm{pc}$. Their optical
brightness ($g_{P 1} \sim 20 \mathrm{mag}$) is hence consistent more with M dwarfs $\left(M_{V}=9-10 \mathrm{mag}\right)$ than with giants $\left(M_{V} \sim-0.3\right)$ (Cox 2000). Further spectroscopic observations are required to provide information on the nature of these two stars, such as, for example, whether they belong to the dwarf carbon population. In any case, neither of them is associated with the cluster.

4. Discussion

4.1. Age of Coma Ber

The age we derive for Coma Ber, $\sim 800 \mathrm{Myr}$, is based on the consistency of evolved members with model isochrones (see Section 3.1), for which no rotation is taken into account. Rotation affects the equations of stellar structure, and with elevated centrifugal force, acts to reduce the stellar mass,

Table 4
Brown Dwarf Members of Coma Ber and Miscellaneous Objects

No.	R.A. (deg)	Decl. (deg)	$\begin{gathered} Z \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} Y \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} J \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} H \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} \text { K1 } \\ (\mathrm{mag}) \end{gathered}$	$\begin{gathered} \mu_{\alpha} \cos \delta \\ \left(\mathrm{mas}_{\mathrm{yr}} \mathrm{yr}^{-1}\right) \end{gathered}$	$\begin{gathered} \mu_{\delta} \\ \left(\mathrm{mas} \mathrm{yr}^{-1}\right) \end{gathered}$	$\begin{aligned} & \text { Spectroscopy } \\ & (\mathrm{SpT}) \end{aligned}$	photo-type (SpT)
Brown Dwarf Members											
6	181.39774	$+25.02538$	17.3756	16.3825	15.5315	14.9799	14.4771	-12.9	-9.9	M $8^{\text {a }}$	M7
155	181.54707	+26.83880	18.0680	17.2021	16.3201	15.7545	15.3133	-11.3	-5.8	M $8^{\text {a }}$	M7
157	182.16738	+26.29052	17.5872	16.8390	16.0885	15.4859	15.0781	-10.2	-22.9	M8 ${ }^{\text {a }}$	M7
176	185.98912	+24.89141	18.0889	16.9529	16.0646	15.4329	14.9268	-13.5	-5.3	$\mathrm{M} 9{ }^{\text {b }}$	M9
55	185.42258	+21.68386	17.4297	16.5134	15.6511	15.1188	14.6610	-10.6	-8.2	M9 ${ }^{\text {a }}$	M7
130	188.46503	+31.11809	17.4072	16.4539	15.5926	15.0481	14.5452	-11.3	-8.6	M9 ${ }^{\text {a }}$	M9
159	182.81209	+23.59442	19.2019	18.0187	16.7868	16.1094	15.4987	1.4	-8.5	L2 ${ }^{\text {c }}$	L2
160	183.35818	+21.50937	17.6250	16.8178	16.0820	15.4655	15.0643	-13.9	-2.7	M $8^{\text {c }}$	M7
191	190.72371	+24.91863	20.2402	18.8068	17.5300	16.6876	15.9625	-13.0	-1.0	L4 ${ }^{\text {c }}$	L5

Miscellaneous Objects											
A	183.19468	$+25.50436$	17.7934	16.5876	15.9029	15.1508	14.9253	-13.0	2.1	MIII?	M1.5
B	188.90996	+23.19031	17.7026	16.8755	15.9585	15.4668	15.1479	-3.0	-7.7	MIII?	M3
C	186.48545	+22.78955	19.1199	17.4459	16.4182	-7.3	-4.6

Notes.

${ }^{\mathrm{a}}$ West et al. (2011).
${ }^{\text {b }}$ Casewell et al. (2014).
${ }^{\mathrm{c}}$ This work.
thereby prolonging the main-sequence lifetime and core helium burning phase (Kippenhahn et al. 1970). This age is older than the 400-600 Myr often quoted in the literature.

Lithium abundances have been measured for solar-type members in Coma Ber (Jeffries 1999; Ford et al. 2001), particularly in the context of convective mixing in stellar interior in terms of metallicity versus age, e.g., in comparison with stars of similar spectral types in the Hyades and Praesepe, or in the much younger Pleiades (see for example Ford et al. 2001). With an older age, it is not clear if the lithium depletion boundary is still applicable as a chronometer (Martín et al. 2018). In any case, our candidate list contains quite a number of solar-type or cooler members to shed light on the subject.

4.2. The Shape and Size of the Cluster

Adopting a distance 85 pc , the angular radius 5° of the cluster corresponds to a linear radius $\sim 7 \mathrm{pc}$, to be compared with the tidal radius of the cluster 6-7 pc (Casewell et al. 2006; Kraus \& Hillenbrand 2007). The Galactic distribution of our candidates, including those in Tables 2 and 3, is illustrated in Figure 15. Given the high Galactic latitude $\left(\ell \approx+84^{\circ}\right)$ position of the cluster, the distribution in the $X-Y$ plane, i.e., the top view on the Galactic plane, resembles what appears in the celestial sphere, e.g., in R.A. and decl. coordinates, for which members are concentrated within a linear extent about 15 pc n roughly circular shape. The effect of mass segregation is clearly manifest, namely, with more massive members (with larger-sized and lighter-shadowed symbols) concentrating more toward the center. The number of members is markedly reduced beyond a radius of $\sim 10 \mathrm{pc}$, indicative that the cluster is not more extended as projected in the sky than the sky coverage in our analysis.

However, the situation in the $X-Z$ plane, namely the side view of the plane, is different. The apparent cone shape from the bottom upward is the consequence of our pencil-beam view, and the longer extent in the Z direction results from our
analysis volume, as we started out with a larger distance range ($50-120 \mathrm{pc}$) to search for candidates than in the angular extent in the sky (within 5° radius of the UKIDSS/GCS coverage). That there are more distant sources beyond ~ 100 pc than nearby ones closer than $\sim 60 \mathrm{pc}$ is the consequence of the space volume effect, hence many must be false positives. The grouping between $Z \sim 65-95 \mathrm{pc}$ represents the cluster, with a linear size twice as extended as in the $X-Y$ plane, stretching toward the Galactic plane. Odenkirchen et al. (1998) reported a heliocentric space motion for the cluster $(U, V, W)=(-2.3$, $-5.5,-0.7) \mathrm{km} \mathrm{s}^{-1}$ with an error of $0.2 \mathrm{~km} \mathrm{~s}^{-1}$ in each component. As such, the motion of the cluster is primarily along V, i.e., in the Galactic rotation, and the cluster is almost at its highest location above the plane. The prolate spheroidal shape is likely the consequence of the tidal pull by the disk.

4.3. The Statistical Sample of Members

Analysis of the control field (see Section 3.2) with the same selection criteria led to 14 false positives. Considering the sky area of the control field relative to the cluster region, and assuming the same field distribution toward the cluster region as in the control field, this means out of the 192 candidates, there are roughly 44 field stars that coincidentally share the same ranges of proper motions, distances, and color-magnitude relation as true members, but are not physically associated with the cluster. Additional scrutiny of members against field stars in the same volume would have to rely on metallicity or chemical abundances, e.g., (Ford et al. 2001, by lithium abundances). For the faint sample, no control field is available because of the limit of the UKIDSS/GCS spatial coverage. After field subtraction for the bright sample, plus the entire faint candidate sample, there are 148 members. We emphasize that this is a statistical sample in the sense that out of the 196 candidates, there are 148 true members, but we do not know for sure individually which ones are true members. This is the sample we use to derive member statistics such as the luminosity function, mass function, total stellar mass, etc.

Table 5
Literature Candidates Rejected by Our Analysis

R.A. (deg)	Decl. (deg)	Ref. ${ }^{\text {a }}$	Rej. ${ }^{\text {b }}$	R.A. (deg)	Decl. (deg)	Ref. ${ }^{\text {a }}$	Rej. ${ }^{\text {b }}$
181.094000	24.021440	c	1	186.260417	26.717778	e	1
181.558040	26.780640	c	6	186.268333	23.699444	e	1
181.974620	25.929310	c	4	186.270417	25.312500	e	5
182.081080	21.082720	c	1	186.292250	27.662440	bc	4
182.301833	26.660806	bc	4	186.388750	24.356667	e	7
183.146080	27.494080	c	5	186.391667	25.241111	e	1
183.389280	27.472287	g	7	186.482333	29.127306	b	4
183.433042	27.311437	g	5	186.517083	24.314444	e	1
183.533920	22.840920	c	4	186.522833	26.743972	bc	6
183.582417	25.179611	b	7	186.600040	25.261940	c	6
183.599875	28.354611	b	4	186.655500	22.581500	b	4
183.820542	28.747222	b	4	186.722917	25.731944	e	1
183.824362	27.919314	g	5	186.753375	29.610528	b	2
183.891708	26.261917	bc	2	186.762917	28.546667	e	1
183.955417	27.326944	e	5	186.767917	25.682778	e	5
183.980833	26.949167	e	4	186.785667	27.023028	b	6
184.010417	28.048667	b	4	186.821250	26.355833	e	4
184.079540	26.927080	c	6	186.836565	27.169444	a	4
184.086667	25.306667	e	1	186.859500	24.782500	d	5
184.095167	24.316972	b	4	186.955184	27.991243	g	1
184.121708	23.542472	b	4	186.969417	25.095750	ad	2
184.206000	24.855861	d	5	187.027500	24.293333	e	5
184.233333	25.947778	e	1	187.042083	28.581111	-	1
184.249439	27.334819	g	1	187.067083	26.178889	e	5
184.309167	25.515278	e	3	187.106500	29.898444	d	4
184.335833	25.081667	e	1	187.114625	29.878417	d	7
184.356000	27.242310	c	2	187.142875	23.541833	b	4
184.417917	24.364444	e	5	187.157917	28.096389	e	1
184.434583	25.827778	e	1	187.161250	25.986944	b	6
184.439167	27.295556	e	1	187.181667	24.431111	e	4
184.449167	28.119722	e	5	187.188333	27.189167	e	1
184.461667	23.825278	e	5	187.208667	27.294917	b	6
184.496250	26.535000	e	3	187.270000	25.070000	e	5
184.561710	21.533000	c	4	187.305417	23.794167	e	1
184.574042	23.642444	b	4	187.362667	24.108917	b	7
184.611250	25.883560	c	1	187.375083	29.512722	b	4
184.636255	27.625217	g	7	187.417500	26.332222	e	1
184.677083	24.413333	e	1	187.425670	28.620750	c	6
184.712625	26.323444	d	1	187.436083	25.543194	d	1
184.720833	27.217222	e	1	187.558750	25.028417	ad	1
184.738625	25.886417	bcd	4	187.559167	24.635000	e	1
184.744583	26.058583	cd	2	187.611667	24.893611	e	1
184.771583	26.184556	d	3	187.674715	28.001458	g	7
184.785500	25.053222	d	6	187.695833	26.057500	e	5
184.811040	27.930640	c	2	187.751167	26.940306	b	4
184.817750	25.436250	ad	4	187.769917	24.262611	bc	2
184.889206	24.546867	g	7	187.855417	24.541111	e	1
184.945000	27.443611	e	1	187.964583	25.042778	e	1
185.023792	25.910222	d	4	187.989250	25.145139	bc	4
185.101250	25.139444	e	5	188.033708	28.901806	bc	4
185.112083	26.775556	e	5	188.049285	27.115717	g	7
185.131667	24.603889	e	6	188.115000	23.765833	e	1
185.150833	28.451944	e	2	188.157500	24.656944	e	5
185.151250	25.092778	e	5	188.257500	24.654444	e	4
185.185833	27.262500	e	1	188.375792	26.166694	bcd	4
185.226250	25.432222	e	1	188.376292	28.215528	b	4
185.260153	26.367863	g	1	188.380625	24.202528	b	5
185.328735	26.708572	g	5	188.383750	24.773056	e	5
185.337125	32.176444	d	1	188.393750	24.656111	e	1
185.383750	23.754722	e	1	188.475917	27.134639	cd	2
185.582500	25.290833	e	1	188.559250	28.378310	c	2
185.607583	25.317583	d	7	188.695542	24.160472	bcd	2
185.669375	25.669972	d	1	188.751375	30.192667	d	1

Table 5
(Continued)

| R.A.
 (deg) | Decl.
 (deg) | Ref. $^{\text {a }}$ | ${\text { Rej. }{ }^{\text {b }}}^{\text {Rej. }}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Notes.

${ }^{\text {a }}$ (a) Trumpler (1938), (b) Casewell et al. (2006), (c) Kraus \& Hillenbrand (2007), (d) Mermilliod et al. (2008), (e) Melnikov \& Eislöffel (2012), (f) Gaia Collaboration et al. (2017), (g) Casewell et al. (2005).
${ }^{\mathrm{b}}$ (1) Rejection by proper motion, (2) rejection by CMD, (4) rejection by distance (additive).

Figure 12. WISE $W 1$ to $W 4$ images, from left to right, of object C .

In studies of cluster membership, some researchers would assign a membership probability for each star, considering its location relative to the cluster center, proper motions, radial velocity, etc., and decide on a threshold probability for membership. As such, the probabilistic nature has to be taken into account when the total mass and the luminosity function are derived, e.g., a candidate with an 80% probability should have its mass weighted by 0.8 and be counted as 0.8 stars. The uncertainty arises, then, if a 0.8 star is really worth twice as much as a 0.4 star in derivation of cluster parameters. In contrast, our analysis exploits a control field to remove sample contaminations. The likelihood of a star being a member of the cluster region depends on the number of false positives in the control field. As seen in Figure 8, our member list is highly reliable for almost the entire bright sample, i.e., for candidates more massive than $\sim 0.1-0.2 M_{\odot}(J \lesssim 13 \mathrm{mag})$, with only a few false positives.

4.3.1. Luminosity Function and Mass Function

The cluster's J-band luminosity function is depicted in Figure 16. For the bright members, the luminosity function has been derived by subtraction of the J-magnitude distribution toward the cluster region by that toward the control field. The luminosity function at the faint end, lacking a control field, is given as is. This does not affect our result significantly because each of our substellar candidates has been examined spectroscopically, so contamination is expected to be low. Moreover, the unique colors at very low masses, e.g., in $Z-K$ in Figure 9, would result in little field confusion, hence creditable candidacy. The luminosity function derived in this work, therefore, is reliable except for $J=14-16 \mathrm{mag}$, which has not been corrected for field subtraction.

The J-band luminosity function of the cluster increases with magnitude up to $J \sim 12 \mathrm{mag}$, and falls off rapidly toward fainter magnitudes. In the K-band luminosity of Coma Ber

Figure 13. Spectra of candidates No. 159, 160, and 191. Also shown are brown dwarf template spectra: M5 (2MASS J01405263+0453302, Kirkpatrick et al. 2010); M7 (VB 8, Burgasser et al. 2008); M8 (VB 10, Burgasser et al. 2004); M9 (LHS2924, Burgasser \& McElwain 2006); L1 (2MASSW J2130446-084520, Kirkpatrick et al. 2010); L2 (Kelu-1, Burgasser et al. 2007); L3 (2MASSW J1506544+132106, Burgasser 2007); L4 (2MASS J21580457-1550098, Kirkpatrick et al. 2010); L5 (SDSS J083506.16+195304.4, Chiu et al. 2006); and L9 (DENIS-P J0255-4700, Burgasser et al. 2006)
derived by Casewell et al. (2006), they found a paucity around $K \sim 8-12 \mathrm{mag}$, but otherwise no difference fainter than $K \sim 12$ mag between the cluster and a controlled sample chosen by proper motions. Our results show no such shortfall.

The present-day mass function of Coma Ber is exhibited in Figure 17. We convert from the J magnitude to mass according to PARSEC, or, toward the fainter magnitudes, the AMESDusty model, based on the cluster luminosity function shown in Figure 16(b). The number of members increases in general from high toward low masses until about $0.3 M_{\odot}$, a phenomenon commonly seen in star clusters or associations (Bastian et al. 2010). A linear least-squares fit gives a slope, in the sense of $d N / d m=m^{-\alpha}, \alpha \approx 0.49 \pm 0.03$, if the two most massive bins for post-main-sequence objects with uncertain masses are excluded. This is close to the value reported by Kraus \&

Hillenbrand (2007) $\alpha=0.6 \pm 0.3$ for $0.1-1 M_{\odot}$, but much shallower than either the nominal Salpeter $\alpha=2.35$ initial mass function in the solar neighborhood for $1-10 M_{\odot}$, the present-day mass function of field \mathbf{M} dwarfs $\alpha \approx 1.3$ for $0.1-0.7 M_{\odot}$ (Reid et al. 2002), or, in nearby young star clusters or associations, $\alpha \approx 1.3 M_{\odot}$ (Hillenbrand \& White 2004).

Currently the statistics of the substellar population in star clusters are poorly constrained; less than a handful of stellar systems have been surveyed comprehensively, and even these may be subject to contamination. Furthermore, the age dependence (hence model dependence) of the spectral type with mass hampers derivation of a reliable substellar mass function. Melnikov \& Eislöffel (2012) derived a mass function with $\alpha \approx 0.6$ from $0.2 M_{\odot}$ to $0.14 M_{\odot}$, and $\alpha \approx 0$ toward lowermasses from $0.14 M_{\odot}$ to $0.06 M_{\odot}$. The sky area of their analysis,

Figure 14. Spectra of objects A and B, and template spectra of cool stars (Rayner et al. 2009). Both show the CN feature near $1.1 \mu \mathrm{~m}$ that is also seen in the giant and supergiant spectra.

Figure 15. The spatial distribution of member candidates in the Galactic (a) $X-Y$ coordinates, and (b) $X-Z$ coordinates. The size and shade of the circle symbol represent the mass and the J mag, respectively. The three spectroscopically confirmed brown dwarfs reported here are labeled. The one encircled with a dark boundary marks HD 109390, a member proposed by Kraus \& Hillenbrand (2007), but with a distance marginally outside our selection range (see Table 3).

Figure 16. (a) J-band magnitude distributions toward the cluster region (histogram in solid lines) and toward the control field (in dashed lines). No control field is available for the faint sample. (b) The cluster's luminosity function. It is derived after field subtraction for the bright sample. For $J=14-16$ mag, it is uncertain, and thus annotated by a question mark, because of no field subtraction. Fainter than $\sim J=16$ mag, field confusion is low, so the luminosity function is expected to be reliable.

Figure 17. The mass function derived by the cluster's J-band luminosity function exhibited in Figure 16(b), with mass estimated by the PARSEC or Dusty models. The data point around $0.1 M_{\odot}$, considered unreliable because of the uncertainty in the corresponding luminosity function, is labeled by a question mark.
~ 2.7 in radius, however, covered only part of the core of the cluster. Moreover, lacking a control sample, their member list could be considerably polluted. Among the five photometric brown dwarf candidates these authors proposed (their Table 2), F9 -1134 is not detected by UKIDSS/GCS; C3-250 satisfies the proper motion criterion, but has an inconsistent $Z-K$ color; both D3-1251, with $\left(\mu_{\alpha} \cos \delta \approx \mu_{\delta}\right) \approx-130 \mathrm{mas} \mathrm{yr}^{-1}$, and G1 -3083, with $\left(\mu_{\alpha} \cos \delta, \mu_{\delta}\right) \approx(-100,-79) \mathrm{mas}_{\mathrm{yr}}{ }^{-1}$, have too large proper motions as members. Only E3-5219 turns out to be an M9 member (Casewell et al. 2005, 2014), and also was recovered by us (No. 176).

For our sample, the mass function below $0.3 M_{\odot}$ declines monotonically with decreasing mass, and continues into the substellar regime, with a slope $\alpha=-1.69 \pm 0.14$, if the anomaly near $0.1 M_{\odot}$ corresponding to the unreliable bin in the luminosity function, is excluded. This contrasts with the flat slope that Kraus \& Hillenbrand (2007) found in Coma Ber, or Goldman et al. (2013) derived in Hyades, which is also an intermediate-age cluster (650 Myr Perryman et al. 1998). The slopes at the low masses have been found even to be positive in some very young star clusters (a few Mys), e.g., $\alpha=0.3-0.8$ for λ Orionis (Bayo et al. 2011), or $\alpha \sim 0.5$ for ρ Ophiuchi (Luhman \& Rieke 1999; Bastian et al. 2010). However, as we learn in our study, recognition of true members is susceptible to field confusion. The situation must be escalated in star-forming regions where dust extinction, often variable, becomes excessive.

4.3.2. Dynamical Status

In terms of the number of members, Coma Ber is definitely underpopulated. As presented above, of the 192 candidates we identified, 44 are likely field contaminations, leaving 148 members. On the one hand, there may be faint members in the UKIDSS/GCS void regions that were not found by us. On the other hand, the number of members must decrease if a control sample is available for the faint sample. Artyukhina \& Kholopov (1966) estimated a core radius of 2.6 pc and a halo radius of 7 pc , similar to those of the Pleiades and Praesepe, both of similar ages, but Coma Ber contains half the number of members in the core, with a relatively enriched halo population. Adopting the isochrone masses for the post-main-sequence members, the total mass of the 148 members in Coma Ber is $\sim 102 M_{\odot}$. This is comparable to what Kraus \& Hillenbrand (2007) reported for the 145 members earlier than M6, amounting to a total stellar mass $\sim 112 M_{\odot}$, and to the $102 M_{\odot}$ estimated by Casewell et al. (2006). Given an effective radius of 10 pc , within which the majority of the members are located, the stellar mass density is $0.024 M_{\odot} \mathrm{pc}^{-3}$, one order lower than the threshold of $0.1 M_{\odot} \mathrm{pc}^{-3}$ necessary to remain dynamically stable against tidal disruption in the solar neighborhood (Bok 1934; Lada et al. 1984). With a high Galactic latitude, Coma Ber has an almost null radial velocity (RV), with an RV dispersion $\approx 0.5 \mathrm{~km} \mathrm{~s}^{-1}$ (Odenkirchen et al. 1998). The proper motion data are not accurate enough to estimate the tangential velocity dispersion, but if we assume a space velocity dispersion twice as much as that of the RV, the cluster would have a kinetic energy comparable to the gravitational energy, again suggestive of a marginally bound state. Coma Ber therefore must be disintegrating, as also evidenced by its overall shape stretching along the Galactic motion of the cluster, and with a distribution of comoving, escaped stars that are on average fainter than members in the core and halo (Odenkirchen et al. 1998).

5. Summary

We have identified and characterized the stellar and substellar member candidates of the Coma star cluster on the basis of photometry, colors, and proper motions by 2MASS, UKIDSS, and URAT1, plus distance information from Gaia/DR2. Out of the 192 candidates found, after field contamination is considered, 148 true members are expected. The candidate list is largely complete within a 5° radius of the cluster, and to our knowledge is the most reliable to date in the literature. We have determined the age of Coma Ber to be about 800 Myr , older than previously adopted. The cluster has a shallower main-sequence mass function than in the field. The mass function peaks around $0.3 M_{\odot}$, and decreases rapidly toward the brown dwarf masses. The cluster is masssegregated, and has a shape elongated toward the Galactic plane, in the process of disintegration. There are nine substellar members, six known to be of late-M types, and we have confirmed their membership. In addition, three brown dwarf members have been spectroscopically confirmed to be an M8, an L1 and an L4, extending from the previously known late-M type for the first time to the mid-L spectral type in this elusive star cluster.
S.Y.T., W.P.C., and P.S.C. acknowledge the financial support of the grants MOST 106-2112-M-008-005-MY3 and MOST 105-2119-M-008-028-MY3. This research uses data obtained through the Telescope Access Program (TAP), which has been funded by the National Astronomical Observatories of China, the Chinese Academy of Sciences, and the Special Fund for Astronomy from the Ministry of Finance. This study was supported by Sonderforschungsbereich SFB 881 "The Milky Way System" (subproject B7) of the German Research Foundation (DFG). This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www. cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa. int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This research has made use of the 2MASS, SDSS, UKIDSS, WISE, PS1 data, as well as the VizieR catalog access tool and the SpeX Prism Spectral Libraries. We thank the anonymous referee, whose constructive suggestions greatly improved the quality of the paper.

Appendix
 Photometric Spectral Typing and Distance

We have modified the method photo-type proposed by Skrzypek et al. $(2015,2016)$ for spectral typing, which then in turn is used for distance estimation. Skrzypek et al. (2015) included spectral templates from types M5 to T9. To identify cluster members in Coma Ber, we extend to include mainsequence templates. For types from B2 to M4, the median colors and absolute magnitudes are taken from Pecaut et al. (2012) and Pecaut \& Mamajek (2013), converting their Johnson colors to the SDSS system by the equations in Jordi et al. (2005). For spectral types later than M7, we adopt the median colors and absolute magnitudes from Best et al. (2018), using the equations in Hewett et al. (2006) to convert between 2MASS and UKIDSS systems. For M dwarfs, we use the median colors from Best et al. (2018) and the absolute magnitudes from Pecaut et al. (2012) and Pecaut \& Mamajek (2013). Tables 6-8 list, respectively, these median colors.

Table 6
Stellar Colors from B2 to M4

SpTy	$g-r$	$r-i$	$i-z$	$z-J$	$J-H$	$H-K_{s}$	$K-W 1$
B1.5	-0.330	-0.397	-0.169	0.168	-0.132	-0.05	0.035
B2	-0.289	-0.369	-0.166	0.232	-0.113	-0.027	0.036
B2.5	-0.277	-0.357	-0.167	0.266	-0.105	-0.025	0.036
B3	-0.259	-0.347	-0.166	0.289	-0.098	-0.022	0.036
B4	-0.246	-0.338	-0.166	0.305	-0.092	-0.018	0.036
B5	-0.238	-0.331	-0.166	0.326	-0.089	-0.021	0.036
B6	-0.222	-0.320	-0.164	0.348	-0.081	-0.009	0.035
B7	-0.211	-0.313	-0.165	0.368	-0.077	-0.003	0.035
B8	-0.192	-0.299	-0.163	0.395	-0.067	0.007	0.034
B9	-0.153	-0.273	-0.157	0.449	-0.05	0.02	0.032
B9.5	-0.132	-0.259	-0.154	0.483	-0.044	0.024	0.031
A0	-0.087	-0.238	-0.146	0.512	-0.032	0.032	0.03
A1	-0.047	-0.217	-0.139	0.520	-0.024	0.034	0.03
A2	-0.011	-0.193	-0.127	0.537	-0.01	0.04	0.029
A3	0.005	-0.184	-0.123	0.558	-0.002	0.032	0.029
A4	0.057	-0.155	-0.107	0.583	0.022	0.038	0.029
A5	0.078	-0.144	-0.100	0.598	0.031	0.039	0.029
A6	0.088	-0.138	-0.099	0.606	0.036	0.044	0.029
A7	0.130	-0.116	-0.085	0.633	0.055	0.045	0.029
A8	0.172	-0.092	-0.072	0.660	0.075	0.045	0.028
A9	0.177	-0.089	-0.070	0.663	0.078	0.042	0.028
F0	0.219	-0.066	-0.057	0.699	0.098	0.042	0.028
F1	0.262	-0.043	-0.042	0.694	0.119	0.051	0.028
F2	0.304	-0.019	-0.029	0.710	0.14	0.05	0.028
F3	0.320	-0.011	-0.024	0.720	0.147	0.053	0.028
F4	0.345	0.003	-0.015	0.737	0.159	0.051	0.028
F5	0.373	0.018	-0.004	0.740	0.173	0.057	0.028
F6	0.419	0.041	0.010	0.755	0.199	0.061	0.028
F7	0.446	0.054	0.019	0.772	0.213	0.057	0.027
F8	0.466	0.064	0.025	0.779	0.225	0.065	0.027
F9	0.488	0.074	0.034	0.791	0.237	0.063	0.027
G0	0.534	0.096	0.051	0.805	0.262	0.068	0.027
G1	0.542	0.100	0.053	0.806	0.267	0.073	0.027
G2	0.588	0.119	0.070	0.853	0.293	0.077	0.028
G3	0.598	0.124	0.073	0.841	0.299	0.071	0.028
G4	0.611	0.129	0.077	0.847	0.307	0.073	0.028
G5	0.617	0.131	0.080	0.840	0.31	0.08	0.028
G6	0.640	0.141	0.087	0.865	0.324	0.076	0.028
G7	0.649	0.145	0.092	0.863	0.329	0.081	0.028
G8	0.672	0.155	0.099	0.888	0.342	0.078	0.028
G9	0.712	0.171	0.113	0.904	0.365	0.085	0.029
K0	0.751	0.186	0.130	0.9189	0.387	0.093	0.03
K1	0.781	0.199	0.139	0.835	0.402	0.098	0.03
K2	0.832	0.222	0.164	0.966	0.432	0.098	0.031
K3	0.934	0.266	0.209	1.024	0.49	0.11	0.034
K4	1.074	0.344	0.284	1.051	0.544	0.126	0.039
K5	1.139	0.384	0.315	1.067	0.568	0.132	0.042
K6	1.250	0.459	0.357	1.105	0.601	0.149	0.049
K7	1.351	0.539	0.374	1.174	0.622	0.168	0.06
K8	1.384	0.578	0.371	1.211	0.623	0.177	0.081
K9	1.417	0.617	0.368	1.237	0.625	0.185	0.101
M0	1.451	0.657	0.365	1.284	0.626	0.194	0.122
M0.5	1.497	0.730	0.348	1.343	0.62	0.21	0.13
M1	1.520	0.838	0.295	1.456	0.613	0.227	0.137
M1.5	1.531	0.891	0.273	1.522	0.607	0.233	0.105
M2	1.545	0.954	0.245	1.610	0.6	0.23	0.11
M2.5	1.568	1.055	0.208	1.818	0.589	0.151	0.117
M3	1.591	1.1416	0.182	1.799	0.579	0.281	0.122
M3.5	1.650	1.339	0.141	2.049	0.558	0.272	0.132
M4	1.702	1.454	0.126	2.175	0.557	0.283	0.139

Note. Stellar median colors from Pecaut et al. (2012) and Pecaut \& Mamajek (2013). Photometric systems are in SDSS, 2MASS, and WISE.

Table 7
Colors of M Dwarfs

SpTy	$g-r$	$r-i$	$i-z$	$z-y$	$y-J$	$J-H$	$H-K_{s}$	$K_{s}-W 1$	
M0	1.19	0.67	0.31	0.17	1.12	0.66	0.18	0.1	0.12
M1	1.22	0.85	0.39	0.2	1.14	0.64	0.21	0.02	
M2	1.21	1.02	0.46	0.23	1.16	0.62	0.22	0.12	
M3	1.21	1.22	0.55	0.27	1.2	0.6	0.24	0.14	
M4	1.23	1.46	0.67	0.32	1.25	0.59	0.26	0.16	
M5	1.31	1.88	0.87	0.44	1.34	0.59	0.31	0.19	0.12
M6	1.33	2.13	0.98	0.51	1.4	0.6	0.33	0.18	
M7	1.4	2.55	1.2	0.67	1.54	0.63	0.39	0.22	
M8	1.53	2.7	1.38	0.81	1.66	0.68	0.43	0.26	
M9	1.79	2.58	1.44	0.92	1.77	0.71	0.48	0.31	

Note. Stellar median colors of M dwarfs from Best et al. (2018). Photometric systems are in PS1, 2MASS, and WISE.

Table 8
Median Colors of Brown Dwarfs

SpTy	$i-z$	$z-Y$	$Y-J$	$J-H$	$H-K$	$K-W 1$	$W 1-W 2$
M5	0.91	0.47	0.55	0.45	0.32	0.11	0.17
M6	1.45	0.6	0.67	0.53	0.39	0.22	0.21
M7	1.36	0.55	0.68	0.54	0.38	0.17	0.2
M8	1.68	0.69	0.79	0.56	0.44	0.19	0.22
M9	1.86	0.79	0.87	0.59	0.49	0.22	0.23
L0	2.01	0.86	1.04	0.63	0.54	0.29	0.27
L1	2.02	0.88	1.11	0.67	0.58	0.33	0.28
L2	2.04	0.9	1.18	0.73	0.63	0.4	0.28
L3	2.1	0.92	1.23	0.79	0.67	0.48	0.29
L4	2.2	0.94	1.27	0.86	0.71	0.56	0.3
L5	2.33	0.97	1.31	0.91	0.74	0.65	0.32
L6	2.51	1.0	1.33	0.96	0.75	0.72	0.36
L7	2.71	1.04	1.35	0.97	0.75	0.77	0.41
L8	2.93	1.09	1.21	0.96	0.71	0.79	0.48
L9	3.15	1.16	1.2	0.9	0.65	0.79	0.57
T0	3.36	1.23	1.19	0.8	0.56	0.76	0.68
T1	3.55	1.33	1.19	0.65	0.45	0.71	0.82
T2	3.7	1.43	1.18	0.46	0.31	0.65	0.99
T3	3.82	1.55	1.18	0.25	0.16	0.59	1.19
T4	3.9	1.68	1.17	0.02	0.01	0.55	1.43
T5	3.95	1.81	1.16	-0.19	-0.11	0.54	1.7
T6	3.98	1.96	1.16	-0.35	-0.19	0.59	2.02
T7	4.01	2.11	1.15	-0.43	-0.2	0.7	2.38
T8	4.08	2.26	1.15	-0.36	-0.09	0.9	2.79

Note. Stellar median colors of brown dwarfs from Skrzypek et al. (2015) and Skrzypek et al. (2016) Photometric systems are in SDSS (Vega), UKIDSS, and WISE.

The algorithm performs classification by finding the minimum χ^{2} among spectral templates. Given an object with photometry $m_{b}(b=g, r, i \ldots W 2)$, we define the "reference" magnitude, $m_{(B, t)}$, at the band $B(B=J$ band, in this study) for each spectral type t by,

$$
\begin{equation*}
m_{(B, t)}=\frac{\sum_{b=1}^{N_{b}} \frac{m_{b}-c_{(b, t)}}{\sigma_{b}^{2}}}{\sum_{b=1}^{N_{b}} \frac{1}{\sigma_{b}^{2}}} \tag{1}
\end{equation*}
$$

where the parameters $c_{(b, t)}$ are the expected colors of each spectral type t listed in Tables 6-8. The $m_{(B, t)}$ could be regarded as the pseudo- J magnitude for the t spectral type.

Next, the weighted χ^{2} is derived:

$$
\begin{equation*}
\chi^{2}\left(\left\{m_{b}\right\},\left\{\sigma_{b}\right\}, m_{(B, t)}, t\right)=\sum_{b=1}^{N_{b}}\left(\frac{m_{b}-m_{(B, t)}-c_{(b, t)}}{\sigma_{b}}\right)^{2} \tag{2}
\end{equation*}
$$

For each spectral type $t, m_{b}-m_{(B, t)}$ is the "observed" value, while $c_{(b, t)}$ is the expectation. Finally, the spectral type with the minimum χ^{2} among all templates is considered the best-fit type for the target. Figure 18 shows a general consistency with ± 2 subtypes between the photo-type results and those measured by SDSS/DR14. Once the spectral type is determined, the absolute magnitudes listed in Table 9 are used to estimate the distance for each band. The median value of all bands is thereby adopted as the distance to the object.

Figure 18. Differences between phot-d estimated spectral types and SDSS observed spectral types for K and M (solid lines) and for B-G dwarfs (dashed lines). Only stars above the Galactic latitude 60° have been selected, to minimize the effect of interstellar reddening.

Table 9
Absolute Magnitudes

SpTy	g	r	i	z	y	J	H	K_{s}	W1	W2
B1.5	-2.959	-2.628	-2.231	-2.062	\cdots	-2.23	-2.098	-2.05	-2.085	\ldots
B2	-1.832	-1.543	-1.175	-1.008	\ldots	-1.24	-1.127	-1.1	-1.136	\ldots
B2.5	-1.525	-1.248	-0.891	-0.724	\ldots	-0.99	-0.885	-0.86	-0.896	\ldots
B3	-1.212	-0.953	-0.607	-0.441	\ldots	-0.73	-0.632	-0.61	-0.646	\ldots
B4	-1.104	-0.858	-0.520	-0.355	\ldots	-0.66	-0.568	-0.55	-0.586	\ldots
B5	-0.999	-0.761	-0.429	-0.264	\ldots	-0.59	-0.501	-0.48	-0.516	-0.471
B6	-0.588	-0.367	-0.047	0.118	\ldots	-0.23	-0.149	-0.14	-0.175	-0.13
B7	-0.481	-0.269	0.043	0.208	\ldots	-0.16	-0.083	-0.08	-0.115	-0.07
B8	-0.269	-0.077	0.222	0.385	\ldots	-0.01	0.057	0.05	0.016	0.062
B9	0.656	0.809	1.082	1.239	\ldots	0.79	0.84	0.82	0.788	0.851
B9.5	0.769	0.900	1.160	1.313	\ldots	0.83	0.874	0.85	0.819	0.863
A0	1.11	1.197	1.436	1.582	\ldots	1.07	1.102	1.07	1.04	1.081
A1	1.367	1.414	1.631	1.780	\ldots	1.25	1.274	1.24	1.21	1.246
A2	1.527	1.537	1.730	1.857	\ldots	1.32	1.33	1.29	1.261	1.295
A3	1.607	1.601	1.785	1.908	\ldots	1.35	1.352	1.32	1.291	1.324
A4	1.848	1.791	1.946	2.053	\ldots	1.47	1.448	1.41	1.381	1.412
A5	1.941	1.863	2.007	2.108	\ldots	1.51	1.479	1.44	1.411	1.441
A6	1.997	1.909	2.047	2.146	\ldots	1.54	1.504	1.46	1.431	1.461
A7	2.202	2.072	2.188	2.273	\ldots	1.64	1.585	1.54	1.511	1.541
A8	2.448	2.275	2.368	2.440	\ldots	1.78	1.705	1.66	1.632	1.66
A9	2.461	2.283	2.372	2.443	\ldots	1.78	1.702	1.66	1.632	1.66
F0	2.695	2.476	2.543	2.599	\ldots	1.90	1.802	1.76	1.732	1.758
F1	3.000	2.739	2.782	2.824	\ldots	2.13	2.011	1.96	1.932	1.958
F2	3.226	2.922	2.941	2.970	\ldots	2.26	2.12	2.07	2.042	2.069
F3	3.325	3.005	3.016	3.040	\ldots	2.32	2.173	2.12	2.092	2.12
F4	3.490	3.145	3.142	3.157	\ldots	2.42	2.261	2.21	2.182	2.211
F5	3.676	3.303	3.286	3.290	\ldots	2.55	2.377	2.32	2.292	2.322
F6	4.005	3.586	3.544	3.535	\ldots	2.78	2.581	2.52	2.492	2.525
F7	4.191	3.745	3.691	3.672	\ldots	2.90	2.687	2.63	2.603	2.639
F8	4.344	3.878	3.814	3.789	\ldots	3.01	2.785	2.72	2.693	2.732
F9	4.498	4.009	3.935	3.901	\ldots	3.11	2.873	2.81	2.783	2.824
G0	4.825	4.292	4.196	4.145	\ldots	3.34	3.078	3.01	2.983	3.026
G1	4.881	4.339	4.239	4.186	\ldots	3.38	3.113	3.04	3.013	3.057
G2	5.200	4.612	4.492	4.423	\ldots	3.57	3.277	3.2	3.172	3.222
G3	5.276	4.678	4.554	4.481	\ldots	3.64	3.341	3.27	3.242	3.292
G4	5.365	4.754	4.625	4.547	\ldots	3.70	3.393	3.32	3.292	3.344

Table 9
(Continued)

SpTy	g	r	i	z	y	J	H	K_{s}	W1	W2
G5	5.408	4.792	4.660	4.580	\ldots	3.74	3.43	3.35	3.322	3.374
G6	5.574	4.934	4.792	4.705	\cdots	3.84	3.516	3.44	3.412	3.465
G7	5.629	4.980	4.835	4.743	\ldots	3.88	3.551	3.47	3.442	3.496
G8	5.784	5.112	4.957	4.858	\ldots	3.97	3.628	3.55	3.522	3.579
G9	6.040	5.328	5.157	5.044	\ldots	4.14	3.775	3.69	3.661	3.721
K0	6.274	5.523	5.337	5.208	\cdots	4.29	3.903	3.81	3.78	3.843
K1	6.424	5.643	5.444	5.305	\ldots	4.47	4.068	3.97	3.94	4.004
K2	6.753	5.921	5.699	5.536	\cdots	4.57	4.138	4.04	4.009	4.077
K3	7.194	6.259	5.993	5.784	\ldots	4.76	4.27	4.16	4.126	4.197
K4	7.733	6.659	6.314	6.031	\ldots	4.98	4.436	4.31	4.271	4.344
K5	8.085	6.946	6.562	6.247	\ldots	5.18	4.612	4.48	4.438	4.511
K6	8.581	7.332	6.872	6.515	\ldots	5.41	4.809	4.66	4.611	...
K7	9.088	7.737	7.198	6.824	\ldots	5.65	5.028	4.86	4.8	\ldots
K8	9.324	7.940	7.362	6.991	\ldots	5.78	5.157	4.98	4.899	...
K9	9.561	8.143	7.526	7.157	\ldots	5.92	5.295	5.11	5.009	\ldots
M0	9.797	8.346	7.690	7.324	\ldots	6.04	5.414	5.22	5.098	\ldots
M1	10.619	9.099	8.261	7.966	\ldots	6.51	5.897	5.67	5.533	\ldots
M2	11.245	9.700	8.745	8.500	\ldots	6.89	6.29	6.06	5.95	\ldots
M3	12.113	10.522	9.380	9.199	\ldots	7.40	6.821	6.54	6.418	\ldots
M4	13.846	12.145	10.691	10.565	\ldots	8.39	7.833	7.55	7.411	\ldots
M5	15.481	13.597	11.804	11.693	...	9.25	8.67	8.36	...	\cdots
M6	17.880	15.802	13.357	13.099	10.28	...	9.675	9.32	\cdots	\cdots
M7	18.11	16.75	14.18	12.97	12.31	10.77	10.14	9.75	9.52	9.3
M8	19.19	17.73	14.98	13.59	12.8	11.14	10.46	10.02	9.77	9.54
M9	19.95	18.15	15.63	14.19	13.25	11.48	10.77	10.29	9.96	9.7
L0	20.41	18.42	16.05	14.58	13.63	11.81	11.05	10.57	10.27	9.99
L1	20.86	18.75	16.42	14.94	13.97	12.04	11.24	10.72	10.37	10.12
L2	21.24	19.02	16.73	15.31	14.33	12.32	11.41	10.83	10.41	10.14
L3	...	19.71	17.52	16.01	15.02	12.89	11.94	11.3	10.78	10.51
L4	\ldots	20.46	18.25	16.56	15.56	13.41	12.35	11.77	11.07	10.75
L5	\ldots	20.66	18.74	16.94	15.87	13.7	12.65	12.03	11.28	10.98
L6	\ldots	21.2	19.26	17.34	16.26	14.17	13.18	12.54	11.84	11.48
L7	\ldots	...	20.11	18.2	17.14	14.95	13.79	13.08	12.39	12.0
L8	\ldots	22.88	20.44	18.1	17.03	14.9	13.77	13.08	12.22	11.73
L9	\ldots	...	20.64	18.16	17.03	14.93	13.86	13.27	12.42	11.94
T0	\ldots	\ldots	20.22	17.99	16.76	14.56	13.63	13.11	12.49	11.94
T1	\ldots	\ldots	21.03	18.87	17.44	15.25	14.37	14.07	13.44	12.69
T2	\cdots	\ldots	21.51	18.28	16.79	14.56	13.76	13.49	12.96	12.07
T3	\ldots	\ldots	...	18.0	16.46	14.19	13.6	13.37	12.71	11.64
T4	\cdots	\cdots	\cdots	18.07	16.37	13.94	13.62	13.56	13.36	11.93
T5	\ldots	\cdots	22.69	19.2	17.43	14.94	14.75	14.77	14.46	12.69
T6	19.82	18.07	15.53	15.48	15.37	15.08	13.02
T7	\ldots	\ldots	\ldots	21.14	19.33	16.78	16.7	16.7	16.25	14.04
T8	\ldots	\cdots	\ldots	21.52	19.75	17.18	17.09	...	16.45	13.77
T9	\cdots	\cdots	\cdots	21.82	20.37	17.75	17.51	\cdots	16.7	13.81

Note. Absolute magnitudes of spectral types. Types earlier than M6 are from Pecaut et al. (2012) and Pecaut \& Mamajek (2013) in SDSS, 2MASS, and WISE systems. Types M7 and later are from Best et al. (2018) in PS1, 2MASS, and WISE.

ORCID iDs

Shih-Yun Tang © https://orcid.org/0000-0003-4247-1401
W. P. Chen © https://orcid.org/0000-0003-0262-272X
P. S. Chiang © https://orcid.org/0000-0003-3167-2523

Gregory J. Herczeg © https://orcid.org/0000-0002-7154-6065

References

Abt, H. 2008, ApJS, 176, 216
Alam, S., Albareti, F. D., Allende Prieto, C., et al. 2015, ApJS, 219, 12
Argue, A. N., \& Kenworthy, C. M. 1969, MNRAS, 146, 479
Artyukhina, N. M., \& Kholopov, P. N. 1966, SvA, 10, 448
Bastian, N., Covey, K. R., \& Meyer, M. R. 2010, ARA\&A, 48, 339
Bayo, A., Barrado, D., Stauffer, J., et al. 2011, A\&A, 536, A63

Best, W. M. J., Magnier, E. A., Liu, M. C., et al. 2018, ApJS, 234, 1
Bhattacharya, S., Mishra, I., Vaidya, K., \& Chen, W. P. 2017, ApJ, 847, 138
Binney, J., \& Tremaine, S. 1987, Galactic Dynamics (Princeton, NJ: Princeton Univ. Press)
Bok, B. J. 1934, HarCi, 384, 1
Boudreault, S., Lodieu, N., Deacon, N. R., \& Hambly, N. C. 2012, MNRAS, 426, 3419
Brandner, W., Clark, J. S., Stolte, A., et al. 2008, A\&A, 478, 137
Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127
Burgasser, A. J. 2007, ApJ, 659, 655
Burgasser, A. J., Geballe, T. R., Leggett, S. K., Kirkpatrick, J. D., \& Golimowski, D. A. 2006, ApJ, 637, 1067
Burgasser, A. J., Liu, M. C., Ireland, M. J., Cruz, K. L., \& Dupuy, T. J. 2008, ApJ, 681, 579
Burgasser, A. J., Looper, D. L., Kirkpatrick, J. D., \& Liu, M. C. 2007, ApJ, 658, 557

Burgasser, A. J., \& McElwain, M. W. 2006, AJ, 131, 1007
Burgasser, A. J., McElwain, M. W., Kirkpatrick, J. D., et al. 2004, AJ, 127, 2856
Casewell, S. L., Jameson, R. F., \& Dobbie, P. D. 2005, AN, 326, 991
Casewell, S. L., Jameson, R. F., \& Dobbie, P. D. 2006, MNRAS, 365, 447
Casewell, S. L., Littlefair, S. P., Burleigh, M. R., \& Roy, M. 2014, MNRAS, 441, 2644
Cayrel de Strobel, G. 1990, MmSAI, 61, 613
Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, arXiv:1612.05560
Chen, C. W., \& Chen, W. P. 2010, ApJ, 721, 1790
Chen, W. P., Chen, C. W., \& Shu, C. G. 2004, AJ, 128, 2306
Chen, Y., Bressan, A., Girardi, L., et al. 2015, MNRAS, 452, 1068
Chen, Y., Girardi, L., Bressan, A., et al. 2014, MNRAS, 444, 2525
Chiu, K., Fan, X., Leggett, S. K., et al. 2006, AJ, 131, 2722
Collins, R., \& Hambly, N. 2012, in ASP Conf. 461, Astronomical Data Analysis Software and Systems XXI, ed. P. Ballester, D. Egret, \& N. P. F. Lorente (San Francisco, CA: ASP), 525

Cox, A. N. 2000, Allen's Astrophysical Quantities (4th ed.; New York: AIP)
Cushing, M. C., Vacca, W. D., \& Rayner, J. T. 2004, PASP, 116, 362
Cutri, R. M., Wright, E. L., Conrow, T., et al. 2013, Explanatory Supplement to the AllWISE Data Release Products, http://wise2.ipac.caltech.edu/docs/ release/allwise/expsup/
de Grijs, R. 2009, Ap\&SS, 324, 283
de Grijs, R., \& Parmentier, G. 2007, ChJAA, 7, 155
Ducati, J. R. 2002, yCat, 2237, 1
Elias, J. H., Joyce, R. R., Liang, M., et al. 2006a, Proc. SPIE, 6269, 62694C
Elias, J. H., Rodgers, B., Joyce, R. R., et al. 2006b, Proc. SPIE, 6269, 626914
Ford, A., Jeffries, R. D., James, D. J., \& Barnes, J. R. 2001, A\&A, 369, 871
Friel, E. D., \& Boesgaard, A. M. 1992, ApJ, 387, 170
Gaia Collaboration, van Leeuwen, F., Vallenari, A., et al. 2017, A\&A, 601, A19
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, arXiv:1804. 09365
Gáspár, A., Rieke, G. H., Su, K. Y. L., et al. 2009, ApJ, 697, 1578
Gennaro, M., Brandner, W., Stolte, A., \& Henning, T. 2011, MNRAS, 412, 2469
Goldman, B., Röser, S., Schilbach, E., et al. 2013, A\&A, 559, A43
Gratton, R. 2000, in ASP Conf. Ser. 198, Stellar Clusters and Associations: Convection, Rotation, and Dynamos, ed. R. Pallavicini, G. Micela, \& S. Sciortino (San Francisco, CA: ASP), 225

Griffin, R., \& Griffin, R. 1986, JApA, 7, 195
Griffin, R. E. M., \& Griffin, R. F. 2011, AN, 332, 105
Herter, T. L., Henderson, C. P., Wilson, J. C., et al. 2008, Proc. SPIE, 7014, 70140X
Hewett, P. C., Warren, S. J., Leggett, S. K., \& Hodgkin, S. T. 2006, MNRAS, 367, 454
Hillenbrand, L. A. 1997, AJ, 113, 1733
Hillenbrand, L. A., \& White, R. J. 2004, ApJ, 604, 741
Jeffries, R. D. 1999, MNRAS, 304, 821
Jordi, K., Grebel, E. K., \& Ammon, K. 2005, AN, 326, 657
Kippenhahn, R., Meyer-Hofmeister, E., \& Thomas, H. C. 1970, A\&A, 5, 155
Kirkpatrick, J. D., Cushing, M. C., Gelino, C. R., et al. 2011, ApJS, 197, 19

Kirkpatrick, J. D., Looper, D. L., Burgasser, A. J., et al. 2010, ApJS, 190, 100
Kraus, A. L., \& Hillenbrand, L. A. 2007, AJ, 134, 2340
Lada, C. J., \& Lada, E. A. 2003, ARA\&A, 41, 57
Lada, C. J., Margulis, M., \& Dearborn, D. 1984, ApJ, 285, 141
Lançon, A., Hauschildt, P. H., Ladjal, D., \& Mouhcine, M. 2007, A\&A, 468, 205
Lawrence, A., Warren, S. J., Almaini, O., et al. 2012, yCat, 2314
Lindegren, L., Hernandez, J., Bombrun, A., et al. 2018, arXiv:1804.09366
Lodieu, N., Deacon, N. R., \& Hambly, N. C. 2012, MNRAS, 422, 1495
Loidl, R., Lançon, A., \& Jørgensen, U. G. 2001, A\&A, 371, 1065
Luhman, K. L. 2012, ARA\&A, 50, 65
Luhman, K. L., \& Rieke, G. H. 1999, ApJ, 525, 440
Mainzer, A., Bauer, J., Grav, T., et al. 2011, ApJ, 731, 53
Martín, E. L., Lodieu, N., Pavlenko, Y., \& Béjar, V. J. S. 2018, ApJ, 856, 40
Massarotti, A., Latham, D., Stefanik, R. P., et al. 2008, AJ, 135, 209
Mathieu, R. D. 1984, ApJ, 284, 643
Melnikov, S., \& Eislöffel, J. 2012, A\&A, 544, A111
Melotte, P. J. 1915, MmRAS, 60, 175
Mermilliod, J.-C., Grenon, M., \& Mayor, M. 2008, A\&A, 491, 951
Netopil, M., Paunzen, E., Heiter, U., \& Soubiran, C. 2016, A\&A, 585, A150
Nicolet, B. 1981, A\&A, 104, 185
Odenkirchen, M., Soubiran, C., \& Colin, J. 1998, NewA, 3, 583
Pecaut, M. J., \& Mamajek, E. E. 2013, ApJS, 208, 9
Pecaut, M. J., Mamajek, E. E., \& Bubar, E. J. 2012, ApJ, 746, 154
Perryman, M. A. C., Brown, A. G. A., Lebreton, Y., et al. 1998, A\&A, 331, 81
Rayner, J. T., Cushing, M. C., \& Vacca, W. D. 2009, ApJS, 185, 289
Rayner, J. T., Toomey, D. W., Onaka, P. M., et al. 2003, PASP, 115, 362
Reid, I. N., Gizis, J. E., \& Hawley, S. L. 2002, AJ, 124, 2721
Rochau, B., Brandner, W., Stolte, A., et al. 2010, ApJL, 716, L90
Salpeter, E. E. 1955, ApJ, 121, 161
Scholz, R.-D., Bihain, G., Schnurr, O., et al. 2011, A\&A, 532, L5
Shu, F. H. 1982, The Physical Universe (Mill Valley, CA: Univ. Science Books)
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
Skrzypek, N., Warren, S. J., Faherty, J. K., et al. 2015, A\&A, 574, A78
Skrzypek, N., Warren, S. J., \& Faherty, J. K. 2016, A\&A, 589, A49
Smith, L., Lucas, P. W., Burningham, B., et al. 2014, MNRAS, 437, 3603
Tang, J., Bressan, A., Rosenfield, P., et al. 2014, MNRAS, 445, 4287
Terrien, R. C., Mahadevan, S., Deshpande, R., et al. 2014, ApJ, 782, 61
Trumpler, R. J. 1938, LicOB, 18, 167
Tsvetkov, T. G. 1989, Ap\&SS, 151, 47
Upgren, A. R. 1962, AJ, 67, 37
Vacca, W. D., Cushing, M. C., \& Rayner, J. T. 2003, PASP, 115, 389
van Leeuwen, F. 1999, A\&A, 341, L71
van Leeuwen, F. 2009, A\&A, 497, 209
Wang, P. F., Chen, W. P., Lin, C. C., et al. 2014, ApJ, 784, 57
West, A. A., Morgan, D. P., Bochanski, J. J., et al. 2011, AJ, 141, 97
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
Zacharias, N., Finch, C., Subasavage, J., et al. 2015, AJ, 150, 101
Zuckerman, B., \& Song, I. , 2004, ARA\&A, 42, 685

[^0]: 7 Note URAT1 gives very different proper motions, $\left(\mu_{\alpha} \cos \delta, \mu_{\delta}\right)=(-12.0$, 9.3) $\mathrm{mas}_{\mathrm{yr}}{ }^{-1}$, with an error of 5.9 mas yr^{-1} in both axes.

