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ABSTRACT
The ejection of meteoroids from comets has been discussed by many authors and is a problem
that is important both for a full understanding of cometary processes and for the evolution of
meteoroid streams. We reinvestigate the problem here, starting from simple physical principles,
and compare the results that we obtain with those of other authors, in particular Whipple.
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1 I N T RO D U C T I O N

The most prominent feature of any comet is its dust tail, which in-
creases as the comet approaches the Sun. It is therefore obvious that
cometary nuclei lose dust grains to form this tail as the comet ap-
proaches perihelion. The basic reason for this was explained in the
icy conglomerate model proposed by Whipple (1950), in which the
primary component of the nucleus is assumed to be ice but with dust
particles embedded within it. (Within this context, dust is taken to
mean any chemical element or compound that remains in the solid
state at temperatures of a few hundred kelvins. In reality it is likely
to be dominated by those elements that condensed out during the
formation phase.) As the ice sublimes due to the increasing effect
of solar heating as the comet approaches perihelion, so these grains
are released. Their subsequent motion is governed by interaction
with the gas outflow, radiation pressure and, of course, gravity. For
the smaller grains, radiation pressure dominates, and these move
outwards to form the well-known dust tail. This is not the case for
larger grains, and these move on orbits that are similar to that of the
parent comet, producing a meteoroid stream, which in turn produces
meteor showers when the grains hit the Earth’s atmosphere and ab-
late. The exact nature of a meteoroid orbit depends on its energy
and angular momentum. Both of these quantities are determined by
the initial velocity of the meteoroid, or, in other words, its veloc-
ity relative to the cometary nucleus when it is free to move on an
independent orbit. The process of forming a meteoroid stream was
first investigated by Whipple (1951), who produced a formula for
the ejection speed that has been very widely used in recent investi-
gations of meteoroid stream evolution.

Understanding this mechanism is important for the scientific
study of the subject, but it may also have wider implications. The
increase in activity of the Perseid meteor shower in the first half of
the 1990s, which manifested itself as a second peak in the activ-
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ity curve, and the recent remarkable outburst of the Leonid meteor
shower, have made it clear that space platforms could be at risk dur-
ing times of enhanced meteor shower activity, although such activity
seems harmless to our life on Earth. For example, cosmonauts in
the Mir-1 Space Station reported audible meteoroid strikes, and the
Mir-1 solar panels were damaged on the night of the Perseid me-
teor shower maximum (Lenorovitz 1993). It is also believed that the
Olympus communications satellite operated by the European Space
Agency (ESA) lost pointing control as a result of the impact of a
Perseid meteoroid with its solar array (Caswell, McBride & Taylor
1995). In 1993, NASA postponed its space shuttle launch in order to
avoid the possible Perseid meteor storm, and changed the pointing
direction of the Hubble Space Telescope for fear of lens damage by
high-speed particles. So far, there have been no reports of damage
to spacecraft by the Leonids, but safeguards have been taken during
the Leonids activity in November every year since 1998. For exam-
ple, the Chinese space navigation ministry not only took safeguards
on the orbiting space-flights, but also modified the launch time for
the space shuttle Heavenly Boat-1 in 1999 November.

There have been many investigations into the evolution of me-
teoroid streams by numerically integrating the equations of motion
of test particles (for example, Hughes, Williams & Murray 1979;
Fox, Williams & Hughes 1982; Jones 1985; Williams & Wu 1994).
Recently, many investigations have been carried out in order to pre-
dict the activity level in the Leonids in the period surrounding the
return of the parent comet to perihelion, such as Kondrat’eva &
Reznikov (1985), Wu & Williams (1996), Kondrat’eva, Murav’eva
& Reznikov (1997), McNaught & Asher (1999), Brown (2000) and
Göckel & Jehn (2000). For all of these investigations, the initial
position and velocity of the test meteoroids are crucial, and these
are defined by the orbital elements of the comet and the ejection
velocity of the meteoroid relative to the comet. In particular, the
stream profile is dictated primarily by the ejection process, at least
for young meteoroid streams. Hence it is important to understand
this ejection process and to be able to produce realistic values for
the ejection velocity.
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The basic notion of an icy conglomerate cometary nucleus as
originally proposed by Whipple (1950) is now generally accepted.
As this nucleus approaches the Sun, as was explained by Whipple
(1951), the absorbed solar radiation heats it up until a temperature
is reached that enables the ice to sublime. The resulting gas flows
away from the nucleus, and gas drag exerts an outward force on
any released small grains, causing them also to flow away from the
nucleus. Assuming that the grains are spherical and that the nucleus
is also spherical and attains a uniform temperature across its whole
surface, Whipple (1951) obtained the following expression for the
grain velocity v (m s−1) relative to the nucleus of radius Rc (km)
and density ρc at a heliocentric distance r (astronomical units, au)
as

v2 = 43Rc

(
1

nsσr 2.25
− 8π

3

G

43
ρc Rc

)
, (1)

where s and σ are the radius and bulk density of a spherical grain
(cgs units) and 1/n is the fraction of solar radiation available for
sublimation, generally taken as unity.

If we consider a meteoroid of radius 1 mm and bulk density 0.8 g
cm−3 (typical for a visible meteoroid), ejected at 1 au from a comet
nucleus of radius 5 km, then Whipple’s formula gives an ejection
speed of about 52 m s−1. Of course, there are variations from comet
to comet and from stream to stream in the numerical values inserted
above, but it is difficult to change the ejection velocity so that it is
outside the range of about 20–100 m s−1.

However, Harris, Yau & Hughes (1995) and Wu & Williams
(1996) considered the spread found in the orbital elements of the
observed Perseid meteor stream, and concluded that an ejection
speed in the range 600–1000 m s−1 was required. Similarly Williams
(1996) considered the observations of six other streams (Geminids,
Quadrantids, Perseids, Taurids, Eta Aquarids and Orionids), con-
cluding that, for both the Quadrantids and the Perseids, significantly
higher velocities than that given above were indicated.

A number of people modified the assumptions in Whipple’s
formula in order to increase the ejection velocity. For example,
Gustafson (1989) considered grains that were flakes rather than
spherical, while Jones (1995) dispensed with the assumption that the
whole surface was active. Other models were produced by Hughes
(1977), Brown & Jones (1998) and Göckel & Jehn (2000). Hughes
(2000) also considered the possibility that grains could contain small
amounts of ice after leaving the nucleus and that the sublimation of
this could act like a small rocket, accelerating the grains.

The intention of this paper is to start again and to visit the whole
problem of grain loss from the nucleus, maintaining the assumption
of spherical grains.

2 T H E BA S I C M O D E L

The basic model is not controversial. We assume that a predomi-
nantly icy cometary nucleus is moving on an elliptical orbit about
the Sun. As it approaches perihelion, the increasing energy flux
received through solar radiation heats up this nucleus, or at least
those parts of it that are being directly heated. When the relevant
part reaches a known critical temperature, the ice sublimes, form-
ing a gas. This gas will flow away from the surface, at least in the
sense that the gas will occupy an ever-expanding volume of space.
There will be interactions between this gas and small dust grains
that were originally embedded in the ice, which results in a force on
these grains in the direction of the outflowing gas. This interaction
force can overcome the gravitational attraction of the nucleus and
so cause the grains to be accelerated away from the nucleus. We

wish to determine the final velocity relative to the nucleus achieved
by these grains.

This is essentially the situation investigated by Whipple (1951)
and other authors since then. It is very easy to describe the situation,
as we have done above. It is harder to produce a quantitative physical
model, which is why models are still being proposed half a century
after the first model by Whipple.

One obvious apparent difficulty is in defining what we mean by
final velocity. We could take it to mean the velocity where the grav-
itational field of the Sun becomes equal to that of the cometary nu-
cleus. A simple calculation shows that, for a comet of mass 1014 kg,
when at 1 au from the Sun, this point of balance is slightly less than
1 km away from the cometary surface. Clearly, from observations
of comets, dust and gas are found moving essentially away from the
nucleus at very much greater distances. A better answer might be
the velocity of the grain when it ceases to be accelerated by the gas.
The strict answer to that is probably never. In reality, the accelera-
tion of the grains due to the gas decreases very rapidly through two
effects: the drop in density of the gas, and the decrease in relative
speed between the gas and grain. Hence we can take the final veloc-
ity to be the grain velocity relative to the nucleus at any sufficiently
large distance from the nucleus.

A much more serious problem is the outflow speed of the gas –
indeed, what we mean by such terminology. It has to be realized that
the grains that are of interest to us are much smaller than the mean
free path on the gas. Consequently we cannot use a fluid model for
the gas – we need to use an approach based on the kinetic theory
of gases. (A fluid picture may be perfectly adequate for describing
many of the phenomena associated with cometary gas tails, but for
individual grain interactions, it is not adequate. The grain gets hit
by individual gas molecules at irregular time intervals.)

Let us then picture the process of gas production. As the tem-
perature of the ice molecules increases, a critical value is reached
where the vibrating molecules can escape. This takes place at a
well-determined temperature and requires a well-known amount of
energy (the latent heat of vaporization) to be available. The gas
molecule is now free and can be imagined to move away from the
solid surface with some well-determined (from the energy level)
speed c in some random direction within a hemisphere with its axis
of symmetry normal to the surface. The mean outward velocity of
the collection of released gas molecules at this instant is the mean
value over the hemisphere of c cos θ , that is c/2. We call this ini-
tial state ‘A’, and imagine it as a coherent stream moving out with
a mean speed of c/2. Of course, other adjacent molecules are be-
having in a similar fashion, and so molecules will collide, and in
time the gas will have become thermalized, that is the molecules
obey a Maxwellian velocity distribution law relative to some mov-
ing frame. The velocity of this moving frame can be regarded as
the bulk velocity, V say, of the gas, and the molecules have some
random velocity with a mean equal to the mean thermal velocity, W
say, in a frame moving with the bulk velocity. In this final equilib-
rium stage, the leading molecules can be pictured as moving with
a speed c still, while the average tangential speed is c/2. Hence we
can picture the final stage as having a bulk motion outwards of value
c/2 and a Maxwellian component with a mean thermal velocity of
c/2. We call this final state ‘B’.

In reality, there is also the intermediate, non-equilibrium state,
after the molecules have lost their predominantly coherent motion
as represented in state A, but before equilibrium has been attained
as in state B. This state cannot be modelled; and we will assume
that its effect, as far as accelerating any grains is concerned, lies
somewhere in between the effects attained in the two end states, A
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and B. We shall assume that W = c/2 is given by the mean thermal
velocity at the ambient gas temperature.

2.1 Gas–grain interaction

We shall assume throughout this discussion that the grains are spher-
ical, of radius s and bulk density σ . Hence if a dust grain has a mass
md, then

md = 3
4 πs3σ.

Non-spherical grains produce a much more complex situation be-
cause the effective surface area to mass ratio is variable depending
on the grain orientation relative to its direction of motion. We do
not discuss this complication in this paper.

Whenever the velocity of a dust grain is different from the bulk
velocity of a gas, there is a transfer of momentum, or a drag force,
between the two, which attempts to equalize the two velocities. In
the situations that are of interest to us, the effect will be to increase
the velocity of the grains away from the cometary nucleus, since
initially the gas has a velocity W as described above and the grain is
essentially stationary. If the grain were larger than the mean free path
of the gas, then the drag force would be given by the well-known
Stokes’ law (e.g. Basset 1888)

R = 6πηs(vg − vd),

where η is called the coefficient of viscosity, and vd and vg are
respectively the velocity of the dust grain and gas relative to the
cometary nucleus, so that vg − vd is the relative velocity. For the sit-
uation we are discussing, the grain is smaller than the mean free path
of the gas and, provided the gas is thermalized, with a mean thermal
velocity W, the situation has also been discussed in the literature.
If the relative velocity, vg − vd is small, an expression was derived
by Cunningham (1910), while Epstein (1924) slightly extended the
results by considering both specular and diffuse reflection of gas
molecules off the grains. (In specular reflection, the molecules are
perfectly reflected; while in diffuse reflection, the molecules are as-
sumed to be temporarily absorbed by the grain and re-emitted with
the velocity corresponding to the grain temperature in random direc-
tions.) The situation was further investigated by Baines, Williams &
Asebiomo (1965) where the need for the relative velocity to be small
was relaxed. They gave the corresponding resistances for specular
and diffuse reflections, Rs and Rd, as

Rs = 4
3 πs2ρW (vg − vd)

and

Rd = 4
3 πs2ρW (vg − vd)

(
1 + 1

8 π
)

,

where ρ is the density of the gas.
Hence, the final state of the gas flow in the situation that we

have described in relation to the comet nucleus is covered by these
works. For the initial situation where the gas molecules are regarded
as moving on parallel paths as a radial flow, the drag can be simply
calculated and is given by multiplying the momentum change per
collision by the number of collisions per unit time, that is

R = πs2ρ(vg − vd)2

if specular reflection is assumed, or

R = 4
3 πs2ρ(vg − vd)2

on assuming diffuse reflection.

2.2 Equations of motion for the dust grains

In the above section, we have discussed the transfer of momentum
to the dust grains. This momentum has come from the gas, and so we
must consider the equations of motion for both the dust particle and
the gas under the influence of the gravitational field of the nucleus
and the momentum exchange. To recapitulate on the situation, we
assume that the gas initially leaves the nucleus with all the molecules
moving outwards with a mean speed W and that eventually this flow
becomes thermalized with a mean thermal velocity W and a bulk
outward speed vg. In the absence of the interaction with the dust
grains, vg would be equal to W, but because of the interaction, vg is
decreasing. Hence, W is a constant, but vg is variable.

For the first stage, the grain collisions are part of the thermalizing
process and so it seems best to assume that the flow is radially
outwards with a mean speed W. Hence we only need to consider the
equation of motion for a dust grain and this is

md
dvd

dt
= πs2ρ(W − vd)2 − mdG

Mc

R2
. (2)

Here, G is the universal gravitational constant, Mc is the mass of
the cometary nucleus, and R is the distance from the centre of the
comet (throughout we shall use R for distance relative to the comet
and r for the corresponding heliocentric distance).

We see that dust particles can only begin to accelerate off the
cometary surface if dvd/dt > 0, that is if

πs2ρ0W 2 > md
G Mc

R2
c

, (3)

where ρ0 is the initial gas density at the surface of the comet and Rc

is the radius of the comet.
From the equation of continuity for the gas we have

dMc

dt
= 4παρ0W R2

c = 4παρvg R2, (4)

where α is the fraction of the surface area that is active. Because
sublimation mainly occurs on the Sun-facing hemisphere, αmax will
have a value close to 0.5. Hence only dust grains smaller than s0 can
get off the cometary surface, where

s0 = 3ρ0W 2 R2
c

4σ G Mc
= 3ṀcW

16πασ G Mc
. (5)

Typical production rates of water in comets are of the order of 1028

molecules per second and so Ṁc/Mc is of the general order of
3 × 10−10 s−1. Thus we find that s0 ∼ 50 cm, a result that is fairly
insensitive to the details of the model.

For the final stage, where the gas is thermalized, the equations of
motion become

md
dvd

dt
= 4

3
πs2ρW (vg − vd) − mdG

Mc

R2
, (6)

ρ
dvg

dt
= −nd

4

3
πs2ρW (vg − vd) − ρG

Mc

R2
. (7)

The dust density in space ρd is given by ρd = ndmd. Let ρd/ρ = µ,
then nd = µρ/md.

Also, we are interested in particles that will produce visible me-
teors, and so are under about 1 cm in radius. This is a factor of
20 down on the size where gravity is similar to gas drag, and so
for these grains the gravitational term can be ignored in the above
equations of motion. These equations now become, for the initial
non-thermalized flow
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md
dvd

dt
= πs2ρ(W − vd)2, (8)

and for the thermalized flow

md
dvd

dt
= 4

3
πs2ρW (vg − vd), (9)

md
dvg

dt
= −4

3
πs2µρW (vg − vd). (10)

2.3 Solutions of the equations of motion

Using dvd/dt = vd dvd/dR and the equation of continuity as
ρ0 Rc

2 = ρR2, the first of these equations integrates simply to give
the velocity v at distance R from the nucleus centre as

ln

(
W − v

W

)
+ W

W − v
− 1 = πs2ρ0

md

Rc(R − Rc)

R
. (11)

If it is assumed that the grain velocity is significantly smaller than
W, then we obtain

v2 = W 2 2πs2ρ0 Rc(R − Rc)

Rmd
= W 2 3ρ0 Rc(R − Rc)

2sσ R
, (12)

on assuming a spherical particle and substituting for md. This is
the same expression as is obtained if (W − vd) is replaced by W in
the initial equation of motion and then integrating with the same
boundary conditions.

Turning now to consider the thermalized flow, by addition of
equations (9) and (10), we obtain

µ
dvd

dt
+ dvg

dt
= 0, (13)

which integrates, with the initial conditions vg = W , vd = 0, to give

µvd + vg = W. (14)

Also, we note the obvious, namely that dvd/dt = 0 when vg = vd.
Hence, we have the following inequality

0 � vd � W

1 + µ
� vg � W. (15)

Using dvd/dt = vd dvd/dR andvg = W − µvd, equation (9) becomes∫ v

0

vd

[
1 + vd

W − (1 + µ)vd

]
dvd =

∫ R

Rc

W 2ρ0 R2
c

sσ

dR

R2
. (16)

All the integrals can be evaluated using standard methods to give

µv2

2(1 + µ)
− Wv

(1 + µ)2
− (W )2

(1 + µ)3
ln

[
1 − (1 + µ)v

W

]

= W 2ρ0 Rc(R − Rc)

sσ R
, (17)

using the same boundary conditions as used when integrating equa-
tion (8). The function ln[1 − (1 + µ)v/W ] in equation (17) can be
expanded because of the inequality (15). Keeping the first two terms
of the expansion, we obtain from equation (17)

v2 = 2W 2ρ0 Rc(R − Rc)

Rsσ
. (18)

In principle, since equation (12) gives the solution for the initial
state before the gas becomes thermalized and equation (18) gives
the solution for the final stages with a thermalized flow, the end
boundary conditions used in equation (12) should become the ini-
tial conditions for equation (18). However, as can be seen, the two

equations are essentially identical, differing only by a small amount
in the numerical coefficient. Since the thermalized flow regime is
likely to last longer than the initial stage, we take the ejection speed,
that is the speed when R is large, to be given by

v2 = 2W 2ρ0 Rc

sσ
. (19)

This gives a very robust expression for the ejection speed of me-
teoroids with only one parameter in this expression that is not well
determined, namely ρ0, the initial gas density. The equation of con-
tinuity, equation (4), allows us to express ρ0 in terms of the gas
outflow rate, Ṁc, that is

dMc

dt
= 4παρ0W R2

c . (20)

Hence, the ejection speed is given by

v2 = ṀcW

2παsσ Rc
(21)

For a well-observed comet, the mass outflow rate may be well
determined, as may α, as discussed for example by Lowry et al.
(1999), and so we may be able to use the expression in this form.
However, in general for the parent comets of meteoroid streams, Ṁc

is hardly better determined than ρ0, especially at the epoch when
ejection actually took place. Thus, in order to produce a useful
formula, we need to consider the physics of the ejection process
further.

2.4 The mass-loss rate from comets

As already mentioned, the basic physics is simple: Solar radiation
is absorbed by the nucleus, which results in the nucleus heating up
as the comet approaches the Sun. When a critical temperature is
reached, the ice in the nucleus sublimes to produce the gas outflow
that we have described. Changing the state of ice requires input
of energy, the latent heat of vaporization, H say, which is much
greater than the amount of energy required to change the temperature
of the nucleus by a small amount. Hence, a reasonable model is
to assume that, once the sublimation temperature is reached, the
nucleus remains at this temperature and the excess input energy from
the Sun is used to vaporize the ice so that more gas is produced as the
comet approaches the Sun. Hence the mass flow rate is governed
by the radiation energy input rate. The energy flux falling on the
cometary nucleus due to Solar radiation is R2

c L�/4r 2, where L�
is the solar luminosity and r is the heliocentric distance of the comet.
Not all of this energy can be used for sublimation since the nucleus is
also radiating, so that some of the input radiation is lost through this.
However, comets appear to have very low albedos of the order of
4 per cent (Fernandez, Jewitt & Sheppard 2001). This leaves 96 per
cent of incident energy available for sublimation and re-radiation in
the infrared. Hence, we ignore the reflected part and assume that

R2
c L�
4r 2

= H Ṁc + 4πσ R2
c T 4

0 , (22)

where here and in the next equation σ is the Stefan–Boltzmann
radiation constant and T0 is the temperature at which sublimation
begins. (In general, we have used σ for the grain density, but it is
such a standard notation for the Stefan–Boltzmann constant that we
feel that using it in these two equations will not cause confusion.)
But

4πσ R2
c T 4

0 = R2
c L�
4r 2

s

, (23)
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where rs is the heliocentric distance at which sublimation begins.
Thus, the mass-loss rate becomes

Ṁc = R2
c L�
4H

(
1

r 2
− 1

r 2
s

)
. (24)

Thus, on substituting for Ṁc into equation (21), the expression
for the ejection speed becomes

v2 = W Rc L�
8πHαsσ

(
1

r 2
− 1

r 2
s

)
, (25)

an expression that is also fairly robust.

2.5 Effect of the gravitational field of the nucleus

We can slightly modify this equation in two ways. First, the expres-
sion obtained assumed specular reflection of gas molecules off the
dust grains. For diffuse reflection, the drag is increased by a factor
(1 + 1

8 π) and the same factor should be applied to v2. If we assume
that the initial flow model is dominant, then the diffuse reflection
gives the same expression for v as above; while for the specular
reflection case, the value is reduced by 3/4. Hence all the cases are
covered if we assume that the above expression can be multiplied
by a small factor in the range 0.75–1.4.

Secondly, we note that the effect of the gravitational field of the
comet can be included. What we have calculated is in effect twice
the kinetic energy given to the dust grain by gas interactions. Hence
we can simply subtract twice the potential energy change to obtain
the correct expression as

v2 = W Rc L�
8πHαsσ

(
1

r 2
− 1

r 2
s

)
− 2G Mc

Rc
(26)

3 D I S C U S S I O N

In the above equation, L� and H have well-established values (ap-
proximately 4 × 1026 J s−1 and 2 × 106 J kg−1 respectively). It is
also convenient, both for general use and for comparison with other
authors, to express heliocentric distances in astronomical units,
cometary radii in kilometres, and grain radii in centimetres, with
σ also in cgs units. Inserting these into equation (26) gives

v2 = 3.5 × 10−2 W Rc

αsσ

(
1

r 2
− 1

r 2
s

)
− 0.56R2

c ρc, (27)

where ρc is also in cgs units.
W is also a determinable quantity. It is assumed by us to be the

mean thermal velocity of water vapour at the sublimation temper-
ature. For water molecules at 273 K, this gives W = 580 m s−1, so
that the above equation becomes

v2 = 20Rc

[
1

αsσ

(
1

r 2
− 1

r 2
s

)
− 0.028Rcρc

]
. (28)

We also need to discuss rs, the heliocentric distance at which sub-
limation starts. If the whole of the nucleus is in thermal equilibrium
with solar radiation, then this is at about 1.25 au. However, if only
a fraction of the surface is active, with the remainder not radiating,
sublimation can start at larger distances. Also ices other than water
will sublime earlier, and the analysis above will hold, essentially
unaltered, for CO2 sublimation say. Comets are observed to become
active at around 3 au, and we shall adopt this figure.

The fraction of the cometary surface that is active, α, was dis-
cussed in Lowry et al. (1999). There is a wide range from about
10 to 40 per cent, with a mean of 14 per cent. However, the range
is such that it may not be sensible to take any single value other
than for illustrative purposes, where we shall take 0.15, the rounded
value for the above mean.

It is instructive to compare our expression with that of Whipple
(1951), given as equation (1). The main difference at first sight
is in terms of the dependence on heliocentric distance. However,
since the majority of the activity is at around 1 au, in reality this
makes no difference to the value of the ejection velocity. In terms of
modelling meteoroid streams, however, it may be important, because
the ejection velocity drops off far more sharply in our expression as
the heliocentric distance approaches the distance where sublimation
starts.

In terms of actual values, we concentrate on visible meteors so
that radius ∼1 mm and bulk density 0.8 g cm−3 (Hughes 1977), so
sσ = 0.08 g cm−2. Cometary radii and densities are not very well
determined. However, for the parent of the Perseid meteoroid stream,
comet 109P/Swift-Tuttle, O’Ceallaigh, Fitzsimmons & Williams
(1995) obtained a value of 11.8 km. This is also not dissimilar
to the radius of comet 1P/Halley, the parent of the η Aquarid and
Orionid streams. Hence, we consider such a parent and take, in round
numbers, Rc as 10 km. The second term [the gravitational term in
equation (28)] is relatively unimportant, but we take ρc as 0.15, the
value given by Rickman et al. (1987). For illustrative purposes, we
shall calculate the ejection velocity at 1 and 2.5 au.

Inserting these values, our expression gives an ejection speed of
120 m s−1 at 1 au and 28 m s−1 at 2.5 au. For the same values,
Whipple’s formula gives 73 m s−1 at 1 au and 26 m s−1 at 2.5 au,
illustrating the faster decay in our model. From observations of the
Perseids, Ma & Williams (2001) deduced an ejection velocity at
perihelion of 120 m s−1.

Both the above-mentioned comets are large, and a typical comet
would be expected to have a much smaller radius, and a value of
1 km, as deduced for example by Hughes (1990), would appear to be
much closer to the truth. Adopting this radius, our formula gives the
ejection velocity at 1 au of 39 m s−1 while Whipple’s formula gives
23 m s−1. For the Leonid shower and its parent, comet 55P/Tempel-
Tuttle, Ma & Williams (2001) deduced a perihelion ejection ve-
locity of 70 m s−1. Asher (1999), in his model that successfully
predicted the Leonids storm in 1999, used a perihelion ejection
speed of 25 m s−1. Göckel & Jehn (2000) investigated various mod-
els and concluded that a speed of 40 m s−1 gave the best fit with
observations.

Our formula gives an ejection speed that is about 33 per cent
higher than Whipple’s value at 1 au but is very similar to Whipple’s
at 2.5 au. The difference at 1 au is within the noise of the input data;
selecting α to be 0.5 for example, as Whipple in effect did, virtually
eliminates the difference, as would selecting the first (state A) rather
than the second (state B) of our gas flow models.

The difference in the dependence on heliocentric distance is, how-
ever, more fundamental, and arises from the assumption that, once
sublimation starts, the ice remains at the sublimation temperature
because all the incident radiation is used for sublimation rather
than heating the nucleus. Whipple assumed that the temperature
was the local radiation temperature, thus increasing with decreasing
distance.

This is the most interesting aspect of the work and has implica-
tions for models of meteor stream formation, where high meteoroid
velocities when they leave the comet near perihelion can cause sig-
nificant spreading in the orbital elements.

C© 2002 RAS, MNRAS 337, 1081–1086
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