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ABSTRACT

Context. Some intra-day variable, compact extra-galactic radio sources show brightness temperatures severely exceeding 1012 K, the limit set by
catastrophic inverse-Compton (IC) cooling in sources of incoherent synchrotron radiation. The violation of the IC limit, actually possible under
non-stationary conditions, would lead to IC avalanches in the soft-γ-ray energy band during transient periods.
Aims. For the first time, broadband signatures of possible IC catastrophes were searched for in a prototypical source, S5 0716+71.
Methods. A multifrequency observing campaign targetting S5 0716+71 was carried out during November 06−20, 2003. The observations, orga-
nized under the framework of the European Network for the Investigation of Galactic nuclei through Multifrequency Analysis (ENIGMA) together
with a campaign by the Whole Earth Blazar Telescope (WEBT), involved a pointing by the soft-γ-ray satellite INTEGRAL, optical, near-infrared,
sub-millimeter, millimeter, radio, as well as Very Long Baseline Array (VLBA) monitoring.
Results. S5 0716+71 was very bright at radio frequencies and in a rather faint optical state (R = 14.17−13.64) during the INTEGRAL pointing;
significant inter-day and low intra-day variability was recorded in the radio regime, while typical fast variability features were observed in the
optical band. No obvious correlation was found between the radio and optical emission. The source was not detected by INTEGRAL, neither by
the X-ray monitor JEM-X nor by the γ-ray imager ISGRI, but upper limits to the source emission in the 3−200 keV energy band were estimated.
A brightness temperature Tb > 2.1 × 1014 K (violating the IC limit) was inferred from the variability observed in the radio regime, but no corre-
sponding signatures of IC avalanches were recorded at higher energies.
Conclusions. In the most plausible scenario of negligible contribution of the interstellar scintillation to the observed radio variability, the absence
of the signatures of IC catastrophes provides either a lower limit δ >∼ 8 to the Doppler factor affecting the radio emission or strong constraints for
modelling of the Compton-catastrophe scenario in S5 0716+71.
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� Partially based on observations obtained with INTEGRAL, an ESA
project with instruments and science data centre funded by ESA mem-
ber states (especially the PI countries: Denmark, France, Germany,
Italy, Switzerland, Spain, Czech Republic and Poland), and with the
participation of Russia and the USA. Partially based on observations
by the Whole Earth Blazar Telescope (WEBT); for questions regarding
the availability of the data from the WEBT campaign, please contact
M. Villata (villata@to.astro.it). Partially based on observations
collected at the German-Spanish Astronomical Center, Calar Alto, op-
erated by the Max-Planck-Institut für Astronomie, Heidelberg, jointly
with the Spanish National Commission for Astronomy. Partially based
on observations with the 100-m telescope of the MPIfR (Max-Planck-
Institut für Radioastronomie) in Effelsberg, Germany.
�� Figure 3 is only available in electronic form at
http://www.edpsciences.org

1. Introduction

The phenomenon of intra-day variability (IDV, Wagner & Witzel
1995) has been a long-standing problem since its discovery in
the late 1960s (see e.g. Racine et al. 1970; Witzel et al. 1986;
Heeschen et al. 1987). The occurrence of IDV appears to be
more common in flat-spectrum extragalactic sources dominated
by a very compact core in Very Long Baseline Interferometry
(VLBI) maps (Quirrenbach et al. 1992, 2000). With recent Very
Long Baseline Array (VLBA) measurements, Kovalev et al.
(2005) showed that IDV sources typically exhibit a higher com-
pactness and core-dominance on sub-milliarcsecond scales than
non-IDV ones; they also found that a higher amplitude of intra-
day variations characterizes sources with a higher flux density
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in an unresolved VLBA component, and that the most variable
sources tend to have the most compact structure.

Rapid variations in flux may be caused by mechanisms in-
trinsic to the source. In this case, causality arguments would
imply that the variability originates from very compact regions
of the AGN, thus characterized by high photon densities and
brightness temperatures. In sources of incoherent synchrotron
radiation, very high photon densities would lead to catastrophic
cooling via inverse-Compton (IC) scattering of the synchrotron
radiation by the high-energy electrons, with a production of
high-energy radiation much higher than observed (Hoyle et al.
1966). Kellermann & Pauliny-Toth (1969) showed that the on-
set of catastrophic radiation losses, occurring when the photon
energy density in the emission region exceeds the energy den-
sity of the magnetic field, limits the maximum observed bright-
ness temperature to the so-called “IC limit” Tb <∼ 1012 K (see
also Readhead 1994). They also noticed, however, that this limit
may be significantly exceeded under non-stationary conditions.
Evidence of severe violations of the IC limit was reported for
many compact IDV radio sources (see e.g. Quirrenbach et al.
1989; Wagner & Witzel 1995; Kedziora-Chudczer et al. 1997),
although no information about corresponding IC-scattered emis-
sion is available for any of them.

Alternatively, propagation effects, like variations of the ab-
sorption along the line of sight, deflection of the light in the po-
tential well of foreground stars (microlensing, Chang & Refsdal
1979), and, in the radio regime, interstellar scintillation (ISS,
Rickett 1990; Rickett et al. 1995), are possible extrinsic-source
mechanisms which have been invoked to explain IDV. On the
one hand, microlensing was shown to be an unlikely explana-
tion of the rapid variability in the best-studied IDV sources, due
to the frequency of the flaring activity, the statistical asymme-
try of the light curves, the short time scales of variability, and
the non-zero lag measured between optical and radio variations
(see Wagner 1992, and references therein). On the other hand,
ISS is not expected to play a major role at millimeter and sub-
millimeter wavelengths, the transition between weak and strong
scintillation regimes occurring in the centimeter domain (Rickett
et al. 1995).

In order to reconcile intrinsic variations with the theoret-
ical limit, different explanations, like beaming of the emis-
sion due to bulk relativistic motion (Rees 1967), coherent ra-
diation mechanisms (Baker et al. 1988; Benford 1992; Lesch
& Pohl 1992), propagation of a shock in an underlying, sta-
ble relativistic jet (Qian et al. 1991), were proposed. Neither
the broad-band nature of the spectral energy distribution (SED)
observed in IDV sources (see e.g. Quirrenbach et al. 1989;
Wagner et al. 1993, 1996) nor the VLBI observations (see e.g.
Gabuzda 2000) strongly support any of them, leaving the al-
ternative explanation that the IC limit might actually be vio-
lated and inverse-Compton catastrophes occur during transient
periods (Kellermann & Pauliny-Toth 1969; Slysh 1992). In this
paper, this hypothesis is explored for a prototypical source,
S5 0716+71.

This source is one of the brightest and best-studied
BL Lacertae objects in the sky. It was one of the prime targets
for investigating the mechanism responsible for IDV, and the first
source in which simultaneous variations in the radio and optical
bands, indicating a possible intrinsic origin of the observed IDV,
were reported (Wagner et al. 1990; Quirrenbach et al. 1991).
Moreover, it exhibited IDV during all the past optical studies
and almost all the radio campaigns carried out during the last
two decades (Heeschen et al. 1987; Wagner et al. 1990, 1996;
Heidt & Wagner 1996; Ghisellini et al. 1997; Sagar et al. 1999;

Quirrenbach et al. 2000; Villata et al. 2000; Nesci et al. 2002;
Kraus et al. 2003; Raiteri et al. 2003). The IDV duty cycle of
the source (the fraction of time in which the object is variable)
derived from these studies is ∼90%.

Deep maps of the source obtained with the Very Large Array
(VLA) show a core-halo structure on the arcsecond scale. VLBI
observations over more than 20 years at centimeter wavelengths
reveal a very compact source, with evidence of a core-dominated
jet structure extending several tens of milliarcseconds to the
North (Eckart et al. 1986, 1987; Witzel et al. 1988; Polatidis
et al. 1995; Jorstad et al. 2001). The milliarcsecond jet is mis-
aligned with respect to the VLA jet by ∼75◦ (Britzen et al. 2005;
see also Eckart et al. 1987).

Controversial scenarios, involving a wide range of proper
motions (0.05−1.2 mas/year), were proposed for the kinemat-
ics of the S5 0716+71 jet components, the more recent ones
pointing towards apparent velocities which are atypically fast for
BL Lac objects (see Bach et al. 2005, and references therein).

The redshift of the source is still unknown, although the star-
like appearance and the absence of any signature of a host galaxy
in deep images had set a lower limit of z > 0.3 (Quirrenbach
et al. 1991; Stickel et al. 1993; Wagner et al. 1996), which will
be used throughout this paper. More recently, Sbarufatti et al.
(2005) suggested a higher lower limit of z > 0.52. The exact
brightness temperature of the source can therefore not be deter-
mined: lower limits up to Tb ∼ 1017 K were inferred from ra-
dio IDV at 5 GHz (Quirrenbach et al. 1991; Wagner et al. 1996),
whereas a limit of Tb, z=0 = 1.85 × 1013 K was estimated from
the constraints on the core size derived through interferometric
measurements performed in August 2003 with the Very Long
Baseline Array (VLBA) at 15 GHz (Kovalev et al. 2005). This
source is hence an ideal target for the investigation of radiative
signatures of IC catastrophes.

S5 0716+71 has been detected at GeV energies with a steep
γ-ray spectrum (Hartman et al. 1999), but the soft-γ-ray part of
its spectral energy distribution is poorly known: upper limits to
the emission were provided by OSSE (McNaron-Brown et al.
1995) and COMPTEL (Schönfelder et al. 2000); a recent reanal-
ysis of the COMPTEL data (Collmar 2006) yielded a source de-
tection in the 3−10 MeV energy range.

Synchrotron-self-Compton (SSC) emission models, which
can reproduce the GeV γ-ray emission of the source (see e.g.
Ghisellini et al. 1997), predict the SED peak to occur in the
MeV–GeV domain. The MeV detection reported by Collmar
(2006) is indeed consistent with this scenario. The above SSC
modelling involves a wide range of Lorentz factors of the radiat-
ing particles, up to γ ∼ 105, in order to explain the high-energy
component of the spectrum.

In a Compton catastrophe, the main role is expected to be
played by electrons responsible for the bulk of the radio emis-
sion in the GHz regime, where the violations of the IC limit have
been observed. Assuming an observed peak frequency of the ra-
dio spectrum of a few GHz, and a magnetic field B >∼ 10−3/δ µG
(δ being the Doppler factor of the emitting region), the above
electrons would be characterized by Lorentz factors not greater
than a few times 102. First-order IC scattering by these parti-
cles would generate bursts of radiation at ∼1014−1015 Hz, which
might blend with the synchrotron radiation produced by the
high-energy tail of the same distribution of particles. The dom-
inant loss-term would be second-order IC scattering (see e.g.
Kellermann & Pauliny-Toth 1969; Bloom & Marscher 1996),
also responsible for the onset of the catastrophe, and would
boost photons into the 1018−1020 Hz frequency range. Flares
of IC-scattered radiation should therefore be observed in this
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Table 1. List of the ground-based observing facilities whose contribution to the core campaign is presented in this paper in the form of light
curves and/or flux variation ranges in the SED. a: Radio, millimeter and submillimeter antennas, listed in ascending order of the lowest observing
frequency. b: Optical telescopes, listed in order of longitude, and their contribution to the core campaign in terms of R-band useful data (and
observing nights). The offsets indicate the corrections applied to the data sets in order to eliminate instrumental inconsistencies (when a range is
given, different offsets were used on different nights).

a. Radio, millimeter and sub-millimeter observatories
Observatory Location Telescope diameter Observing frequencies
(telescope) (m) (GHz)
Westerbork The Netherlands 14 × 25 1.392, 1.67
UMRAO Michigan, USA 26 4.8, 8.0, 14.5
Effelsberg Germany 100 4.85, 10.45, 32.0
Metsähovi Finland 13.7 22.2, 36.8
IRAM Spain 30 86.0, 230.0
HHT-SMTO Arizona, USA 10 345.0
JAC (JCMT) Hawaii 15 350.0, 664.0

b. Optical observatories
Observatory Location Telescope diameter R-band data Offsets

(cm) (nights)
Lulin Taiwan 100 153 (7) 0.
Mt. Maidanak Uzbekistan 150 2 (1) 0.
Abastumani Georgia 70 655 (6) [−0.03; 0.]
Crimean Ukraine 70 3 (2) +0.03
Tuorla Finland 103 102 (2) [+0.01; +0.02]
MonteBoo Czech Republic 62 59 (2) [+0.05; +0.07]
Perugia Italy 40 7 (4) 0.
Heidelberg Germany 70 333 (8) [+0.03; +0.06]
Michael Adrian Germany 120 90 (4) +0.03
Torino Italy 105 19 (3) −0.02
Hoher List Germany 106 41 (2) +0.14
Calar Alto Spain 220 374 (3) [+0.01; +0.02]
Roque de los Muchachos (KVA) Spain 35 58 (5) −0.01
Roque de los Muchachos (WHT) Spain 420 751 (1) 0.
Bell Kentucky, USA 60 3 (1) 0.
St. Louis Missouri, USA 36 3 (1) 0.
Kitt Peak (WIYN) Arizona, USA 90 21 (6) 0.
Coyote Hill California, USA 28 73 (1) 0.
University of Victoria Canada 50 102 (1) 0.

energy range whenever the Compton limit is violated. The effi-
cient cooling associated with a Compton catastrophe would then
rapidly restore the actual brightness temperature of the source.

The advent of the soft-γ-ray INTEGRAL satellite offers an
unprecedented chance of investigating this effect.

A multifrequency campaign involving an INTEGRAL point-
ing of the source and simultaneous radio, millimeter, sub-
millimeter, near-infrared, and optical photometric monitoring, as
well as VLBA observations, was organized and carried out dur-
ing November 2003. For the first time, constraints on the bright-
ness temperature and on the IC emission of the source were
tested simultaneously against each other.

The first results of the ground-based observing campaign are
presented in Sect. 2 of this paper; the INTEGRAL observations
are described in Sect. 3; the simultaneous spectral energy distri-
bution of the source is presented in Sect. 4; in Sect. 5 we discuss
our results and draw conclusions.

2. Ground-based multifrequency observations

The multiwavelength observations, organized under the
framework of the ENIGMA1 collaboration together with

1 http://www.lsw.uni-heidelberg.de/projects/enigma/

a WEBT2 campaign, were scheduled for the period
November 06−20, 2003 (hereafter referred to as the core
campaign) to provide the low-energy counterpart of the
INTEGRAL observation of S5 0716+71. Since the source un-
derwent an unprecedented outburst phase at radio and millimeter
frequencies during September–October 2003, the campaign
was started earlier (October 2003). When the core campaign
began on November 06 (JD = 2 452 949.5), S5 0716+71 was
still brighter in the radio and millimeter domain than in all
past studies. A rather faint optical state (R ∼ 14.17−13.64)
characterized the source in this band for the whole duration
of the INTEGRAL pointing. During the last two days of the
core campaign the source entered a brightening phase, and the
ground-based monitoring was continued till May 2004.

We here present the results of the core campaign in terms of
radio light curves at 32 and 37 GHz, and an optical R-band light
curve. Flux variation ranges at other radio, millimeter and sub-
millimeter frequencies are included in the simultaneous SED
presented in Sect. 4; the corresponding light curves will be dis-
cussed in Agudo et al. (2006) and Fuhrmann et al. (in prep.). The
ground-based observing facilities whose contribution to the core
campaign is presented in this paper are listed in Table 1.

2 http://www.to.astro.it/blazars/webt/
(see e.g. Mattox et al. 1998; Villata et al. 2004; Raiteri et al. 2005, and
references therein)
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Fig. 1. Radio-optical light curve of S5 0716+71 during the core campaign. Panel a) 32 GHz radio light curve, and 37 GHz radio light curve scaled
to the 32 GHz one (scaling factor: 〈F32 GHz/F37 GHz〉 = 0.89). Panel b) R-band optical light curve. The shaded strip indicates the period of the
INTEGRAL pointing. The two radio light curves, consistent with each other, exhibit significant inter-day variability but low-amplitude IDV. The
optical light curve displays a weekly modulation of the emission with typical IDV features superimposed.

2.1. Radio data

2.1.1. Observations, data reduction and calibration

The radio observations of S5 0716+71 at 32 GHz were per-
formed during JD = 2 452 954.889−2 452 961.251 with the
100-m radio telescope in Effelsberg. The measurements were
carried out using repeated scans, each of them consisting of
4−8 cross-scans in azimuth and elevation, resulting in typi-
cal single flux-density exposure times of 120−480 s. The an-
tenna temperature on the source was measured through the
averaged pointing-corrected amplitude of the Gaussian-shaped
cross-scans and with the standard data reduction software of the
100-m telescope. Regular measurements of the system temper-
ature were used to determine the time-dependent fluctuation of
the atmospheric opacity, which was used to correct the measured
antenna temperature for each scan. Several non-variable secon-
dary calibrators (within 10◦−20◦ of S5 0716+71) were observed
with the same sampling of the target source, in order to ensure
an accurate calibration of the residual gain fluctuations, mainly
due to atmospheric effects. The total flux-density scale was fixed
using the standard primary calibrators (e.g. 3C 286, 3C 295,
NGC 7027), whose fluxes are given in Baars et al. (1977) and
Ott et al. (1994). Further details on the observing method
and data-reduction scheme can be found in Kraus et al. (2003)
and references therein.

The measurements at 37 GHz were obtained in the period
JD = 2 452 951.878−2 452 962.838 with the 13.7-m diameter
radome-enclosed antenna of the Metsähovi Radio Observatory.

The 37-GHz receiver is a dual horn, Dicke-switched receiver
with a HEMT preamplifier, and it is operated at room tempera-
ture. On-on observations were performed, alternating the source
and the sky in each feed horn, and adopting typical integration
times of 1200−1400 s. The source DR 21 was used as the pri-
mary flux calibrator, whereas 3C 84 was used as a secondary
calibrator. Errors in the calibrated fluxes were computed by tak-
ing both the contribution of the measurement rms and the un-
certainty in the absolute calibration into account. More details
about the Metsähovi observing system and data reduction can be
found in Teräsranta et al. (1998) and references therein.

2.1.2. The light curves

Figure 1a shows a superposition of the 32 GHz (black symbols)
and 37 GHz (grey symbols) radio light curves. In spite of the dif-
ferent measurement accuracy and scatter which characterize the
two data sets, a rise of the source flux over the observing period,
with some shorter-term fluctuations superimposed, is clearly vis-
ible at both wavelengths.

A variability test was performed on the two data sets
by checking their consistency with a constant flux level at
the 0.1% significance level: the test yielded a negative result,
meaning that the light curves clearly exhibit variability.

The overall increase of the brightness was approximated by
a linear slope: the 32-GHz data can be represented by a linear
increase of the flux of 41% in 6.4 days, whereas the 37-GHz
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Table 2. Results of the linear fits to the radio light curves at 32
and 37 GHz over different periods during the core-campaign (see text
for details). Column 1: time interval relevant to the fit; Col. 2: observing
frequency [and size of the time bin applied to the light curve in order
to make the linear fit acceptable at 5% significance level]; Col. 3: linear
slope; Col. 4: reduced χ2 of the fit; Col. 5: Fit significance.

Time interval ν (GHz) Slope χ2
red Sign.

(JD-2 452 000.00) [bin (h)] (Jy/d) (%)
a

954.889–961.251 32 +0.19 ± 0.01 1.00 47.53
951.878–962.838 37 [12.4] +0.12 ± 0.03 1.38 19.04

b
954.878–958.962 32 +0.25 ± 0.02 0.96 55.30

37 [3.] +0.35 ± 0.15 1.22 22.71
c

954.889–956.391 32 0. 1.21 19.97
32 +0.08 ± 0.06 1.17 24.08

956.904–957.968 32 0. 0.86 61.50
32 +0.35 ± 0.13 0.38 98.50

958.372–959.711 32 0. 0.36 99.67
32 −0.01 ± 0.09 0.38 99.45

960.614–961.251 32 0. 0.60 77.58
32 +0.48 ± 0.28 0.28 96.36

951.878–952.437 37 0. 3.19 0.39
37 0.42 ± 0.27 2.26 1.61

954.782–955.419 37 0. 1.13 32.26
37 −0.24 ± 0.22 1.12 33.46

955.743–956.310 37 0. 0.49 92.96
37 0.42 ± 0.27 0.33 98.37

956.980–957.423 37 0. 1.67 9.96
37 −0.10 ± 0.37 1.88 6.87

957.990–958.938 37 0. 2.09 1.16
37 0.05 ± 0.17 2.24 0.79

962.010–962.428 37 0. 2.23 1.73
37 −1.86 ± 0.57 1.09 36.32

962.729–962.839 37 0. 2.23 6.30
37 6.75 ± 2.38 0.27 84.51

d
952.213–952.803 37 +2.61 ± 0.33 3.58 46.52
954.286–954.980 37 −2.14 ± 0.30 2.32 2.32
956.225–956.428 37 +8.86 ± 1.21 2.88 3.47

data can be described by a flux rise of 39% in 10.7 days (see
Table 2a).

A consistency check of the two light curves was per-
formed for the period in which they overlap, namely JD =
2 452 954.878−2 452 958.962. In this period, the data at 32
and 37 GHz were characterized by a sampling of ∼12
and ∼15 data-points per day, and average flux uncertainties
of 4.6% and 5.0%, respectively. The difference in scatter of the
two data trains is reflected in the fractional root-mean-square
variability amplitude Fvar (see Vaughan et al. 2003, and refer-
ences therein), which is 9.1% at 32 GHz and 13.9% at 37 GHz.
However, a Kolmogorov-Smirnov test showed that the differen-
ces between the 32-GHz and the 37-GHz data (rescaled to the
32-GHz frequency) are normally distributed at 95% significance
level, confirming that the measurement errors can well account
for the discrepancies between the two curves. The light curves
are hence consistent with each other.

The period of overlap of the two light curves covers the inter-
day flux variation recorded in the source during the core cam-
paign: the rise in flux is consistent at both frequencies with the
linear increase of 35% in 4.1 days which best fits the 32-GHz
data (see Table 2b).

A search for faster variations was then performed in both
light curves for the whole core-campaign period, during which
the sampling of each light curve is such that it is easy to identify
subsets of data separated in time by gaps of ∼8 h.

At 32 GHz, four subsets of light curve can be fitted by
a linear trend, whose slope is significantly variable. The re-
sult of the variability test (made by assuming the slope equal
to zero) and the best-fit value of the slope are reported, for
each subset, in Table 2c. Seven subsets of data at 37 GHz
can also be approximated by linear slopes (see Table 2c), with
the exception of seven measurements during JD = 2 452 952,
2 452 954, and 2 452 956 (see Table 2d). The most extreme de-
viation was the one recorded during JD = 2 452 956 (which
yielded a flux difference of ∼4σ in the distribution discussed
above), corresponding to a linear increase of the flux of 42%
in 0.12 days. The other two strong deviations can be described by
linear flux variations of 33% in 0.41 days and 20% in 0.12 days,
respectively.

The reliability of the observations can be best estimated
by comparing the measurements taken simultaneously with dif-
ferent telescopes (see e.g. Witzel et al. 1992, for a compari-
son of the 5-GHz observations of S5 0716+71 performed at
the same time with the VLA and the Effelsberg telescope in
May 1989). Therefore, although a careful analysis of the 37-GHz
data showed that the measurements characterized by extreme de-
viations were not affected by any obvious systematic effect, the
lack of any counterpart at other radio frequencies did not allow
us to consider the lower limits to the brightness temperatures
inferred from those variations (up to Tb ∼ 1.5 × 1017 K) as a re-
liable constraint on the variability brightness temperature of the
source.

2.2. Optical data

2.2.1. Observations

Table 1b (Cols. 1–4) shows names and locations of the nine-
teen observatories which contributed to the core campaign with
R-band optical data, together with the sizes of the telescopes
used and the amount of useful observations provided.

It was recommended that the optical observers performed in-
tranight observations of S5 0716+71 and of the field reference
stars Nos. 1 to 8 whose magnitudes are given in Villata et al.
(1998). The choice of the exposure times was left to the ob-
servers, who found the optimal compromise between high ac-
curacy and good temporal sampling.

The core-campaign period was characterized by un-
favourable weather conditions in most of the observing sites.
However, the high declination of the source, the long northern
nights, and the large number of telescopes involved allowed a
considerable overlap among observations carried out with tele-
scopes located at very different longitudes. This led to unprece-
dented dense monitoring of the source over such a long period:
2849 useful observations were performed in ∼15 days, with an
average rate of ∼8 frames per hour.

2.2.2. Data reduction, calibration and assembly

Ten out of nineteen data sets (44% of the collected data) were
homogeneously analysed with aperture photometry on de-biased
and flat-fielded frames. The remaining data sets were analysed
with different procedures by the observers themselves.

The instrumental magnitudes were then processed in order to
obtain the standard magnitudes of S5 0716+71 and the relevant
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errors. Due to the variety of characteristics of the telescopes and
detectors involved, as well as of the collected photometric re-
sults, not all the reference stars suggested to the observers were
available for the calibration. Moreover, because the source was
faint during most of the core campaign, the long exposure times
required often caused the saturation of reference stars 1 and 2. In
order to achieve a homogeneous data calibration and minimize
the instrumental offsets, we defined our calibration sequence of
reference stars common to most of the data sets and free of sat-
uration, i.e. stars 3, 5 and 6. The uncertainty in the calibrated
magnitudes of S5 0716+71 was estimated, for each subset of
data taken during the same night and under comparable observ-
ing conditions, as follows: the two stars of the calibration se-
quence closest in magnitude to the source were selected, and
their magnitude difference calculated. For each frame, the devi-
ation of this quantity with respect to its mean was found. The
error was taken as the larger of this deviation and the standard
deviation of the difference over the night.

Binning (over time intervals from 5 to 20 min) was applied
to intranight data trains affected by noise and/or low accuracy
due to either non-optimal sky conditions or too short integration
times.

The calibrated light curves relevant to the various telescopes
were then assembled according to the procedure described in
Villata et al. (2002). Instrumental offsets were computed, night
by night, whenever this was allowed by the temporal overlap be-
tween two data sets, i.e. when one of the two datasets had at
least two data points belonging to the time interval covered by
the second data set. Each offset was defined as the mean magni-
tude difference of the overlapping parts of the two light curves,
the difference being computed between pairs of data points sep-
arated in time by no more than 5 min (see Table 1b, Col. 5). The
data sets were then corrected by the above offsets. Data subsets
characterized by both lower accuracy and worse temporal sam-
pling were finally discarded when higher-accuracy and better-
sampled data trains were available in the same time interval.
Data points affected by errors greater than 0.05 mag were not
included in the final light curve, unless no other data were avail-
able within 10 min. The average accuracy of the final light curve
is of order ∼1%.

2.2.3. The light curve

The R-band core-campaign light curve is displayed in Fig. 1b.
Flux densities were derived from magnitudes using the absolute
calibrations of Bessel (1979), and dereddened with the extin-
ction laws of Cardelli et al. (1989), under the assumption of a
Galactic extinction AB = 0.132 mag (provided by NED, from
Schlegel et al. 1998).

This light curve is characterized by a mean sampling
of 20 min through the whole core-campaign period, and of
about 14 min during the INTEGRAL observation.

The source displayed remarkable variability during the core
campaign: the overall peak-to-peak R-band variation was ∆FR =
12.1 mJy (∆R = 1.07 mag), and the fractional root mean square
variability amplitude Fvar = 23.3%.

A weekly modulation of the emission with intra-day fea-
tures superimposed characterized the relatively faint state of the
source before JD = 2 452 963.0: during this period the source
brightness varied between 7.2 and 12.4 mJy (R = 14.17−13.58),
the mean flux was 〈FR〉 = 9.5 mJy (〈R〉 = 13.87), and
Fvar = 10.6%. After JD = 2 452 963.0, a brightness rise
of 7.8 mJy (∆R = 0.57 mag) occurred in 25.7 h, and the source

reached 19.2 mJy (R = 13.10 mag), the highest level recorded
during the core-campaign period.

The IDV features do not generally show well-defined
shapes, suggesting that there might be blending between suc-
cessive flares. Their linear parts (in magnitude scale), last-
ing up to ∼3.5 h, display rising and declining rates not
faster than 13% per hour. These variation rates are compara-
ble with the steepest slopes reported by Wagner et al. (1996)
(∼10% h−1) and also with the slopes found by Villata et al.
(2000) (12% h−1). Lower-amplitude intra-day variations, on
comparable time scales, were reported by Ghisellini et al.
(1997), Sagar et al. (1999) and Nesci et al. (2002). Detailed tem-
poral and spectral analysis of the optical variability will be given
in forthcoming papers.

3. INTEGRAL observations and data analysis

INTEGRAL (Winkler et al. 2003) observed S5 0716+71 from
2003 November 10th, 11:20:04 UT to 2003 November 17th,
09:09:31 UT, for a total amount of ∼539 ks.

The observations were strongly affected by the biggest ever
recorded solar flare (classified as X28), which occurred on
November 04, 2003. Because of this event, SPI (Vedrenne
et al. 2003) underwent annealing treatment during revolu-
tions 132−136 and was not operational for most of the granted
observing time. Of the two detectors of JEM-X (Lund et al.
2003), only JEM-X 2 was used, while JEM-X 1 was switched
off. IBIS/ISGRI (Ubertini et al. 2004; Lebrun et al. 2003) and
IBIS/PICsIT (Ubertini et al. 2004; Di Cocco et al. 2003) were
both operational.

The INTEGRAL data were analysed by means of the
INTEGRAL Offline Scientific Analysis (OSA) software, whose
algorithms are described in Westergaard et al. (2003) for JEM-X
and Goldwurm et al. (2003) for IBIS. Version 4.2 of the OSA
software was used for the analysis of the IBIS data, whereas the
improved OSA 5.0 was necessary for the JEM-X data analysis.
The PICsIT data could not be analysed due to the failure of the
OSA software pipeline.

3.1. JEM-X

The JEM-X observation is split into 145 different science win-
dows with an average exposure of∼3 ks each. The OSA software
was used to look for sources within an offset angle of 5◦ to avoid
spurious detections. S5 0716+71 was not detected in any of the
single science windows, neither in the 3−35 keV band nor in any
sub-band. There was also no other detected source in the field of
view.

We combined the images from all the individual science win-
dows into a mosaic (corresponding to a total effective exposure
of ∼381 ks) with the varmosaic routine of the FTOOL package;
however, the source remained undetected.

We estimated an upper limit to the flux of S5 0716+71 by
means of the statistical variance of the mosaic intensity at the po-
sition of the source. The 3σ upper-limit intensity (cts cm−2 s−1),
with σ being the square root of the variance, was multiplied
by the ratio of the flux of the Crab Nebula in the JEM-X band
(Toor & Seward 1974; Nørgaard et al. 1994) and the JEM-X
intensity obtained from a mosaic image of the Crab. Assuming
the spectrum of S5 0716+71 to be identical to that of the Crab
(Γ = 2.1 ± 0.03; see Toor & Seward 1974), we obtained a
3σ flux upper limit of F3−35 keV = 6.12 × 10−12 erg cm−2 s−1

(see Table 3a), which is lower than the upper limit derived by
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Table 3. Results of the INTEGRAL analysis: JEM-X and IBIS/ISGRI
3σ upper limits to the flux of S5 0716+71 during November 10–17,
2003.

a. JEM-X
Energy Intensity Photon Flux
range (keV) (10−5 cts/cm2/s) index Γ� (10−12 erg/cm2/s)

3−35 <5.89 2.1 <6.12

b. IBIS/ISGRI
Energy Count rate�� Photon Flux
range (keV) (cts/s) index Γ� (10−11 erg/cm2/s)

15−40 <0.176 1.6−2.1 <1.34−<1.41
40−100 <0.160 1.6−2.1 <1.70−<1.72
100−200 <0.140 1.6−2.1 < 5.58−<5.73

� Photon index adopted to derive the flux from the count rate, under the
assumption that F(E) ∝ E1−Γ.
�� Count rate errors are 1σ uncertainties.

Pian et al. (2005) from a shorter (189 ks) observation performed
in April 2004.

3.2. IBIS/ISGRI

The ISGRI-instrument data set consists of 150 science windows,
corresponding to a total effective exposure of 362 ks. The stan-
dard energy binning was used for the image deconvolution, and
the individual frames were accumulated into a co-added mosaic
image. Several sources, including Mrk 3 and Mrk 6, were re-
ported as significant detections by the OSA software.

S5 0716+71 was not detected by the source locator at 3σ sig-
nificance in any energy bin of the mosaic image. A signal was
detected at a significance greater than 1σ in at least one energy
bin between 15 and 200 keV in 54% of the individual science
windows. The reliability of these detections was checked by ex-
tracting, from each science window, the count rate at the sky
position of S5 0716+71 and in 12 background regions located
within 1◦ of the source. A two-sample Kolmogorov-Smirnov
test showed that the resulting distributions of source and back-
ground count rates in each sub-band were consistent with them
being drawn from the same parent distribution at the 5% signif-
icance level, confirming the non-detection of S5 0716+71 at the
science-window level also.

In order to estimate an upper limit to the source flux in
the ISGRI energy band, we extracted, for each sub-band, the
value of the statistical variance of the count rate at the posi-
tion of the source from the mosaic3 of all the science windows.
The corresponding standard deviation (σstat) was multiplied by
the HWHM of the distribution of the significances of the mo-
saic (σsyst) to take systematic errors into account (A. Goldwurm,
priv. comm.). The 3σ upper limits (σ = σstat · σsyst) to the count
rate derived with this procedure are shown in Table 3b.

The above-mentioned result was crosschecked by estima-
ting, for each energy sub-band, the standard deviation σstat
from the statistical variances of all the science windows (A.
Goldwurm, priv. comm.). The flux and variance at the nominal
position of the source were extracted from each science window.
The mean of these fluxes was then computed by weighting it by

3 Note that the parameter responsible for pixel spread in con-
structing the mosaic was not activated in our ISGRI analysis
(OBS1_PixSpread= 0), in order to obtain a better estimate of variance
in the mosaic (A. Goldwurm, priv. comm.)

the inverse of the corresponding variances. The error in the mean
flux, representing σstat, was found to have the same value as in
the case of the mosaic, thus yielding equivalent upper limits.

The count-rate upper limits derived with these methods were
converted into fluxes through XSPEC by using the results of
the spectral analysis of three BeppoSAX observations (Giommi
et al. 1999; Tagliaferri et al. 2003) above ∼2 keV, where the
source spectrum can be well represented by a power law (Γ =
1.6−1.96). In addition, the Crab Nebula spectrum (Γ = 2.1) was
also considered, for consistency with the assumption made for
the computation of the JEM-X flux. By varying the assumed
photon index in the range Γ = 1.6−2.1, we obtained the 3σ flux
upper limits given in Table 3b.

A comparison of this result with the ISGRI flux of
S5 0716+71 derived by Pian et al. (2005) in the 30−60 keV
range from their ∼30% shorter observation (256 ks) of
April 2004 was performed by computing the flux in the same
energy bin, under the assumption of a spectral index equal to
that of the Crab Nebula. The upper limit obtained in this way
was F30−60 keV = 1.06× 10−11 erg cm−2 s−1, a factor of ∼3 below
their detection.

4. The spectral energy distribution (SED)

The broadband monitoring carried out during the INTEGRAL
pointing (see Table 1 for a list of the ground-based observing
facilities) allowed us to assemble, for the first time, the SED
of S5 0716+71 with truly simultaneous data spanning more
than 10 decades of frequency and characterized by an excep-
tional energy sampling.

The SED of S5 0716+71 is displayed in Fig. 2, whereas
the Fν vs. ν diagram is shown in Fig. 3 (Online Material). The
flux variation ranges at radio-to-optical frequencies recorded
during the INTEGRAL pointing period (see Sect. 2), as well as
the upper limits estimated from the non-detection of the source
by INTEGRAL (see Sect. 3) are plotted with dark diamonds, and
are superposed on the historical data or variation ranges, drawn
with grey symbols4.

The low-energy part of the SED, which is commonly inter-
preted as due to synchrotron emission, shows the unprecedented
brightness of the source in the radio-millimeter energy range
and the moderate emission recorded at optical frequencies.
The synchrotron peak (representing the most relevant out-
put of the synchrotron component) is likely to be located
around 1013−1014 Hz.

During the core campaign, the synchrotron spectrum
of S5 0716+71 was inverted (α > 0, with Fν ∝ να) in the radio-
millimeter wavelength domain, with a turnover frequency close
to 90 GHz (see Agudo et al. 2006). The spectral index of the par-
tially opaque part of the spectrum was derived from the simulta-
neous radio measurements at 5 and 32 GHz (considerably below
the turnover) performed on JD = 2 452 955 and JD = 2 452 961
with the Effelsberg 100-m radio telescope (see Fuhrmann et al.,
in prep.) Its value is α5−32 = +0.3 on JD = 2 452 955, and
α5−32 = +0.5 on JD = 2 452 961: as the millimeter-flux rose
towards the end of the observing period, the radio spectrum be-
came more inverted.

As usually found in compact radio sources, the spectrum at
frequencies lower than the turnover was not rising as fast as

4 Previous studies of the SED of S5 0716+71 can be found in Wagner
et al. (1996), Ghisellini et al. (1997), Giommi et al. (1999), Ostorero
et al. (2001), and Tagliaferri et al. (2003).
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Fig. 2. Spectral energy distribution (SED) of S5 0716+71: dark diamonds represent data simultaneous with the INTEGRAL pointing, and grey
symbols represent historical data; variation ranges are indicated by vertical bars. Simultaneous data are from this work: they show the exceptionally
bright state of the source in the radio-to-submillimeter domain, the moderate level of the optical emission and the upper limits to the hard-X-ray
brightness. Historical data are from: RATAN-600, at the wavelengths of 1.38, 2.7, 3.9, 7.7, 13 and 31 cm (Ostorero et al., in prep.); Kühr et al.
(1981), Waltman et al. (1981), Eckart et al. (1982), Perley (1982), Perley et al. (1982), Lawrence et al. (1985), Saikia et al. (1987), Kühr & Schmidt
(1990), Moshir et al. (1990), Hales et al. (1991), Krichbaum et al. (1993), Gear et al. (1994), Hales et al. (1995), Douglas et al. (1996), Rengelink
et al. (1997), Zhang et al. (1997), Riley et al. (1999), Cohen et al. (2002), Raiteri et al. (2003) and references therein, at other radio-to-optical
frequencies; Pian & Treves (1993), and Ghisellini et al. (1997) in the UV band; Biermann et al. (1992), Comastri et al. (1997), Kubo et al. (1998),
Giommi et al. (1999), Tagliaferri et al. (2003), and Pian et al. (2005) in the X-ray band; McNaron-Brown et al. (1995), Hartman et al. (1999), and
Collmar (2006) in the γ-ray energy range.

the optically thick spectrum of a homogeneous spherical syn-
chrotron source (Fν ∝ ν2.5). Such behaviour is traditionally inter-
preted as the result of a superposition of spectra characterized by
different synchrotron self-absorption (SSA) frequencies, which
might be produced either by a finite number of homogeneous
components (Kellermann & Pauliny-Toth 1969) or by an inho-
mogeneous source with gradients in the magnetic field and parti-
cle density (Condon & Dressel 1973; de Bruyn 1976; Marscher
1977).

The variability observed in the radio-millimeter energy
range, of which we showed an example in the 32 and 37 GHz
light curves presented in Sect. 2.1, hence occurred in a regime in
which SSA processes might have played an important role.

The IDV study carried out during the fainter radio-to-optical
state of the source of February 1990 (Wagner et al. 1990;
Quirrenbach et al. 1991), reported a variable radio spectrum
which was on average optically thin both in the 5.0−8.4 GHz
energy range (α5−8.4 = −0.10) and in the 1.4−5.0 GHz band
(α1.4−5 = −0.35) (Wagner et al. 1996). The long-term behaviour
of the radio spectral indices indicates spectra on average inverted
in the 4.8−14.5 GHz band (α4.8−8 = 0.72; α8−14.5 = 0.16) during
1985−1992 (Wagner et al. 1996), as well as in the 5.0−15.0 GHz
band (α5−15 = 0.19) during 1978−2002 (Raiteri et al. 2003),
where also a flatter-when-brighter trend and a weak correlation
between spectral flattening and ejection of a new component
were recognized by Raiteri et al. (2003) and Bach et al. (2005),
respectively. However, no other truly simultaneous spectral in-
formation on the source spectrum from radio up to millimeter
frequencies is available to date.

The moderate level of the optical emission recorded during
the bright radio state is consistent with the absence of correla-
tion, at zero time lag, between major optical and radio events in

the source, as already noticed by Raiteri et al. (2003) from in-
spection of the historical (1978−2002) radio-optical light curve.

As far as the high-energy part of the SED is concerned,
the upper limits provided by JEM-X (see Sect. 3.1) and by
IBIS/ISGRI (see Sect. 3.2) in the two lower-energy bins are con-
sistent with the levels recorded by ASCA (Kubo et al. 1998) and
BeppoSAX (Giommi et al. 1999; Tagliaferri et al. 2003) during
past observations, and indicate that the source was fainter than
during the INTEGRAL observation of April 2004 (Pian et al.
2005), represented in Fig. 2 by the grey triangle at ∼41.4 keV
(∼1019 Hz). The two higher-energy IBIS/ISGRI upper limits are
comparable with the limits derived from the OSSE observations
(McNaron-Brown et al. 1995).

5. Discussion and conclusions

The known high duty cycle of S5 0716+71 was confirmed by the
intensive simultaneous radio-to-optical monitoring performed
during the core campaign. The source was variable in both the ra-
dio and optical bands, although the amplitude of IDV recorded in
the radio regime was significantly lower than in previous studies.

Let us assume long-term stationary radio emission, and con-
sider a Gaussian brightness distribution for the variable source
region. If the event which triggers the flux fluctuations propa-
gates isotropically through the source, the flux variability ob-
served in the radio band allows one to estimate the brightness
temperature of the source through the relation:

Tb = 8.47 × 104 Fν

[
λ dL

tν (1 + z)2

]2
(1)
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where Fν is the flux density in Jy, λ is the wavelength in cm, tν in
years is a function of the mean flux and the flux variation in the
time interval considered according to the relation

tν =
〈Fν〉
∆Fν

∆t
(1 + z)

(2)

(Wagner et al. 1996; see also Jones et al. 1974), z is the source
redshift, and dL is the luminosity distance of the source in Mpc,
given by

dL =
c(1 + z)

H0

∫ z

0
[(1 + z′)2(1 +ΩMz′) − z′(2 + z′)ΩΛ)]−1/2dz′(3)

(Carroll et al. 1992) in the case of aΛ-dominated universe (ΩΛ =
0.7, ΩM = 0.3, Ωk = 0; see Spergel et al. 2003). Assuming
H0 = 72 km s−1 Mpc−1 (Freedman 2001) and a redshift z > 0.3,
the source luminosity distance would be greater than 1510 Mpc.
The brightness temperature derived from the overall increase of
the source flux recorded at 32 and 37 GHz during the period
of overlap of the two-frequency measurements (∆t = 4.1 days)
is hence determined to be Tb > (2.1 ± 0.1) × 1014 K, if the ob-
served flux variations are not affected by any propagation effects.
Higher lower limits to the brightness temperature can be derived
under less-conservative assumptions: a uniform distribution of
the source brightness, and/or an anisotropic propagation of the
perturbation which causes the variability would yield values up
to Tb > (1.2 ± 0.1) × 1015 K. Moreover, a redshift limit z > 0.52
would increase Tb by a factor of ∼3. In any case, our brightness
temperature exceeds the IC limit of ∼1012 K by at least two or-
ders of magnitude.

If relativistic boosting of the radiation is the explanation of
this excessive value, Doppler factors δ >∼ (Tb/1012 K)1/3(1+ z) >∼
8 would be required in order to lower the intrinsic brightness
temperature of the source below the theoretical limit5.

A recent analysis of the historical data set of VLBI im-
ages of S5 0716+71 at several frequencies performed by Bach
et al. (2005) showed that Doppler factors ∼20−30 are consis-
tent with the proper motion of the jet components. These val-
ues, which rule out slower kinematic scenarios of the source jet
presented previously (Witzel et al. 1988; Gabuzda et al. 1998),
could largely account for the above brightness temperature, pro-
vided that the source region responsible for the observed flux
variability had the same kinematic properties as the VLBI jet
components.

The source flux evolution recorded in the centimeter-
millimeter domain was always dominated by that of a core of
size <∼0.1 mas. Confirmation of this evidence was recently pro-
vided by the 15-GHz VLBA measurements during August 2003
(Kovalev et al. 2005) and by the analysis of space-VLBI (VSOP)
observations performed in 2000 (Bach et al. 2006). The observed
variability hence originates from either the sub-parsec jet or re-
gions at the base of the jet itself.

If the variability originates from one or more jet components
moving according to the kinematics described by Bach et al.
(2005), and characterized by inverted or flat radio spectra (pos-
sibly becoming steeper as the components move away from the
core), the brightness temperature would only apparently exceed

5 A more accurate value of the IC limit, and consequently a better
estimate of the Doppler factor derived from the brightness tempera-
ture, would require detailed knowledge of the characteristics of the in-
trinsic spectrum of the source, including the synchrotron upper cutoff
frequency, the self-absorption frequency, the radio spectral index, etc.
(see e.g. Kellermann & Pauliny-Toth 1969; Blandford 1990; Readhead
1994).

the IC limit. The non-detection of the source by INTEGRAL
might hence easily be the consequence of the non-occurrence of
any Compton catastrophe in the source. This scenario would also
enable us to reconcile the excessive VLBA brightness tempera-
ture of Tb, z=0 > 1.85 × 1013 K derived by Kovalev et al. (2005)
with a value lower than the IC limit, assuming a Doppler factor
δ >∼ (Tb/1012 K) (1 + z) >∼ 24 (note that the VLBA brightness
temperature scales by δ/(1 + z)).

On the other hand, if the variable core emission is affected by
a Doppler enhancement different from that of the resolved VLBI
jet components, the IC-limit violation would be real for Doppler
factors δ <∼ 8. In this case, Compton catastrophes would have oc-
curred in the source: the high-energy non-detection would hence
provide a constraint for any model of the source emission tak-
ing second-order Compton scattering (e.g. Bloom & Marscher
1996), and hence the possibility of Compton catastrophes, into
account.

Some alternative explanations for the excessive brightness
temperature take propagation effects into account. The corre-
lation between optical brightness and radio spectral index, as
well as the simultaneous change of variability time-scale ob-
served during the February 1990 campaign (Wagner et al. 1990;
Quirrenbach et al. 1991; Wagner et al. 1996), have been among
the strongest arguments against the extrinsic origin of radio IDV
in S5 0716+71 in the past decade. However, the radio and op-
tical intra-day variability observed during our campaign, when
the source was in a brighter radio-to-optical state and had an
inverted spectrum up to millimeter frequencies, do not appear
to be obviously correlated. This might be the consequence of
optical-depth effects (which can modify the shape and ampli-
tude of flares) on radio emission intrinsically correlated with that
in the optical band; alternatively, the radio and optical radiation
observed might have come from non-cospatial components char-
acterized by different sizes. In the absence of correlated radio-
optical variations, the possibility of a contribution of ISS to the
observed radio variability cannot be completely ruled out, im-
plying that the brightness temperature inferred from variability
is not representative of the photon density of the source; in par-
ticular, the violation of the IC limit would again be only apparent
in an ISS-driven variability scenario.

It is very unlikely that this variability can be explained by
scintillation alone. In fact, ISS is not a very efficient mecha-
nism in the 32−37 GHz (8−9 mm) regime, to which our bright-
ness temperature refers. Moreover, the simultaneous observa-
tions at 86 GHz (3 mm), where ISS is less efficient than at
32−37 GHz, showed that ISS can be definitely ruled out as an
explanation for the observed (comparable) variability at these
frequencies and for the corresponding excessive brightness tem-
peratures (Agudo et al. 2006). Therefore, if ISS contributed to
the observed 32−37 GHz flux evolution, in all likelihood it was
not the dominant variability mechanism.

In conclusion, violations of the brightness-temperature
IC limit were inferred from the radio variability observed at
32−37 GHz. If the recorded radio emission is either intrinsic and
beamed with Doppler factors δ >∼ 8, or strongly affected by ISS,
the violation of the IC limit would be apparent, and readily con-
sistent with the non-detection of the source by INTEGRAL in
the X-γ-ray regime. Intrinsic flux variations in the presence of
lesser beaming effects would instead imply a real violation of the
theoretical limit; in this case, the non-detection of correspond-
ing γ-ray avalanches provides a strong constraint for modelling
of the Compton catastrophe in this source. At any rate, our un-
precedented simultaneous broad-band measurements will help



806 L. Ostorero et al.: Testing the inverse-Compton catastrophe scenario in S5 0716+71. I.

to define the parameter space of SSC emission models in de-
tailed studies of the multifrequency properties of S5 0716+71.
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Fig. 3. Broadband spectrum of S5 0716+71: dark diamonds represent data simultaneous with the INTEGRAL pointing, and grey symbols represent
historical data; variation ranges are indicated by vertical bars. See caption of Fig. 2 and Sect. 4 for more details.


