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ABSTRACT
We present simple analytical formulae for the emission spectrum and total power of a special
kind of resonant inverse Compton scattering (RICS) of a relativistic electron in an intense
magnetic field. In contrast with the available formulae system, we obtain a markedly simplified
one based on the semiclassical quantum theory, which is more understandable for people who
are unfamiliar with quantum electrodynamics. We show that the RICS process, under an
appropriate ‘accommodation condition’ derived in this paper, is predominantly much more
efficient than the coexistent ordinary inverse Compton scattering, and produces highly beamed
high-frequency radiation with moderately good monochromaticity. Our formulae are simple
to use – thus offering a lucid physical intuition for the theory – and may find wide applications
in hard X-ray and gamma-ray astrophysics.
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1 I N T RO D U C T I O N

The magnetic inverse Compton scattering (ICS) of a relativistic
electron in the very strong magnetic field (e.g. B ∼ 108–1013 G)
of a neutron star (NS) or a strange star is divided into two parts:
resonant and non-resonant (Herold 1979; Xia, Qiao & Wu 1985;
Daugherty & Harding 1986; Dermer 1989, 1990; Harding & Daugh-
erty 1991; You, Chen & Deng 1997; Chen et al. 1997). The non-
resonance part of scattering is basically the same as the ordinary
field-free inverse Compton scattering because their cross-sections
are approximately the same, σ nres

s ≈ σ T, when the incident fre-
quency ν ′

i of scattered photons in the electron rest frame (ERF) is
markedly higher than the main resonance frequency, i.e. the Lan-
dau frequency, νB ≡ eB/2πmc, ν ′

i > νB. If ν ′
i is much lower than

νB, ν ′
i � νB, the scattering diminishes because σ nres

s → 0. In this
paper, we do not distinguish the terminology ‘non-resonant inverse
Compton scattering’ from ‘inverse Compton scattering’ and sim-
ply denote it as ‘ICS’. The second part, which we call ‘resonant
inverse Compton scattering’ (RICS), mainly occurring at ν ′

i � νB,
is a very special kind of scattering owing to its remarkable proper-
ties. RICS arises from the cyclotron-resonant absorption and sub-
sequent instantaneous re-emission of the incident photon by the
relativistic electron. In this paper we show that the resonance na-
ture of this process makes the RICS potentially a very important
radiation mechanism in the high-frequency band. We derive an ‘ac-
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commodation condition’ under which the RICS process has pre-
dominantly a much higher radiation efficiency than that of the coex-
istent ordinary ICS. The RICS photons have very high frequencies,
ν ∼ γ νB = γ eB/2πmec. This means that ν would fall in the γ -ray
range when B ∼ 109−13 G and γ ∼ 101−6, where γ is the Lorentz
factor, γ ≡ 1/

√
1 − β2 = mc2/m0c2, representing the dimension-

less energy of the fast electron. We show that the RICS emission
has a moderately good monochromaticity (see equation 11 or Fig.
3 in Section 2), concentrating most of radiation energy in the high-
frequency band near ∼γ νB. The high-frequency RICS photons are
well collimated along the field line, within an extremely narrow
angular cone of the order of 1/γ owing to the relativistic beaming
effect. In an intense magnetic field with approximately parallel field
lines, the beaming behaviour would effectively suppress the strong
absorption of the γ -ray photons by the magnetic or γ –γ annihila-
tions.

Both the advantages of the RICS mechanism mentioned above
and the rapid progress over recent years in observations in X-ray
and γ -ray astronomy prompt us to re-examine and improve the
currently available formulation of the theory. In fact, a detailed the-
oretical analysis of the magnetic Compton scattering of soft pho-
tons by relativistic electrons beamed along the direction of a strong
magnetic field has been examined by Dermer (1989, 1990). How-
ever, in his papers, both the resonant and the non-resonant scatter-
ing were taken into consideration together using the complicated
quantum electrodynamics (QED) formula of the scattering cross-
section, which is valid over the whole spectral region of scattered
photons. Thus the resulting analytical formulae are complicated
and inconvenient for astrophysical applications. Sometimes the
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physical meaning of the formulae is difficult to understand because
of the adoption of the dimensionless photon energy ε′ ≡ hν ′/m0c2

and εB ≡ hνB /m0c2. For example, the delta function approximation
of the resonance cross-section equations (A3) and (A4) in his paper
(Dermer 1990), which are simplified from equation (3) in Dermer
(1989), gives σres ≈ σeffδ(ε′ − εB) and σ eff ≈ 323σ T, which may
give the impression that the resonance scattering cross-section is
only 323 times higher than that of the ordinary inverse Compton
scattering. In fact, our formula of σ res(ν ′) ∼ ν ′ shows that if B ∼
1012 G, the peak of the resonance cross-section at the line-centre
νB is σ res(νB) ≈ 2 × 107σ T (see equation 1 or Fig. 2 below). Re-
cently, we wrote a short letter to report part of our results (You et al.
2001). In the present paper, we give a deep physical discussion and
detailed derivation to help gain an understanding of the meaning of
the relevant RICS formulae.

In this paper, we give a treatment that differs from the previous
ones (e.g. Herold 1979; Dermer 1990) in that we deal with the co-
existent RICS and ICS processes separately, based on the fact that
RICS operates only at the harmonic frequencies ν ′ = νB, 2νB, . . . ,
particularly at the base frequency ν ′ � νB; while the ICS responds
to the continuous spectrum of incident photons. Furthermore, in our
theoretical derivations, we use a simple semiclassical cross-section
of scattering equation (1) which is exactly the same as the QED for-
mula in the vicinity of the resonance frequency νB, as shown in the
Appendix and Fig. 2 below. This leads to a great simplification of the
formulation for the radiation mechanism. In Section 2 we first deal
with the scattering near the resonance frequencies, particularly at
the base frequency νB, and derive simple analytical formulae for the
spectral and total power of the RICS process, which are very conve-
nient for use in astrophysical applications, and can be used for any
kind of ambient low-frequency radiation field, e.g. an isotropic or
anisotropic radiation field, blackbody, bremsstrahlung or power-law
non-thermal field, etc. In Section 3 we concentrate on the analysis of
the radiation efficiency of the RICS mechanism and derive an ‘ac-
commodation condition’ under which the RICS process becomes
dominant over ICS. To illustrate our results, in Section 4 we give a
quantitative example to compare between the powers of the RICS
and the ICS of a fast electron. Our theoretical approach is straightfor-
ward and provides much more simplified formulae compared with
those currently available. In Section 5 we give some discussions on
possible applications of the RICS in high-energy astrophysics, e.g.
γ -ray bursts (GRBs), pulsars, etc.

2 S P E C T RU M A N D TOTA L P OW E R
O F T H E R E S O NA N T I N V E R S E
C O M P TO N S C AT T E R I N G

To understand the origin of the RICS mechanism, it seems necessary
to restate some aspects of the RICS physics based on the classical
quantum theory, which is helpful for people who are unfamiliar
with QED theory. We first describe the kinetic behaviour of a rela-
tivistic electron in an intense magnetic field. It is known that a fast
electron, in a very strong magnetic field, cannot keep a relativistic
velocity in directions perpendicular to the magnetic field because of
the extremely short synchrotron lifetime (τ syn). For example, with
a field strength B ∼ 1012 G and γ∼ 103, τ syn ∼ 109 B−2γ −1 ∼
10−18 s. Therefore, the perpendicular component of the electron ve-
locity quickly drops down to v⊥ � c, and only the relativistic motion
along the magnetic field line can be retained for a sufficiently long
time. Thus the fast electron will move in a tightened helical orbit
along the fieldline. Such a special motion configuration, with v⊥ �
c and v‖ � c, gives the RICS its cyclotron-resonant nature.

Figure 1. The resonance inverse Compton scattering of a relativistic elec-
tron in a strong magnetic field, as observed in (a) the laboratory (S) frame,
where the scattering angle ψ s ∼ 0, i.e. the scattering direction is nearly along
the magnetic field line, owing to the relativistic beaming effect, and in (b)
the rest frame of the electron S′, in which ψ ′

i ∼ π, i.e. the electron–photon
collision is almost head-on, owing to the relativistic aberration effect.

The cyclotron resonance can be better understood in the elec-
tron rest or comoving frame S′ (Fig. 1) in which the velocity
components are v′

‖ = 0 and v′
⊥ � c, respectively. Thus in S′

one sees a non-relativistic electron moving in a circular orbit with
corresponding energy level (n + 1

2 )hνB (n = 0, 1, 2, . . .), where
νB = eB/2πm0c = 2.8 × 106 B Hz is the Landau frequency. The
most probable transition occurs at the base frequency νB owing to
the largest transition probabilities between the neighbouring levels
n ⇀↽ n + 1, particularly, 0 ⇀↽ 1 (You et al. 1997). In the S′ frame
absorption occurs as long as the frequency of the incident pho-
ton equals the base frequency, ν ′

i = νB. The relevant absorption
transition is 0 → 1, with the emission transition 1 → 0 following
immediately, owing to the extremely high probability of sponta-
neous transition, e.g. a10 ∼ 1015 s−1 for B ∼ 1012 G (You et al.
1997). Therefore, the combined process of an absorption 0 → 1 and
the subsequent, instantaneous re-emission 1 → 0 is equivalent to a
‘resonant scattering’ of an incident photon with the base frequency
ν ′

i = νB.
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Transforming to the laboratory frame, S′ → S, we obtain the
cyclotron-resonant inverse Compton scattering of a relativistic elec-
tron, simply denoted as RICS. In the case where the resonance con-
dition is not satisfied, i.e. if ν ′

i �= νB, or to be exact, ν ′
i > νB, we then

have the non-resonant ordinary ICS (Herold 1979). In the following
discussion, scattering from excited states n = 1, 2, 3, . . . , e.g. 1 →
2 → 1, 2 → 3 → 2, etc, and the transitions with higher harmonics
2 νB, 3 νB, . . . will all be neglected because the populations N 0 �
N 1 � N 2 � N 3 � 0, and because the probabilities of absorption
transition p0→1 � p0→2 � p0→3 in the case where B < Bcr �
4.4 × 1013 G (You et al. 1997).

The RICS radiation spectrum and the total power is calculated
via a Lorentz transformation of the reference frames, S′ → S, a
technique previously used by Blumenthol & Gould (1970). In order
to calculate the scattering spectrum in the S′ system, it is convenient
to decompose the incident and the scattering waves into monochro-
matic beams. Denote the intensity of a particular monochromatic,
incident beam in the S′ system as I ′(ν ′

i , ψ
′
i ), where ν ′

i and ψ ′
i are

the incident frequency and the incident angle, respectively (Fig. 1).
First, we discuss the scattering of this elementary beam. In the S′

system, the electron moves in a circular orbit perpendicular to the
field B. The number of incident photons passing through a unit area
perpendicular to the incident direction, within the element of a solid
angle d�′

i along the incident direction in a time interval dt ′ and a
frequency range ν ′

i + dν ′
i , is [I ′(ν ′

i , ψ
′
i )/hν ′

i ] dν ′
i d�′

i dt ′.
The simplified differential resonance scattering cross-section at

the base frequency ν ′
i � νB in the S′ frame has been derived previ-

ously (You et al. 1997; Chen et al. 1997),

σ s(ν ′
i , ψ

′
i , ψ

′
s) = 3

32
r0c

(
1 + cos2 ψ ′

i

) (
1 + cos2 ψ ′

s

)
φ(ν ′

i − νB),
(1)

where ψ ′
s is the scattering angle in S′, r 0 is the classical radius of an

electron and the Lorentz profile φ(ν ′
i −νB) = (�lu/4π2)[(ν ′

i −νB)2 +
(�lu/4π)2]−1, with �lu ≡ �l + �u being the total quantum damping
constant of the upper (u) and the lower (l) levels. �u = ∑

k<u Auk,
�l = ∑

k<l Alk, Auk and Alk are the probabilities of spontaneous
transition of u → k and l → k, respectively. Equation (1) shows
that σ s is extremely large when the resonance condition, ν ′

i = νB,
is satisfied; for example, the total scattering cross-section at the line
centre, ν ′

i = νB, is σ s(νB) = ∫
σ s(νB, ψ ′

i , ψ
′
s) d�′

s � 2×107σT if B
∼ 1012 G (see Fig. 2), where σ T is the Thomson cross-section. We
show in the Appendix that equation (1) is equivalent to that derived
in the QED theory with the S-matrix method near the resonance
frequency (equation A′ in the Appendix), but (1) is more convenient
for analytical studies.

The total number of incident photons scattered into the element
of solid angle d�′

s = 2π sin ψ ′
s dψ ′

s in dt ′ (in ERF S′) is thus

2πI ′(ν ′
i , ψ

′
i )

hν ′
i

σ s(ν ′
i , ψ

′
i , ψ

′
s) sin ψ ′

s dψ ′
s d�′

i dν ′
i dt ′

= 3π

16
r0c

[
I ′(ν ′

i , ψ
′
i )

hν ′
i

] (
1 + cos2 ψ ′

i

) (
1 + cos2 ψ ′

s

)

× φ(ν ′
i − νB) sin ψ ′

s dψ ′
s d�′

i dν ′
i dt ′. (2)

Equation (2) can be simplified further because the Lorentz profile
φ(ν ′

i − νB) is quite similar to the δ-function, a consequence of the
resonance nature of RICS. For this reason we first integrate for dν ′

i ,
and obtain the number of photons in a narrow frequency band near
ν ′

i � νB ≡ eB/2πm0c scattered into ψ ′
s → ψ ′

s + dψ ′
s in dt ′,

σR
IC

S /σ
T

Figure 2. Comparison between the differential scattering cross-section de-
rived in the QED S-matrix method, i.e. equation (A′) in the Appendix, and
that obtained by our semiclassical quantum method, i.e. equation (1) in text.
It is obvious that the classical quantum result is very close to the QED one,
especially near the resonance frequency.

dN = 3π

16
r0c

(
1 + cos2 ψ ′

i

) (
1 + cos2 ψ ′

s

)

×
[∫ ∞

0

I ′(ν ′
i , ψ

′
i )

hν ′
i

φ(ν ′
i − νB) dν ′

i

]
sin ψ ′

s dψ ′
s d�′

i dt ′

�
(

3π

16
r0c

)(
1 + cos2 ψ ′

i

) (
1 + cos2 ψ ′

s

)

× I ′(νB, ψ ′
i )

hνB
sin ψ ′

s dψ ′
s d�′

i dt ′, (3)

for which the normalization
∫ ∞

0
φ(ν ′

i − νB) dν ′
i = 1 has been used.

Returning to the laboratory frame S, the Lorentz transformation
gives (taking β ∼ 1) (Tucker 1979):

ν ′
s ≡ ν ′ = γ ν(1 − β cos ψs) � γ ν(1 − cos ψs)

cos ψ ′
i = (cos ψi − β)(1 − β cos ψi)−1

� (cos ψi − 1)(1 − cos ψi)−1 = −1

d�′
i = d�iγ

−2(1 − β cos ψi)−2 � d�iγ
−2(1 − cos ψi)−2

I ′(ν ′
i , ψ

′
i ) = I (νi, ψi)γ 3(1 − β cos ψi)3

� I (νi, ψi)γ 3(1 − cos ψi)3

dt ′ = 1

γ
dt.

Therefore, I ′(ν ′
i , ψ

′
i ), d�′

i and dt ′ in equation (3) can be replaced
by the corresponding quantities in the laboratory system S, i.e.
d�′

i → d�i, dt ′ → dt and I ′(ν ′
i , ψ

′
i ) → I (νi, ψi). Note that

(1 + cos2 ψ ′
i ) � 2 because in the S′ system the incident direction

ψ ′
i � π (see the second equation above), i.e. we have approximately

a head-on collision for the fast electron with β � 1. Thus (3) can be
rewritten as

dN =
(

3π

8
r0c

)(
1

hνB

)
I (νi, ψi)(1 − cos ψi)

(
1 + cos2 ψ ′

s

)
× sin ψ ′

s dψ ′
s d�i dt. (4)

Equation (4) represents the number of photons scattered into the
solid angle ψ ′

s → ψ ′
s + dψ ′

s, in dt in the S frame. We note that, for
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a given incident beam I (ν i, ψ i), the value of the incident frequency
ν i cannot be taken as a free variable if the incident direction ψ i has
been fixed. The ν i-value is determined by the resonance condition
of scattering ν ′

i = νB in ERF S′ and the Doppler formula, ν ′
i =

γ νi(1 − β cos ψi) � γ νi(1 − cos ψi); that is,

νi � νB

γ (1 − cos ψi)
. (5)

Equation (5) is the expression of the resonance condition ν ′
i = νB

in the laboratory frame S, which indicates that the frequency of the
incident photons to be absorbed cannot be taken arbitrarily, but is
restricted by the given ψ i-angle, ν i = ν i(ψ i). This is quite different
from the conventional non-resonant inverse Compton scattering of a
free electron, in which case ν i and ψ i are free variables, independent
of each other.

For a qualitative insight, we note that in S′, the scattering fre-
quency is given by the resonance condition, ν ′

S ≡ ν ′ = ν ′
i = νB,

which shows a strict monochromaticity of scattering in S′. However,
returning to the S frame, we obtain the scattering frequency (again
taking β � 1)

ν = γ ν ′(1 + β cos ψ ′
s) � γ νB(1 + cos ψ ′

s). (6)

Owing to the approximate isotropy of scattering in S′ (see equa-
tion 1), the range for the scattering angle ψ ′

s is (0, π). Therefore,
the scattering frequencies in the S system should spread over a wide
range (0, 2γ νB), with a large high-frequency cut-off, 2γ νB. How-
ever, we will show in the following that the RICS radiation still
keeps a moderately good monochromaticity.

We now derive the RICS spectral power for an electron with
energy γ . Multiplying equation (4) by the photon energy hν, with
ν as given by equation (6), we obtain the elementary power

dpRICS = dW

dt
= dN

dt
hν

= 3π

8
r0c

(
hν

hνB

)
I (νi, ψi)(1 − cos ψi)

(
1 + cos2 ψ ′

s

)
× sin ψ ′

s dψ ′
s d�i

=
(

3π

8
r0c

)
γ I (νi, ψi)(1 − cos ψi)

(
1 + cos2 ψ ′

s

)
× (1 + cos ψ ′

s) sin ψ ′
s dψ ′

s d�i. (7)

In equation (7), there exists a one-to-one correspondence between
the scattering frequency ν and the scattering angle ψ ′

s (see equa-
tion 6). Integrating equation (7) over the whole incident solid angle
d�i = 2π sin ψi dψi, we obtain the RICS power at frequency ν (i.e.
at angle ψ ′

s),

dpRICS = 3π

8
r0cγ (1 + cos ψ ′

s)
(

1 + cos2 ψ ′
s

)
sin ψ ′

s dψ ′
s

× [
2π

∫ π

0
I (νi, ψi)(1 − cos ψi) sin ψi dψi

]
. (8)

Note that the intensity I is always a function of ψ i, even when
the radiation field is isotropic, for which the dependence on ψ i does
not seem explicit, but I in fact is still related to ψ i through ν i(ψ i),
i.e. I = I (ν i) = I [ν i(ψ i)], where the form of I (ν i) is determined
by the given radiation field of soft photons, and the function ν i =
ν i(ψ i) is given by the resonance condition (5). Denoting the integral
in equation (8) by η, namely,

2π

∫ π

0

I [νi(ψi)](1 − cos ψi) sin ψi dψi ≡ η(γ, B). (9)

The quantity η in unit of erg cm−2, a function of γ and B, can be
regarded as a measure of the resonance scattering efficiency, in the

sense that it includes all the eligible low-frequency photons incident
from all directions ψ i, which satisfy the resonance condition equa-
tion (5), thus it can be resonantly absorbed (scattered) by an electron
with energy γ . Hereafter we simply call η(γ , B) the ‘efficiency of
the RICS’. It can be seen that, the stronger the intensity I [ν i(ψ i)]
at the resonance frequency ν i = ν i(ψ i), the higher the ‘resonance
scattering efficiency’ η.

The dependence of the spectral power on the frequency can be
derived by replacing the scattering angle ψ ′

s in equation (8) by the
scattering frequency ν. Using equation (6), the quantity cos ψ ′

s can
be rewritten as cos ψ ′

s = γ −1ν−1
B ν − 1 = 2x − 1, where x ≡

ν/2γ νB = ν/νmax is a dimensionless scattering frequency in units
of the maximum scattering frequency 2γ νB.

The spectral power hence becomes

dpRICS

dx
= (3πr0c)η(γ, νB)γ f (x)

(
x ≡ ν

2γ νB
= ν

νmax

)
,

(10)

where the function f (x) is

f (x) =
{

2x3 − 2x2 + x (if 0 � x � 1)
0 (if x > 1).

(11)

The dimensionless function f (x), depicted in Fig. 3, specifies
the spectral shape of the RICS emission of a single electron. In the
same figure we also show the results of our Monte Carlo simulations
for different values of γ . These simulations do not include any
simplifications we used in obtaining the analytical formula (11) and
the results show clearly that equation (11) is sufficiently accurate
when γ > 5.

We see in Fig. 3 that the RICS spectrum still retains a mod-
erately good monochromaticity despite the very wide frequency
band – a sharp peak near the maximum frequency 2γ νB with a
weak low-frequency tail extending to ν � 0. In a semiquantita-
tive discussion, one can thereby adopt a quasi-monochromatic ap-
proximation by assuming a one-to-one correspondence between the

Figure 3. The radiation spectrum of the RICS of a single electron with
energy γ shows good monochromaticity, which is quite different from the
ordinary inverse Compton scattering. Note the sharp peak at the maximum
frequency 2γ νB, and the weak low-frequency tail extending to ν → 0. The
solid curve is from the analytical equation (11); the other curves are from
Monte Carlo simulations without any simplification or approximation. Note
that when γ > 5, the simulation results are very close to the analytical one.
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electron energy γ and the emission frequency ν, i.e. an electron with
energy γ produces a monochromatic line radiation with frequency
2γ νB.

With dpRICS/dx = (2γ νB) (dpRICS/dν), the spectral power (10)
becomes

dpRICS

dν
=

(
3πr0c

2νB

)
η(γ, νB) f (ν/2γ νB). (12)

The total power of the RICS process is thus

PRICS =
∫ 1

0

dpRICS

dx
dx = (πr0c)η(γ, νB)γ. (13)

Thus the power PRICS is proportional to the product of the ‘effi-
ciency’ A and the energy γ of the electron.

3 T H E AC C O M M O DAT I O N C O N D I T I O N

As can be seen in equation (10) or (13), the RICS radiation power is
proportional to the ‘resonance scattering efficiency’ η(γ , B), which
depends on the incident intensity I [ν i(ψ i)] at the resonance fre-
quency ν i(ψ i) (see equations 5 and 9). The RICS mechanism is
important only if η is large. When η ≈ 0, RICS emission becomes
negligibly weak.

Note that, in general, the fractional number of photons with small
incident angles is very small in a general isotropic radiation field.
Furthermore, equation (5) shows that ψ i � 0 corresponds to a high
incident frequency ν i. Since the number of photons with very high ν i

is nominally very small in a low-frequency radiation field, neglecting
scattering with small incident angles, equation (5) hence becomes
approximately

γ hνi � hνB or γ νi � νB. (14)

Equation (14) gives the approximate position of the resonance
frequency ν i, and serves not only as an approximate resonance con-
dition for a single electron with energy γ , but also provides a useful
criterion to estimate the efficiency of the RICS emission. Accord-
ing to equation (14), the approximate resonance frequency ν i �
νB/γ is no longer dependent on the incident angle ψ i, hence the
approximate resonance intensity I [ν i(ψ i)] � I (νB/γ ) is also ψ i

independent. Therefore, equation (9) becomes approximately

η(γ, B) � 2πI (νB/γ )

∫
(1 − cos ψi) sin ψi dψi ∝ I (νB/γ ).

(15)

Thus, the stronger the intensity at the approximate resonance fre-
quency is, the higher the scattering efficiency. For any given am-
bient low-frequency field I (ν i), if its average frequency ν̄i =∫

νi I (νi) dνi/
∫

I (νi) dνi is near the approximate resonance fre-
quency, i.e. ν̄i � νB/γ , then the resonance intensity I (νB/γ ) � I (ν̄i)
should be large, hence a large η. On the other hand, if νB /γ is far
from ν̄i, then I (νB/γ ) → 0, and η(γ , B) → 0, the RICS emission
diminishes.

In brief, when the mean frequency ν̄i satisfies the approximate
resonance condition (14), i.e.

γ hν̄i � hνB (16)

the RICS is important. Equation (16) can be regarded as an ‘accom-
modation condition’ or an ‘accommodation relation’, which links
the field strength B, the electron energy γ , and the average frequency
ν̄i of the ambient radiation field. The RICS emission is significant
only when the electron energy γ times the average ambient photon
energy (hν̄i) is comparable to hνB.

Likewise, for the assembly of relativistic electrons with average
energy γ̄ , the collective RICS emission is significant when γ̄ hν̄i is
comparable to hνB,

γ̄ hν̄i � hνB. (17)

Therefore, equations (5), (14), (16) and (17) are the resonance con-
dition, the approximate resonance condition, the ‘accommodation
condition for a single electron with energy γ ’ and the ‘accommo-
dation condition for assembly of fast electrons with average energy
γ̄ ’, respectively.

4 C O M PA R I S O N O F R I C S
W I T H T H E O R D I NA RY I N V E R S E
C O M P TO N S C AT T E R I N G I C S

To illustrate the conclusion of equation (16), we now give a numer-
ical example to compare quantitatively between the powers of the
RICS and of the ICS of a fast electron in a given scattered low-
frequency field that assumes a power-law form,

I (νi) = I0ν
−p
i (ν1 < νi < ν2). (18)

The total power of the field-free ICS of an electron is well known
(Tucker 1979),

P ICS = 32π

9
r 2

0 cUphγ
2 � 2.6 × 10−14Uphγ

2 erg s−1, (19)

where U ph is the energy density of the low-frequency field. However,
in the case of an intense magnetic field, the power of ordinary non-
resonant inverse Compton scattering is much smaller than that given
by equation (19), owing to the fact that the non-resonant magnetic
ICS is equivalent to the field-free ICS only for the scattered soft
photons with frequency ν ′

i > νB, equivalently, ν i > νB/γ in the
observer frame S. The soft photons with ν i < νB/γ (ν ′

i < νB) are
useless for ordinary ICS. However, in equation (19), the energy
density of the low-frequency field U ph contains all the soft photons,
including both the ν i > νB/γ and ν i < νB/γ . Therefore, in the
following comparison, we take the power given by equation (19) as
an upper limit of that for non-resonant inverse Compton scattering.1

The RICS power PRICS is given by (13). With an ambient field of
(18), from equation (5) we find I (ν i) = I 0ν

−p
B γ p(1 − cos ψ i)p . We

note that the upper and lower limits of the integral in (9) are (ψ1,
ψ2) rather than (0, π), owing to the existence of the upper- and the
lower-frequency cutoffs ν1 and ν2, i.e. I (ν i) = 0 for ν i < ν1 and
ν i > ν2. According to equation (5), we obtain (1 − cos ψ1) =
νB/γ ν1 and (1 − cos ψ2) = νB/γ ν2, which determine the limits
(ψ1, ψ2). Thus we obtain

η(γ, νB) = 2πI0ν
−p
B γ p

∫ ψ2

ψ1

(1 − cos ψi)
p+1 sin ψi dψi

= 2πI0ν
−p
B γ p

∫ νB/γ ν1

νB/γ ν2

χ p+1 dχ

� 2πI0ν
2
B

(
1

p + 2

)
ν

−(p+2)
1 γ −2, (21)

where the term ν
−(p+2)
2 has been neglected for ν

−(p+2)
2 � ν

−(p+2)
1 .

1 Strictly speaking, the power of non-resonance inverse Compton scattering
in a magnetic field is given by

Pnres ICS ≈ 32

9
πr2

0 cUph(ν′
i > νB)γ 2. (20)
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We emphasize again that for the RICS mechanism to work the
low-frequency spectrum in the band (ν1 < ν i < ν2) has to meet the
‘accommodation condition’ (16) γ ν̄i � νB or γ ν1 � νB (for power-
law field, ν̄i � ν1), as otherwise (e.g. νB � γ ν1 � γ ν2, or γ ν1 �
γ ν2 � νB) the integral vanishes and the ‘scattering efficiency’ η(γ ,
B) → 0.

Inserting (21) into (13) we obtain

PRICS = 2π2r0c

p + 2
I0ν

2
Bν

−(p+2)
1 γ −1

� 1.31 × 1012 1

p + 2
I0 B2ν

−(p+2)
1 γ −1 erg s−1. (22)

On the other hand, from the relation Uph(νi) = 4πI (νi)/c and
(18), we obtain the energy density of the low-frequency field,

Uph =
∫ ν2

ν1

Uph(νi) dνi = 4πI0

c

∫ ν2

ν1

ν
−p
i dνi

� 4πI0

c

ν
1−p
2

1 − p
,

(23)

where the term ν
1−p
1 has been neglected because ν

1−p
1 � ν

1−p
2 if

p < 1. Inserting (23) into (19), we obtain

P ICS = 1.09 × 10−23 I0
ν

1−p
2

1 − p
γ 2. (24)

By comparing (22) and (24), it is evident that PRICS � P ICS holds
as long as (16) is satisfied (i.e. γ ν̄i � νB). If the values of ν1, ν2,
p, B and γ are in physically reasonable ranges, for example, taking
p ∼ 0.5–0.9, B ∼ 1012 G, γ∼ 103, ν1 ∼ 1015 Hz and ν2 ∼ 1016 Hz,
we find that PRICS is 103–104 times stronger than P ICS.

As illustrated above one can prove in a similar way that, under
the ‘accommodation condition’ γ ν̄i � νB, the total radiation power
of the RICS is always much greater than that of the coexistent ICS,
no matter what kind of low-frequency radiation field is present (e.g.
blackbody, bremsstrahlung, etc.).

5 C O N C L U S I O N S A N D D I S C U S S I O N S

In summary, when the relativistic electrons, beamed along the di-
rection of strong magnetic field of the magnetized neutron star or
strange star, pass through an ambient soft photon field, the reso-
nant inverse Compton scattering (RICS) will be produced. It may
become the dominant γ -ray radiation mechanism if the ‘accom-
modation condition’ γ̄ hν̄i ≈ hνB is satisfied. The ‘accommodation
condition’ may be easily satisfied at some distance from the neutron
star because the magnetic field is markedly non-uniform along the
magnetic field line, dropping off with distance r drastically, B ∝
(r/R∗)−3. In addition to the high efficiency, the high-frequency and
the high-beaming behaviour, another prominent advantage of the
RICS radiation is the relatively good monochromaticity, compared
with the coexistent ICS. The quasi-monochromatic approximation
gives a one-to-one correspondence between the energy γ of the fast
electron and the RICS frequency 2γ νB, γ→ 2 γ νB, which implies
that most of the RICS photons concentrate in the high-frequency
band, ν ∼ γ νB. Therefore, the resonant inverse Compton scattering
in the intense magnetic field is significantly different from the field-
free case, and may be a very important radiation mechanism in the
hard X-ray and γ -ray astronomy. The formulae we derived for the
emission spectrum and the total power are simple to use and may
find wide applications in high-energy physics and astrophysics.

As subsequent work, we plan to calculate the collective RICS
spectrum of the assembly of relativistic electrons, i.e. the RICS
emissivity J RICS(ν), based on the spectrum for a single electron

given by equations (10) and (11). We will consider various forms of
ambient soft photon fields around the central neutron star (power-
law form, blackbody, bremsstrahlung, etc.). However, without any
calculation, we can infer qualitatively the basic characteristics of
the collective RICS spectrum based on the quasi-monochromatic
approximation. If the relativistic electrons, moving along the field
line, have a power-law energy spectrum, N (γ ) ∝ γ −n (γ 1 <γ <γ 2),
according to the one-to-one correspondence γ → 2γ νB, the collec-
tive RICS spectrum J RICS(ν) ∼ ν in the main frequency band also
has an approximate power-law form, and the upper and lower cut-
offs are 2γ 2νB and ∼2γ 1νB, respectively, i.e. 2γ1νB � ν � 2γ2νB.
However, the quasi-monochromaticity is a rough approximation.
For an electron with energy γ , except for the main radiation near
the maximum frequency 2γ νB, there still exists weak radiation ex-
tending to ν ≈ 0 (see equation 11 and Fig. 3). Therefore, electrons in
the range γ 1 < γ < γ 2 all make a contribution to the low-frequency
band ν < 2γ 1νB, down to ν � 0. Therefore, the final collective
RICS spectrum should have a broken power-law form, with a break
point at ∼2γ 1νB. The detailed quantitative calculation confirms this
conclusion. Such a broken power-law spectrum is a basic property
of the collective RICS spectrum, which could be used to explain the
observed broken power-law spectra of some astrophysical sources.

There exist various classes of high-energy hard X-ray and/or
γ -ray objects with strong magnetic fields, e.g. the γ -ray pulsars,
magnetars, GRBs, etc. Most known pulsars are radio sources; the
radio photons are believed to be produced by synchrotron and/or
curvature radiation of relativistic electrons. Though viable models
exist to explain the X-ray and gamma-ray pulses from some of the
radio pulsars, here we suggest that the RICS mechanism with its
high-efficiency, high-frequency and beaming behaviour may also
contribute to the observed high-energy γ -ray radiation. However,
when using the new RICS mechanism to construct a reasonable
model for a γ -ray pulsar, one should be careful because the neces-
sary low-frequency photons for the RICS process cannot originate
from the observed radio pulses themselves. For these radio photons,
the incident angle is too small (ψ i � 0, the tail-up collision be-
tween the photon and the electron) to make the incident frequency
ν i satisfy the resonance condition, equation (5). Therefore, we are
inclined to consider another source of radio photons that is con-
nected with the gamma-ray pulsar models suggested by Cheng, Ho
& Ruderman (1986, see also Zhang & Cheng 1999) in which the
pairs e± mainly originate from the outer gap, far from the region of
strong magnetic field of the central neutron star. In this case, the syn-
chrotron radio photons produced by the position e+ enter the strong
magnetic funnel and have a head-on collision with the outgoing
relativistic electrons from the inner gap. Further detailed calcula-
tions are needed to investigate the relative efficiency of the RICS
mechanism, compared with other available radiation mechanisms.

Another possible application of the RICS mechanism might be
the γ -ray bursts, which may contain one or two magnetized neu-
tron stars in the centre of the fireball (Piran 1999). If the NS–NS
mergers or NS–black hole mergers are indeed the ‘inner engines’ of
the fireball during the process of release of gravitation energy, the
operation of the RICS mechanism seems to be inevitable. The pro-
duction of an enormous number of relativistic electrons seems likely
because of the tremendous release of gravitation energy. Therefore,
strong gamma-rays might be produced during the merging process
through the RICS mechanism. Here we emphasize the special ad-
vantage of the direction of the magnetic axis, along which the highly
beamed RICS photons may easily escape from the neutron star with
virtually no absorption by the magnetic and/or γ –γ annihilations.
In other words, the magnetic axis can be regarded as an optically
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thin ‘transparent channel’ for the high-energy RICS photons with
hν � 1 MeV. Consequently, the serious ‘compactness problem’ en-
countered in current GRBs models could be resolved in the RICS
model. Because the RICS mechanism operates only when the or-
derly magnetic field is not destroyed completely, it may only be
possible to account for the initial gamma-ray emission of GRBs.
Further detailed calculations are needed to investigate whether the
RICS mechanism can account for the observed complexity of high-
energy radiation.
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A P P E N D I X : C O M PA R I S O N W I T H T H E
S C AT T E R I N G C RO S S - S E C T I O N F RO M Q E D

We demonstrate here that the differential scattering cross-section
in the S′ (ERF) given in equation (1) is precisely the same as that
derived in the QED theory with the S-matrix method, if applied in
the vicinity of the resonance frequency ν ′

i = νB. However, equation
(1) is much more convenient for analytical studies of the resonant
inverse Compton scattering, as carried out in this paper.

The QED formula is (e.g. equation 2 in Dermer 1990)

dσ ′

dε ′
s dµ′

s

= 3σT

8
δ(ε ′

s − ε ′
i )

×
[(

1 − µ′
i
2
) (

1 − µ′
s
2
) + 1

4

(
1 + µ′

i
2
) (

1 + µ′
s
2
)

(g1 + g2)

]
,

where ε ′
i and ε ′

s are the energy of the incident and of the scattered
photons, respectively. Integrating over ε ′

s, then equation

∫
dσ ′

dε ′
s dµ′

s

dε ′
s ≡ dσ ′

dµ′
s

= 3σT

8

[(
1 − µ′

i
2
) (

1 − µ′
s
2
)

+ 1

4

(
1 + µ′

i
2
) (

1 + µ′
s
2
)

(g1 + g2)
]
, (A)

where µ′
i ≡ cos ψ ′

i , µ′
s ≡ cos ψ ′

s, g1(ν) = u2/[(1 + u)2], g2(ν) =
u2/[(u − 1)2 + a2], u ≡ ε ′

i/εB = ν ′
i/νB, a ≡ ε�/2εB, ε� = 4/3α f ε

2
B

and α f ≈ 1/137 is the fine-structure constant. Since the dimension-
less Landau frequency εB ≡ hνB/m0 c2 � 1 if B < 1013 G, then
a � 1.

Equation (A) thus describes the differential scattering cross-
section in QED, for photons incident along the direction µ′

i ≡ cos ψ ′
i

and scattered along the direction of µ′
s ≡ cos ψ ′

s. In the vicinity of
the resonance frequency in the S′, i.e. ν ′

i ≈ νB, we have u ≈ 1,
g1 ≈ 1/4 and g2 � 1. Therefore, in equation (A), g1 + g2 ≈ g2 �
1. Consequently, equation (A) may be simplified as

dσ ′

dµ′
s

= 3σT

8

[
1

4
g2(ν)

(
1 + µ′

i
2
) (

1 + µ′
s
2
)]

. (A′)

Since u ≈ 1, then

g2 ≡ u2

(u − 1)2 + a2

≈ 1

(u − 1)2 + a2

= ν2
B

(ν ′
i − νB)2 + a2ν2

B

= ω2
B/4π2

(ν ′
i − νB)2 + (�10/4π)2

,

where �10 = A10 = 4e2ω2
B/3m0c3 is the spontaneous transition prob-

ability from the first excited to the ground Landau energy levels (You
et al. 1997). Since σT ≡ 8/3πr 2

0 = 8/3πr0e2/m0c2, where r 0 =
e2/m0 c2 is the classical radius of an electron, equation (A′) may be
rewritten as

dσ ′

dµ′
s

= 3π

16
r0c

(
1 + cos2 ψ ′

i

) (
1 + cos2 ψ ′

s

)
φ(ν ′

i − νB),

where φ(ν ′
i − νB) = (�l u/4π2)/[(ν ′

i − νB)2 + (�l u/4π)2].
Since the definition of ( dσ ′/ dµ′

s) dµ′
s is equivalent to that of

σ s d�′
s = σ s2π sin ψ ′

s dψ ′
s = σ s2π dµ′

s, we then finally have

dσ ′

dµ′
s

= 2πσ s(ν ′
i , ψ

′
i , ψ

′
s).

Therefore, equation (1), i.e. the differential scattering cross-section
we have used in this paper, is precisely the same as the QED result
in the vicinity of the resonance frequency of the magnetic field. To
further corroborate this result, we show in Fig. 2 the ratio between
the differential scattering cross-section derived in the QED S-matrix
method, i.e. equation (A′), and that obtained by our semiclassical
method, i.e. equation (1). It is evident that the ratio is very close to
unity in the vicinity of the resonance frequency.
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